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Chapter 9

Topological Crystalline Insulators II:
Topological quantum chemistry

Learning goals

• We understand what we mean by Wannierizablity.
• We know how to think of a band as a representation of the space group.
• We know how to construct elementary band representations.
• We can use the Bilbao server to analyze bands according to their symmetry properties.

• B. Bradlyn, L. and Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and
B. A. Bernevig, Nature 537, 298 (2017)

9.0 Prerequisites
In this chapter we introduce a way to characterize the topology of Bloch bands stabilized by space
group symmetries. To this end we will construct representations of the infinite space groups (the
group of discrete translations are not closed under a finite number of group elements). As a
prerequisite we build on basic knowledge of representation theory. In particular, we assume that
you know

1. what an irreducible representation (irrep) is.

2. that irreps of dimension larger than one may split, if the symmetry is reduced. For example
the px, py, pz orbitals forming the spin-1 triplet

+ : px + ipy (9.0.1)
0 : pz (9.0.2)
− : px − ipy (9.0.3)

are splitting into the two individual irreps of px ± ipy and pz if SO(3) is reduced to, e.g,
C4v.

3. how to use character tables to do this symmetry reduction.

4. about double groups: If spin-1/2 particles are involved, we supplement all group elements
to also appear with an additional rotation by 2π. For the irreps where a spin-1/2 particles
is involved all characters acquire a minus sign by this. Their names typically carry a bar
as for example in E1g.
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9.1 Wannierizability
In a band insulator we are free to choose a basis in which to write down the wave-functions of
all filled bands. Let us consider a Bloch problem∑

β

Hα,β(k)uk;a,β = εa(k)uk;a,α (9.1.1)

where a enumerates the energy bands, k runs over the Brillouin zone and α, β encode some
orbital or sub-lattice degree of freedom. We can go from a momentum space picture to a real
space description in term of Wannier functions

ψa,α(r −Ri) =
ˆ

BZ
ddk uk;a,αe

ik·(r−Ri). (9.1.2)

If we want these Wannier functions to serve as a basis for the ground-state, we have to consider
all a ≤ n, where n is the number of filled bands. Already in 1959 Walter Kohn [3] realized, that
the Wannier functions are only exponentially decaying if we choose Bloch functions uk;a,α which
are smooth in k.1 Given what we learned in the last chapters, we immediately observe that
ψa,α(r − Ri) are gauge dependent under a set of U(n) transformations (one per k). In other
words, we need to choose a smooth U(n) gauge for the Wannier functions to be exponentially
localized. We know, however, that the topological indices introduced in Chap. 7 are only non-
vanishing if there is an obstruction to choose a smooth gauge.2 Therefore, we can also use the
(in-) ability to choose a set of basis functions which are all exponentially localized as a definition
for a topological system: If we can smoothly transform the ψa,α(r − Ri) to be exponentially
localized, i.e., if we can choose an atomic limit, we call a system trivial. Finally, we have seen
that symmetries can give rise to topological phases that would be trivial in their absence, i.e.,
the adiabatic path to the atomic limit may now be obstructed by the constraints imposed by
the symmetry. The same holds here: We demand the atomic limit to be compatible with a set
of (crystalline) symmetries.
We are now in the position to define Wannierizablity. We call a set of bands Wannierizable if
we can find a basis transformation to a set of wave-functions ψa,α(r −Ri) that are symmetric
and exponentially localized. If a set of bands is not Wannierizable, we call it topological.
An important remark is in order: If we formulate a tight-binding model for a set of bands, we
implicitly assume that we used exponentially localized wave-functions when we wrote down the
Hamiltonian. Therefore, the set of all bands together arising from such a tight-binding model
are bound to be trivial. The only option to have topological phases is, if there is more than one
band and they are separated by a gap.
With these introductory remarks, we can outline the program of what goes under the name of
topological quantum chemistry [1]. The symmetries we are dealing with are the 230 space groups,
i.e., all symmetry groups arising in crystalline systems. The core idea is, that we can construct all
possible band-structures that can arise from symmetric Wannier functions positioned in a lattice
obeying one of the 230 symmetry groups. Once one achieves this goal, one has, by construction,
an exhaustive list of all trivial bands in each of the space groups. Using this exhaustive list, we
can check for any band-structure we obtain for a concrete problem if and how it fits into this
exhaustive table. If it does not, we know we deal with a topological band. As an additional
bonus we will see how this approach gives rise to two main classes of topological bands: stable
topological and fragile topological. While the latter sounds like an oxymoron, we will see that
this type of topology is neither “weak” nor esoteric.

