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Chapter 10

Topological semimetals

e We know Weyl semimetals, their Fermi arc surface states and chiral anomaly.
e We have an overview of other types of symmetry-enforced degeneracies in band structures,
including point-like degeneracies of several bands and nodal lines.

e X. Wan, et al., Phys. Rev. B 83, 205101 (2011)
e B. Bradlyn et al., Science 353, aaf5037 (2017)
e G. Chang et al., Nature Mater. 17, 978-985 (2018)

So far, this entire lecture was focussed on the topology in gapped ground states of matter. In
this chapter we discuss gapless topological states, so-called topological semimetals. Remem-
bering that topology was initially defined as (symmetry-protected) equivalence classes states
under adiabatic deformations, this provokes the question what meaning we should attach to the
adiabatic theorem in a gapless phase and — as a consequence — how topology should be defined
at all in such a case. At least for the purpose of this lecture, we rescue the notion of topology
by relying on translation symmetry. Hence we can label our Hamiltonian by momentum k.
(We used translation symmetry before, but mainly to obtain convenient formulas for topological
invariants. The notion of the topological phases themselves was — with the exception of TQC —
never dependent on translation symmetry.)

The story of topological semimetals is most interesting in three dimensions, which is why we
focus on this case exclusively here. While the Hamiltonian, depending on three components of
momentum, is then gapped almost everywhere in the BZ, the few points or lines where this is not
the case are our main interest. At these nodal points or lines bands are degenerate and we will see
that these degeneracies are topologically stable. They cannot be removed (yet potentially moved
in the BZ), if the Hamiltonian is smoothly deformed while maintaining translation symmetry
(and potentially some other protecting symmetries). Such a notion of robustness to deformations
allows to define a gapless phase and a sense of topology.

10.1 Weyl semimetals

The Weyl semimetal is the most elementary topological semimetal, as we will see. A Hamiltonian
for it can be motivated from several angles. Here we choose a perspective where we start from
a three-dimensional topological insulator Hamiltonian in momentum space

Hri(k) = Z sin k; 037 + | M — Z cos k; | o072, (10.1.1)

I=T,Y,2 I=T,Y,2


https://arxiv.org/abs/cond-mat/0506438
https://science.sciencemag.org/content/353/6299/aaf5037
https://www.nature.com/articles/s41563-018-0169-3
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Figure 10.1: Momentum space picture of a Weyl semimetals. Left: The band structure of
the critical point between a three-dimensional topological insulator and a trivial insulator is a
gapless Dirac fermion. Upon the application of a Zeeman field, the Dirac fermion splits into
two Weyl fermions (blue and orange) of opposite chiral charge. Right: The occupied bands on
planes in momentum space that do not pass through the Weyl fermions carry a well-defined
Chern number. This Chern number is |[C'| = 1 between two two Weyl points and 0 for planes
outside. Correspondingly, there is a Fermi arc surface state in the surface BZ connecting the
projections of the bulk Weyl points.

with time-reversal symmetry defined as

(oym0)Hi1(K)(oym0) ™" = Hri(—k) (10.1.2)
and inversion symmetry defined as

(oom:)Hri(k)(o0T:) " = Hri(—k). (10.1.3)

Here, o; are the Pauli matrices acting on the spin degree of freedom and 7; are Pauli matrices
that can be though of as acting on an s/p orbital degree of freedom — consistent with the opposite
inversion eigenvalue of the orbitals indicated by 7.

Hamiltonian (10.1.1) is constructed such that all terms anticommute, which makes it easy to
obtain the doubly degenerate bands (the degeneracy is due to inversion and time-reversal, giving
a local in k Kramers symmetry)

2
Er(k)=+| > sin? k+ (M— > cos k:) : (10.1.4)

1=x,Y,2 1=T,Y,2

This indicates several gap-closing phase transitions, in particular for 1 < |M| < 3 we have
a topological insulator. At the phase transition, M = 3, we can expand the Hamiltonian to
linear order in k and obtain a massless Dirac equation (we rotate the orbital basis 7, <> 7, for
convenience)