1Remember that that the Fourier transformation of a function uk that is s-fold differentiable is falling off at
least as 1/|x|s. Hence, only for C∞-functions can we expect exponentially localized Wannier functions.

2Remember that the Berry curvature F can be written as the (higher-dimensional generalizations) curl of a
vector field A. Hence, by using Stoke’s theorem on a closed manifold (the d-torus) we obtain a zero index if the
Berry connection A is free of divergencies.
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In the following, we will introduce all the needed definitions and develop the general strategy.
We illustrate all these developments on the example the doubled lattice Dirac model introduced
in Chap. 4.

9.2 Space groups
Theory: To introduce space groups we need to fix a few facts about crystals. Crystals are built
from Bravais lattices where every unit cell in the lattice can be reached by a discrete translation

t = ni ai with n ∈ Zd, (9.2.1)

where the ai are the lattice vectors. The Bravais lattice is isomorphic to Zd and the group of
translations {t} on the Bravais lattice is an infinite group. Note, that inside the unit cell, atoms
can be arranged in arbitrary positions, called Wyckoff positions. The full symmetry group of
the crystal can now be written as all operations that leave the crystal invariant and is called a
space group G with elements g written as

g = {R|r}. (9.2.2)

The elements of R are in the crystallographic point group which leave one point invariant3 and
r are translations. The action of a group element g on a point in space q is given by

gq = Rq + r. (9.2.3)

Note, that the space group generically contains pure translations {1|t}, pure point group oper-
ations {R|0}, as well as non-symmorphic elements which involve, e.g, a mirror operation and a
half-lattice translation.
As we intend to investigate what kind of bands can be induced by symmetric orbitals, we need
to talk about where we put these orbitals and what it means to be symmetric at the chosen
locations. A generic point q inside the unit cell is called a Wyckoff position. For the remainder
of this chapter we need the “most symmetric” positions called maximal Wyckoff positions.4 Note
that a Wyckoff position might not be invariant under all point group operations. The non-trivial
images gq = R−1q form the orbit of such a position.
Example: We are interested in a system in the space group No. 123, also called P4/mmm. In
fact, for the purpose of this lecture we are only interested in the planar version of P4/mmm.
However, we need the out-of plane point group elements to fix the orbitals that we put onto the
two-dimensional lattice.
The two dimensional Bravais lattice is generated by the lattice vectors

a1 = (1, 0), (9.2.4)
a2 = (0, 1). (9.2.5)

The space group P4/mmm does not contain any non-symmorphic elements, i.e, all space group
elements can be written as either {1|t} with t = niai or {R|0} with R ∈ D4h, the dihedral point
group of P4/mmm.
In Fig.9.1, we show the unit cell, the maximal Wyckoff positions, and the action of all generators
of the group D4h. Note that the maximal Wyckoff positions 1a and 1b have the full D4h point
group as their site-symmetry. At 2c, the symmetry is reduced to D2h.

3A point group is a symmetry group that leaves a point invariant. A crystallographic point group is a point
group that is compatible with one of the Bravais lattices. As such, they can only contain discrete rotations, in
fact rotations of order 1, 2, 3, 4, and 6. There are only 32 crystallographic point groups.

4We can define the stabilizer group Gq, a subgroup of the full group G which leaves the point q invariant. The
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Figure 9.1: The space group P4/mmm: (a) The lattice vectors a1/2, the unit cell, and the
maximal Wyckoff positions 1a, 1b, 2c. (b) The action of the two-fold rotation around the z-axis
Cz2 , or in Schönflies notation 2001. (c) The action of a fourfold rotation around the z-axis Cz4 ,
or in Schönflies notation 4+

001. (d) The action of the two-fold rotation around the y-axis Cy2 , or
in Schönflies notation 2010. Note, that for the in-plane drawing, this is identical to a mirror on
the y-axis Mx = I ◦Cz2 ◦C

y
2 , or in Schönflies notation m100. (e) The action of inversion I, or in

Schönflies notation −1.

9.2.1 Placing orbitals

Theory: The next step in our program is to place atoms, or more precisely, orbitals at maximal
Wyckoff positions.5 Once we put these orbitals, they will hybridize and form the sought after
Bloch bands.
Free atoms are typically symmetric under the action of SO(3). When we place these into the
lattice, the symmetry is reduced to the one of the respective Wyckoff positions. This is an
example of subduction: The irreducible representations of a larger group (here SO(3)) give rise
to representations of a smaller group.
Example: Let us put spinful orbitals at the Wyckoff position 1a. At 1a we have the full
symmetry D4h, hence we have to consider the double group D4h. A minimal set of characters is
given in Tab. 9.1. The Bilbao Crystallographic Server provides most information.

D4h

1 Cz4 I C̄z4

E2g GM6 2 −
√

2 2 −
√

2
E1g GM7 2

√
2 2

√
2

E2u GM8 2 −
√

2 −2
√

2
E1u GM9 2

√
2 −2 −

√
2

D2h

1 I

Eg GM5 2 2
Eu GM6 2 −2

Cs

1 M01
2E GM3 1 −i
1E GM4 1 i

Table 9.1: Reduced set of characters of the spin-1/2 irreducible representation of the double
group D4h and some if its subgroups. The first two columns in each table indicate standard
names of the irreps, the following columns contain the characters of the conjugacy classes that
we need here. Note that C̄z4 = I ◦ Cz4 is an improper rotation. All other characters not shown
are either zero or related by a minus sign due to the addition of a 2π rotation. The generators
of all groups can be found on the Bilbao Crystallographic Server for D4h, D42h, Cs, and likewise
for the full character tables D4h, D2h, Cs.

Let us start from the following SO(3) irrep: Out of an s-wave orbital (L = 0) and a spin=1/2

orbit of a Wyckoff position q is the set of all points generated from q by the application of all g ∈ G onto that
point. This leads to the multiplicity of a Wyckoff postion: the number of points in the orbit of q. Finally, we
can define maximal Wyckoff positions: a Wyckoff position q is non-maximal if there exists a group H such that
Gq ∈ H ∈ G. A Wyckoff position that is not non-maximal is maximal. Examples for maximal Wyckoff positions
are those, where Gq contains a non-trivial rotation.

5One can of course place atoms at arbitrary Wyckoff positions. However, for the sake of the topological
classification of the Bloch bands, the maximal Wyckoff positions suffice [2].
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(S = 1/2) we form the representation with J = L + S = 1/2 spanned by |s, ↑〉 and |s, ↓〉.
Remember that the representation of a rotation for a general angular momentum state J are
given by

ρ(Ω) = eiJ ·Ω, (9.2.6)

where J denote the angular momentum matrices J = (Jx, Jy, Jz), Ω = |Ω| is the rotation angle
and Ω̂ = Ω/Ω the rotation axis. When using the Pauli matrices Ji = 1

2σi for J = 1/2 we obtain

ρ(Cz2 ) =
(

i 0
0 −i

)
tr ρ(Cz2 ) = 0,

ρ(Cz4 ) =
(
eiπ/4 0

0 e−iπ/4

)
tr ρ(Cz4 ) =

√
2,

ρ(Cy2 ) =
(

0 1
−1 0

)
tr ρ(Cy2 ) = 0,

ρ(I) =
(

1 0
0 1

)
tr ρ(I) = 2.