Hrrer (k) = (k(-)a' _kO‘ U) . (10.1.5)

This Block structure of the Dirac equation was noticed by Hermann Weyl (in Zurich), and
the Fermion (two-spinor) described by each of the 2x2 blocks is known as Weyl fermion. We
thus see that two Weyl fermions make up one massless Dirac fermion. The innocent minus
sign between the two blocks is actually quite important, as we will see in a bit. Studying the
effective dispersion of one Weyl fermion is now hindered by the fact that the two coincide both
in energy and momentum. To “separate” them, we apply a Zeeman magnetic field, which could

University of Zurich 2 ETH Zurich



Topological condensed matter physics Chapter 10.1

be sourced by some spontaneous ferromagnetic order in the crystal. Choosing this, without loss
of generality, to be oriented along the z direction, we have

k.ot Bo. 0 ) (10.1.6)

Ha-wey (k) = < 0 —~k-o+ Bo,

This Hamiltonian has now momentum-separated Weyl fermions: one at k, = B and one at k, =
—B. Near each of these two momenta, two bands touch with an effective k- o dispersion around
the touching point, while the other two bands are at energies +2B5, and thus not considered part
of the low-energy theory. The k- o linear touching of two bands in three-dimensional momentum
space is a Weyl point.

A Weyl point has topological robustness. Any translation-symmetric small perturbation that
we add to a Hamiltonian k- o can only move, but never remove the Weyl point! We can see this
by expanding an arbitrary small perturbation in the basis of the Pauli matrices as dgog + 0.
Adding it to the Hamiltonian gives

8000 + (k + ) - o, (10.1.7)

which now has Weyl point at K = —4J at energy dy. Weyl points can, however, annihilate
pairwise.

It is a nice exercise to analytically calculate the Berry curvature near a Weyl node with Hamil-
tonian +k - o. For the occupied band, it is given by

k

k)=F—.
F (k) T I kp

(10.1.8)
This results suggests the interpretation of the Weyl node as a monopole of Berry curvature in
momentum space. The monopole charge is quantized: If we integrate the Berry flux over any
closed surface that encloses one of these Weyl nodes (which amounts to calculating the Chern
number of the occupied bands on such a surface) we obtain F1. The overall sign in the Weyl
Hamiltonian is thus the sign of the monopole (or chiral) charge of the Weyl fermion.

It is instructive to consider the Hamiltonian Ho_wey1(kz, ky, k2) as describing two-dimensional
systems in z-y space, while k, is a “tuning parameter” of these systems. Each of these two-
dimensional Hamiltonians describes a sensible physical system (i.e., it is local), which are gapped
except at k, = £B. What is the topology of these systems and is there a topological phase
transition at k, = +B7 First, we notice that for each of our two-dimensional systems, the Chern
number is well defined — we denote is by C(k,). To answer our topology question, we go back
to the monopole property of the Weyl points and consider the one at k., = B, for concreteness:
We can enclose it with two (oppositely oriented) planes at k, = B — € and k, = B + €. Since the
system is gapped on each of these planes, they have each an integer Chern number C(B — ¢),
C(B+¢) (for 0 < € < 2B. The Weyl monopole implies C(B + ¢) — C(B — €) = sgnB, with the
minus sign coming from the opposite orientation. From the lattice model, we can deduce that
C(Jk:| > |B]) = 0. Hence, we obtain

Cfo el B
k)= {sng<B> kil < |B| (10:1.9)

Between the Weyl points, the two-dimensional system is thus as Chern insulator. Crucial for this
is the breaking of time-reversal symmetry through the magnetic field (which preserves inversion
symmetry).