(9.2.7)

The last line we extract from the fact that s-orbitals are even under inversion. When comparing
the characters with those in Tab. 9.1 we immediately see that we deal with E1g.
As a second example, let us consider p-orbitals (L = 1) and a spin=1/2 (S = 1/2). This time,
we want to consider J = L+ S = 3/2. Using the rotation matrices for J = 3/2 we obtain

ρ(Cz2 ) =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 tr ρ(Cz2 ) = 0,

ρ(Cz4 ) =


e3iπ/4 0 0 0

0 eiπ/4 0 0
0 0 e−iπ/4 0
0 0 0 e−3iπ/4

 tr ρ(Cz4 ) = 0,

ρ(Cy2 ) =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 tr ρ(Cy2 ) = 0,

ρ(I) =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 tr ρ(I) = −4.

(9.2.8)

Again, the inversion matrix we obtain from the fact that p-orbitals are odd under inversion. We
see that by going from SO(3) → D4h we can further reduce the J = 3/2 representation as the
states with mJ = ±3/2 are not mixing with mJ = ±1/2. We choose the mJ = ±3/2 sector
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spanned by |px + ipy, ↑〉 and |px − ipy, ↓〉. The representations are given by

ρ(Cz2 ) =
(
−i 0
0 i

)
tr ρ(Cz2 ) = 0,

ρ(Cz4 ) =
(
e3iπ/4 0

0 e−3iπ/4

)
tr ρ(Cz4 ) = −

√
2,

ρ(Cy2 ) =
(

0 −1
1 0

)
tr ρ(Cy2 ) = 0,

ρ(I) =
(
−1 0
0 −1

)
tr ρ(I) = −2.

(9.2.9)

Consulting Tab. 9.1, we see that we work with E2u. In the following, we want to place these
two irreps at 1a and investigate what bands can arise from these orbitals.

9.2.2 Inducing a representation of the full space group

Theory: Now that we know which orbitals we place at the maximal Wyckoff positions, we can
see how the resulting Bloch wave functions transform under the space group symmetries. To
this end, we first take the Fourier transformation back to Bloch states

ui,α(k, r) = 1√
N

∑
µ

eik·tµψiα(r − tµ). (9.2.10)

Here, the tµ denote the lattice vectors. Note, that opposed to in (9.1.2), we label the orbitals
i and the Wyckoff position α individually. We also made the number of unit cells N explicit.
Moreover, we do not specify a Hamiltonian yet, so we cannot provide a band label a. All we
want to investigate is, how the Bloch states transform under the space group symmetries. As
we construct the Bloch states from Wannier states in specific irreps of the point group, we can
now deduce how the Bloch states transform. In other words, our procedure of placing well
defined irreps at all sites of the crystal and then taking a Fourier transform allows us to induce
a representation of the (infinte) space group from the irreps of the (finite) point group.
Let us quickly see how we know the transformation of a Wannier state ψiα(r − tµ) under the
point group symmetries. For this, we need to know how each orbital transforms around its
Wyckoff position. Once we fix this, we will see how they transform in the full lattice.
For the transformation around a single site we reduce all our consideration to the transformation
properties of one representative Wyckoff position α = 1 in the orbit:

gψi1 = [ρ(g)]jiψj1. (9.2.11)

For any other Wyckoff position qα in the orbit of q1 we first bring the Wannier function to
position α = 1 by the use of

ψiα(r) = gαψi1(r) = ψi1(g−1
α r) (9.2.12)

We then inherit the representation of h at α from the reference position 1

hψiα = gαgg
−1
α︸ ︷︷ ︸

h

gαψi1 = gαgψi1 = gα[ρ(g)]jiψj1 = [ρ(g−1
α hgα)]jiψjα. (9.2.13)