For the Berry curvature, inversion symmetry implies

F(k) = F(=k), (10.1.10)
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Figure 10.2: When a Weyl semimetal is expose to an orbital Zeeman field along the z direction,
a k.-dependent Landau level band structure forms (gray). In particular, one chiral and one
antichiral Landau level pass through the Weyl points of monopole charge +1, respectively. When
in addition an electrical field E is applied in parallel to the magnetic field, the resulting out-of-
equilibrium, current-carrying state is depleting charge in one Weyl node and adding charge to
the other Weyl node (blue). The chiral charge N; — N_ is thus not conserved. This constitutes
the chiral anomaly. The exchange of charge between the two Weyl nodes is allowed because the
Landau levels at high energies connect the two Weyl nodes.

while time-reversal symmetry implies
F(k)=—-F(—k). (10.1.11)

One verifies that inversion (time-reversal) symmetry thus maps a Weyl cone of charge 1 at k
to a cone at —k with charge —1 (+1). Furthermore, the total charge of Weyl cones has to be
zero in the entire BZ, due to its periodicity (a fact also conveyed by so-called Fermion doubling
theorems). Thus, a time-reversal breaking Weyl semimetal (like our case), has at least two Weyl
nodes, while an inversion-breaking Weyl semimetal has at least four Weyl cones. Furthermore,
the combination of inversion and time-reversal symmetry implies F (k) = 0, in which case no
Weyl nodes can exist.

Another important property of Weyl semimetals are Fermi arcs, their topological surface states.
Since, Ha—weyl(kz, ky, k=), |k.| < |B| has a nonzero Chern number, it has, as a two-dimensional
system, chiral boundary states. In the two-dimensional surface BZ of the three-dimensional
system, these states combine into a chiral surface band. This band is anomalous, i.e., it can
only exist on the surface of a thee-dimensional object. One way to see this is by considering
the Fermi surface they form: At the energy of the bulk Weyl points, the surface band’s Fermi
surface is a line connecting the surface BZ projections of the two Weyl points, the Fermi arc.
In two-dimensional systems, Fermi surfaces are always closed contours. The way the Fermi arc
evades this paradigm is by moving the other half of the closed contour Fermi surface to the
opposite surface of the material.

10.1.1 Transport properties and the chiral anomaly

Weyl semimetals have peculiar transport properties. Most immediate is the anomalous Hall ef-

fect. Considering each k, as independently contributing to Hall transport, we obtain an anoma-
lous Hall conductivity

2B e?

oy = 57

Note that the three-dimensional Hall conductivity has units of inverse length times e2/h, i.e., it

depends on the crystal details. Here, we see that it is proportional to the distance of the Weyl

(10.1.12)
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nodes in k, direction (2B).

More surprising is the effect of an orbital magnetic field on transport (note that what is in the
Hamiltonian so far is a Zeeman magnetic field). The phenomenon that we will describe here, the
chiral anomaly, is present both for small and large magnetic fields, but it is easier to understand
in a large field limit, where Landau levels are well established.

To appreciate the deep meaning of the chiral anomaly, we make a small excursion to field theory.
An anomaly is in general defined as a symmetry of the classical equations of motion that is not
respected once quantum fluctuations are taken into account. Mathematically, in a path integral
formulation, this is enabled by a symmetry of the action which is broken by the path integral
measure. Concretely, the action for Dirac electrons in three-dimensional space, represented by
a spinor-valued field v, is given by

SDirac =/d496¢w7¢ (10113)

with the covariant kinetic operator ¥ = v#(8,—4,,), where v are the Gamma matrices fulfilling
the Clifford algebra and A, is the electromagnetic vector potential. The equations of motion

Vi =0, w%:o, (10.1.14)

feature, besides the U(1) rotations with a unit matrix, leading to the conservation of charge, a
so-called chiral symmetry ‘
Y — ey, (10.1.15)

where « is a real number. This leads to the chiral current

Jus =0Ty (10.1.16)

to be classically conserved

DT = W1 ¥ 50 — 1Yo = 0. (10.1.17)

However, when we compute the quantum average of this quantity with the full path integral

[ WD (4T 250 = 6195V ) e
I DD eRiac (10.1.18)

<8#Jm5> -

_'g.B
42

we obtain a nonzero contribution if (non-orthogonal) electric and magnetic fields are simulta-
neously applied. The chiral current can be thought of as the difference between two currents of
the chiral and antichiral part of the Fermion four-spinor. This is particularly apparent in the
Dirac equation representation of Eq. (10.1.5), in which 75 = diag(1,1,—1,—1). It is thus the
difference between the current of positive chirality Weyl fermions and the current of negative
chirality Weyl fermions. Note that these currents are only well-defined in the continuum formu-
lation of the Dirac equation. A fermion in a Weyl semimetal that lives at higher energies cannot
be assigned to one or the other Weyl node.

This connection of the Weyl nodes at higher energies is what enables the chiral anomaly in a
Weyl semimetal: Fermions can be pumped from one Weyl node to another through high-energy
states when electric and magnetic fields are applied in parallel (see Fig. 10.1).

Finding unambiguous experimental proof of this fact has been proven difficult, with the most
striking consequence found in semiclassical transport. One finds that the magnetoconductivity,
i.e., the dependence of the conductivity on the applied magnetic field is highly anisotropic. It
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has a quadratic magnetic field dependence that is maximal for transport along the magnetic
field direction. Along the magnetic field direction the conductivity is modified from its zero field
value og to

e*B?r,

B) = —
U( ) 0—0+47T4I/(EF)7

(10.1.19)
where v(Er) is the density of states at the Fermi level and 1/7, the rate of inter-Weyl node
scattering. The most remarkable feature of this formula is the sign of the correction: this longi-
tudinal magnetoconductivity is positive (and the longitudinal magnetoresistance thus negative).
This is opposite to most other sources of magnetoresistance, where magnetic fields typically lead
to increased localization and thus a larger resistivity.

10.1.2 Symmetry enforced Weyl nodes

We already discussed how time-reversal symmetry and inversion symmetry maps one Weyl node
to another Weyl node of the same and opposite charge, respectively. This leaves the possibility
open that a Weyl node is located at a time-reversal symmetric momentum. In fact, the generic
time-reversal symmetric Hamiltonian of any spin orbit coupled band around any time-reversal
symmetric momentum takes the form A; ; k;o; with material-specific coefficients A; ; and is thus
a Weyl node. The degeneracy at k = 0 is then protected by Kramers theorem. These so-called
Kramers-Weyl nodes are thus very abundant in band structures. However, they are only relevant
in cases where spin orbit coupling is so strong that it is not immediately overtaken by the next
order (k?) term in the Hamiltonian which comes from the normal band dispersion. Kramers-
Weyl semimetals have the advantage of (potentially) very long Fermi arcs, since their Weyl nodes
are maximally far apart in the BZ. Furthermore, many lattice symmetries, such as mirror and
inversion, prevent spin-orbit coupling from being nonzero in all directions in momentum space
around the time-reversal invariant momentum. Kramers-Weyl nodes are thus preferably found
in low-symmetry crystal structures, in particular in all chiral space groups (those without any
mirror or (roto-)inversion).

We continue with some further constraints that crystal symmetries pose for Weyl nodes.

e Mirror symmetry: Just as a real magnetic field, the component of the Berry curvature
parallel to the mirror plane is conserved, while the other components are flipped. Thus, no
Weyl node can lie on a mirror plane in momentum space and mirror-related Weyl nodes
on opposite sides of the mirror plane have opposite chiral charge. Another way to argue
is that no unitary operation can reverse the sign of only one of the three Pauli matrices,
as would be required for k - o to be mirror symmetric.

¢ Rotation symmetry: Weyl nodes can exist on a rotation axis. However, depending on
the rotation eigenvalues of the two bands that are coming together, Weyl nodes of higher
charge may appear. In general, for a n-fold rotation symmetry, let the two bands have
eigenvalues elt/n and e2/" with 1,1y = 0,1,--+ ,n — 1. The chiral charge ¢ of possible
Weyl nodes between these two bands on the rotation axis is given by the difference in
“angular momentum” e’/? = e*ili—2)/n (this relation also holds for spinful rotation
symmetries where the eigenvalues are offset by a half-integer). An effective Hamiltonian
for such a Weyl node of higher chiral charge is, for the case that the rotation axis is the z
axis,

B k. (kg — iky)©
Hweyl,e(k) = (U% k) k. ) : (10.1.20)
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Figure 10.3: Band structure of the Dirac semimetal described by Eq. (10.2.2) for k, = ky, =
0. The Dirac points are formed as doubly-degenerate pairs of bands with opposite rotation
eigenvalues cross each other.