This formula is easy to understand. Imagine you consider the Wyckoff 2c in P4/mmm which
has two points in the orbit: α = 1 : (1/2, 0) and α = 2 : (0, 1/2). 2c has the site symmetry
group D2h. The mirror h = m01 at α = 1 corresponds to the the mirror g = m10 at α = 2. The
factor g−1

α hgα is reflecting just that with gα = Cz4 .
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Now that we know the local transformation, let us move to the question how the orbitals in the
full lattice transform. It is this step, where we induce a representation in the full space group G
from the irreps of the point group: ρG = ρ ↑ G:

hψiα(r − tµ) = [ρ(ghαβ)]jiψjβ(r −Rtµ − tαβ). (9.2.14)

Let us analyze this formula step by step. First, under the action of h, the orbital might be
transported into another unit cell

hqα = {1|tαβ}qβ, with (9.2.15)
tαβ = hqα − qβ (9.2.16)

We use (9.2.15) to obtain
g−1
β {1| − tαβ}hgα︸ ︷︷ ︸

gh
αβ

q1 = q1, (9.2.17)

which defines the group element g which leaves the Wyckoff position invariant and allows us to
use the result (9.2.13) in (9.2.14).
With these results, we are in the position to determine how the Bloch functions transform

[ρG(h)]jβ,iαujβ(k, r) = 1√
N

∑
µ

eik·tµ [ρG(h)]jβ,iαψjβ(r − tµ)

(9.2.14)= 1√
N

∑
µ

eik·tµ [ρ(ghαβ)]jiψjβ(r −Rtµ − tαβ)

= [ρ(ghαβ)]ji
1√
N

∑
µ

ei(R−1k)·(Rtµ)ψjβ(r −Rtµ − tαβ)

= e−i(R−1k)·tαβ [ρ(ghαβ)]ji
1√
N

∑
µ

ei(R−1k)·(Rtµ+tαβ)ψjβ(r −Rtµ − tαβ)

= e−i(R−1k)·tαβ [ρ(ghαβ)]jiujβ(R−1k, r).

With this we achieved our goal! We have found a representation of the space group G of the
form

[ρk
G(h)]jβ,iα = e−i(R−1k)·tαβ [ρ(ghαβ)]ji. (9.2.18)

It is quadratic matrix of size norbitdorbitals × norbitdorbitals where norbit is the number of Wykoff
positions in the orbit and dirrep is the dimension of the irrep we place on these maximal Wyckoff
positions. In k-space it connects a pair of two momenta k and R−1k. We close this section by
noting two things: (i) We did not yet introduce a Hamiltonian. So far, we only studied how
Bloch bands will transform under the space group symmetries. (ii) The way we constructed the
Bloch bands they are defined as a representation of the space group. We call it an elementary
band representation (EBR).
Example: For our choice of placing the orbitals E1g and E2u at 1a, this process of induction
is particularly trivial: There is only one Wyckoff position in the orbit and all point group sym-
metries act within the unit cell. Hence all tαβ ≡ 0 and ghαβ ≡ h. Therefore, the representations
given in (9.2.7) and (9.2.9) define one-to-one the induced band representation.

9.2.3 Subducing a representation at special momenta

Theory: We have seen that in general the band representations connect two momenta. However,
for every k-point there exists a subgroup Gk of the full space group, under which Rk = k for
all R ∈ Gk (up to a reciprocal lattice vector). The interesting, i.e., high-symmetry, points and
lines in the Brillouin zone are those where this Gk does contain more than the trivial element.
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Gk is called the little group of k. We can see how the full band representation [ρk
G(h)] sub-duces

irreps at these high-symmetry points.
Technically, the procedure is straight forward: Using the character table of the little group, we
can reduce the full representation [ρk

G(h)] into the irreps σk
i of the little group via

[ρk
G(h)] ↓ Gk =

⊕
i

mi σ
k
i , (9.2.19)

with
mi = 1

n

∑
h

χ∗i (h)χ[ρk
G(h)](h), (9.2.20)

where the sum is over all group elements h of the little group, χi(h) are the characters of the
irreps σk

i and χ[ρk
G(h)](h) is the character of the subduced representation. The parameter n is

the order of the little group Gk.
Example: Let us start with E1g. At the Γ point k = (0, 0) we have the full group D4h. For
later reference, we go with the convention to use the second name of the irreps in Tab. 9.1
when we refer to the irreps of the little groups. In fact, we call the irreps by the name of the
high-symmetry point supplemented by the number. E.g., E1g at Γ is referred to as Γ7 and E2u
as Γ8.
If we now go out along the line (kx, 0) for kx ∈ [0, π] we reduce the little group to the double
point group Cs with only a mirror as a non-trivial element. Using the character table in Tab. 9.1
and Eq. (9.2.20), we immediately find

m2E = 1
4(1× 2 + i× 0 + (−1)× (−2) + (−i)× 0) = 1, (9.2.21)

m1E = 1
4(1× 2 + (−i)× 0 + (−1)× (−2) + i× 0) = 1. (9.2.22)

(9.2.23)

The same holds for E2u. This in principle means that the both irreps Γ7/8 split to ΓX3 and ΓX4
on the line from Γ to X. If we also force time reversal symmetry T , however, these two irreps
have to come together as they form a conjugate pair (apparent through the complex characters
for the mirror symmetry). For the lines XM and MΓ the same conclusion holds.
At X the little group is D2h which again contains inversion. From this we can readily read off
that the band representation induced by E1g will subduce to X5 and E2u to X6.
The M point has the same little group as Γ and hence we again find for E1g the orbital Γ7 and
for E2u it is Γ8. Fig. 9.2(a) summarizes these considerations. Using the tools of the last few
sections we constructed an explicit EBR and analyzed how the bands follow certain rules due
to symmetry constraints. The following question presents itself: what kind of bands can arise
in a given space group? This work has been done [1, 4] and we quickly introduce it in the next
section before we analyze what happens when we place both E1g and E2u orbitals at 1a.

9.2.4 A complete list of possible elementary band representations

Theory: The possible connections of the different irreps at different high-symmetry points in
the Brillouin zone are highly restricted due to compatibility requirements. A complete tabulation
of all EBRs has been achieved using spectral graph theory [1, 4]. The outcome of this work is
available on the Bilbao Crystallographic Server under Topological Quantum Chemistry.
Example: Here we show in Tab 9.2 the results relevant for our example of spinful electrons in
the planar version of P4/mmm. We see from this table that all induced representations from 1a
and 1b positions follow the same pattern as the ones we considered in these notes. In particular,
the compatibility requirements force these band representations to be connected: All irreps at
the different high-symmetry points have to be linked by a dispersion line.
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Γ X M

(E1g)1a

Γ7

X5 M7

ΓX4

ΓX3 XM3

XM4

Γ X M

(E2u)1a

Γ8

X6

M8

ΓX4

ΓX3

XM3

XM4

Γ X M

(E1g)1a ⊕ (E2u)1a

Γ8 X5 M7ΓX4

ΓX3

XM4

XM3

Γ7

X6

M8

ΓX4

ΓX3

XM3

XM4

(b)(a)

Figure 9.2: Band connectivities: (a) The bands induced by the orbitals E1g and E2u from
Wyckoff position 1. Note that under time-reversal symmetry, the two irreps AB3/4 are fused
into a 2d-irrep as they are conjugate to each other. (b) When the two EBRs of (a) overlap, one
can connect the high-symmetry points in a way that gives rise to a stable topological insulator.

Wyckoff pos. 1a 1a 1a 1a 1b 1b 1b 1b 2c 2c
Site symm. D4h D4h D4h D4h D4h D4h D4h D4h D2h D2h

Orbital E1g E1u E2g E2u E1g E1u E2g E2u Eg Eu

Decomposable x x x x x x x x X X

Γ Γ7 Γ9 Γ6 Γ8 Γ7 Γ9 Γ6 Γ8 Γ6 ⊕ Γ7 Γ8 ⊕ Γ9
M M7 M9 M6 M8 M6 M8 M7 M9 M8 ⊕M9 M6 ⊕M7
X X5 X6 X5 X6 X6 X5 X6 X5 X5 ⊕X6 X5 ⊕X6

Table 9.2: Little-group irrep content of the EBRs for spinful orbitals in the space group
P4/mmm.

The last two, which are induced from the Wyckoff position 2c, with two sites in the orbit,
are different. Here, the symmetry constraints allow for two sets of connected bands which are
mutually disconnected. For the EBRs induced by Eg at 2c [which is often written as (Eg)2c]
the options are

1 : Γ6—M8—X5 and Γ7—M9—X6,

2 : Γ6—M8—X6 and Γ7—M9—X5,

3 : Γ7—M8—X5 and Γ6—M9—X6,

4 : Γ7—M8—X6 and Γ6—M9—X5.

(9.2.24)

For (Eu)2c one finds

1 : Γ8—M6—X5 and Γ9—M7—X6,

2 : Γ8—M6—X6 and Γ9—M7—X5,

3 : Γ9—M6—X5 and Γ8—M7—X6,

4 : Γ9—M6—X6 and Γ8—M7—X5.

(9.2.25)

We discuss the consequences of this table in the next section.
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9.2.5 Stable and fragile topology

Theory: Table 9.2 together with Eq. (9.2.24) & (9.2.25) allows us to characterize bands in
P4/mmm according to their irrep content at high-symmetry points. There are three distinct
scenarios:

Trivial bands

The irrep content of a given band structure can be written as a direct sum of the irreps in one
of the EBRs in Tab. 9.2. This implies, that one can write a basis function of symmetric and
localized orbitals, namely the ones from which these bands are induced.
For example, if we had a band structure with Γ7 ⊕ Γ7, M6 ⊕M7, and X5 ⊕X6, we would
immediately write (

E1g
)

1a
⊕
(
E1g

)
1b
. (9.2.26)

Stable topology

If, on the other hand, we need to make use of split bands [like the ones in Eq. (9.2.24) &
(9.2.25)] to account for the irrep content of our bands, we cannot induce these bands from a set
of symmetric localized orbitals: the definition of a topological system. We see one instance of
such a stable topological set of bands in the example below.

Fragile topology

As a last option, there arises the possibility that one cannot reproduce the irrep content of the
bands via a direct sum as in the trivial case above. However, as opposed to a split band, one
might be able to collect the irreps of several EBRs in order to account for all irreps of the band
under investigation. If in this process one accumulates too many degrees of freedom, one can
maybe subtract the irreps of one or several other EBRs in order to account for the sought after
types and multiplicities of irreps exactly. In this case one deals with fragile topology. Why is
this topological: given that we need to add and subtract means that we cannot write a set of
localized orbitals from which we can induce this set of bands. (There is no such thing as adding
an atom with a minus sign). Why do we call it fragile: If one now adds a band induced by
the orbital which appeared with a negative sign in the decomposition, we end up with a direct
sum of elementary bands, and hence with a trivial system. One can summarize this by stating
that a fragile topological system cannot be Wannierized, but becomes Wannierizable under the
addition of a trivial band.

Example: As an example of how to use Tab. 9.2, we investigate what arises if we deal with
a set of four bands induced by (E1g)1a and (E2u)1a. In Fig. 9.2(b) we show what can happen
if we bring the two EBRs close to each other. Remember that all lines are doubly degenerate
because of the combination of the mirror symmetries with time reversal, i.e, all these double
lines contain both mirror eigenvalues ±i. As there are no further constraints, we can link up all
irreps at Γ, M , and X at will.
The example shown in Fig. 9.2(b) can be understood has having exchanged the even and odd
irreps (under inversion) at the Γ point, but not at the X or M points. In other words, we deal
with the bands

lower bands : Γ7—M8—X6, (9.2.27)
upper bands : Γ8—M7—X5. (9.2.28)

When comparing to Tab. 9.2 we see that none of the EBRs fits this irrep content. However,
when checking the split EBRs (Eg)2c and (Eu)2c, we see that the two bands above and below
the gap in Fig. 9.2(b) each arise from half an EBR! We deal with a stable topological system.
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9.3 Finally: A Hamiltonian
So far, we have analyzed Bloch bands without making reference to a Hamiltonian. We got quite
some mileage out of symmetry considerations alone! But now we would like to substantiate our
findings on the stable topological system induced by (E1g)1a⊕ (E2u)1a. Let us remind ourselves
of the time reversal invariant, doubled lattice Dirac Hamiltonian (4.3.2)

H = τ0 ⊗ {[m− 2 + cos(kx) + cos(ky)]σz + sin(ky)σy}+ sin(kx)τz ⊗ σx. (9.3.1)

For the purpose here, it is most convenient to transform to

H → U †HU =


ε0(k) 0 l+(k) 0

0 ε0(k) 0 −l−(k)
l−(k) 0 −ε0(k) 0

0 −l+(k) 0 −ε0(k)

 , with U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (9.3.2)

and

ε0(k) = −2 +m+ cos(kx) + cos(ky), (9.3.3)
l± = sin(kx)± i sin(ky). (9.3.4)

Written like this, it is apparent that the matrix elements l±(k) can raise (lower) the angular
momentum quantum number by one. The Hamiltonian has the following symmetries

Cz4 : (kx, ky)→ (ky,−kx) ρ(Cz4 ) =


e3iπ/4 0 0 0

0 e−3iπ/4 0 0
0 0 eiπ/4 0
0 0 0 e−iπ/4

 (9.3.5)

Cz2 : (kx, ky)→ (−kx,−ky) ρ(Cz2 ) =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

 (9.3.6)

Cy2 : (kx, ky)→ (−kx, ky) ρ(Cy2 ) =


0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

 (9.3.7)

I : (kx, ky)→ (−kx,−ky) ρ(I) =


−1 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 (9.3.8)

Comparing this to the representations in E1g (9.2.7) and E2u (9.2.9) we immediately see that
we deal with P4/mmm and that the first two orbitals correspond to E2u, while the second two
belong to E1g.
To determine the irrep content at the high-symmetry momenta Γ, X, and M we only need
to look at the eigenvalues of ρ(I), as inversion determines the difference between the involved
irreps Γ7/8, M7/8, and X5/6, respectively. At the high-symmetry points, the Hamiltonian reads

H(Γ) = diag(m,m,−m,−m), (9.3.9)
H(X) = diag(−2 +m,−2 +m, 2−m, 2−m), (9.3.10)
H(M) = diag(−4 +m,−4 +m, 4−m, 4−m). (9.3.11)
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m < 0: The first two states are odd under inversion. For m < 0, they form the lower two bands
at all high-symmetry momenta. Therefore, we realize

lower : (E2u)1a upper : (E1g)1a. (9.3.12)

0 < m < 2: Now, the inversion eigenvalue switches at Γ. Hence we realize Γ7—M8—X6 in the
lower and Γ8—M7—X5 in the upper band. We can write the bands as

lower : 1
2(Eg)2c upper : 1

2(Eu)2c, (9.3.13)

from which we read off that we deal with a stable topological insulator.
2 < m < 4: At m = 2, the gap closes at X and now also at X the lower bands are even under
inversion. Hence we realize Γ7—M8—X5 in the lower and Γ8—M7—X6 in the upper band.
While different split versions of the EBRs induced at 2c are realized, the bands can still be
written as

lower : 1
2(Eg)2c upper : 1

2(Eu)2c. (9.3.14)

m > 4: For m > 4, finally, all irreps of the lower bands are even under inversion and we have

lower : (E1g)1a upper : (E2u)1a. (9.3.15)
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