10.2 Dirac semimetals

Much like Weyl semimetals are materials where a band touching is described by the Weyl
equation, there exist Dirac semimetals, in which a band touching (of four bands) is described
by the massless Dirac equation (10.1.5). We previously obtained Eq. (10.1.5) as a critical point
between a topological insulator and a trivial insulator phase. As such, the Dirac fermion is not
topologically stable. To obtain a topologically stable massless Dirac fermion, we have to impose
some symmetry on the system. We consider the case of four-fold rotation symmetry around the
z axis as a concrete example and chose the representation

Cy = T, exp [iZJZ} . (10.2.1)

One verifies that all terms in Hypy(k) from Eq. (10.1.1) obey this Cy symmetry, except for the
sin k, term. We thus consider the Hamiltonian without this term,

HDirac—sm (k) = sin kg 0,7, + sin ky oy 7, + (M - Z cos k‘z) 00Tz, (10.2.2)

i:m7y72

which obeys
CyHpirac—sm(Rak)Cy = Hpirac—sm (k), (10.2.3)

where R, is the four-fold rotation matrix in three-dimensional Euclidian space.

All bands of Hpirac—sm (k) are doubly degenerate everywhere, since we still have time-reversal
and inversion symmetry. These doubly degenerate bands can touch at two points in the BZ. To
see this, it is sufficient to consider the spectrum at the (k., k) = (0,0) line. It is given by

E.(0,0,k,) =+ (M —2—cos k). (10.2.4)

For 1 < M < 2, there are two of these degeneracy points, which are Dirac points. Let us
denote their k, momenta by £kP. They are the crossing points of two bands with different Cy
eigenvalues (one band pair has e*7/4 +i37/4)  Thus, as long as Cy symmetry
is maintained, the degeneracies cannot be removed or split by small (time-reversal-, inversion-
and translation-preserving) perturbations. These Dirac points are thus topologically stable, in
contrast to the Dirac point that marked the phase transition point.

Another way to characterize their topological property is by noting that for 1 < M < 2, the
Hamiltonian Hpirac—sm (k) at fixed k. describes a two-dimensional topological insulator at k, = 0

, another one has e
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and a trivial insulator at k, = w. The Dirac point thus marks the phase transition point between
the two (when k, is viewed as a tuning parameter). This argument has one potential flaw: in
contrast to the Weyl semimetal, where Chern insulator topology was well-defined at every k.
slice, we require time-reversal symmetry to define the two-dimensional topological insulator,
which a priori is only true for k, = 0, «.

10.3 New fermions

We observed that Kramers-Weyl fermions can form at (and are pinned to) high-symmetry points
in the BZ as two-fold band degeneracies. One may ask which higher band degeneracies are
possibly enforced at high-symmetry points in the BZ if crystalline symmetries are considered in
addition to time-reversal. The answer to this question is rather rich and has been determined
for spin-orbit coupled band structures. One finds examples for 2—, 3—, 4—, 6— and even 8—fold
protected degeneracies of bands, also known as mew Fermions. One intuitive example is a
degeneracy of three bands with the effective Hamiltonian

Hspln_l(k) — k . S, (10.3.1)

where S; are the generators of the rotation group SO(3) in the spin-1 representation, which are
3 x 3 matrices. (This example appears in space groups 199 and 214.) The Chern numbers of
each of the bands, obtained by integrating the Berry curvature over any surface enclosing the
degeneracy point, are C' = +2 and C = 0. The degeneracy is thus not characterized by a single
charge anymore, but a set of such charges.

10.4 Nodal line semimetals

In addition to degeneracy points, we can also consider degeneracies of bands along lines in
momentum space. There is ample literature analyzing many aspects of this subject. Here, we
just mention that a frequent mechanism for the protection of such nodal lines is the existence
of a mirror symmetry. The line degeneracy can then be deformed within the mirror plane in
momentum space, but cannot be removed by a small perturbation. Concretely, let us consider
a two-band effective Hamiltonian, and consider a mirror operation z — —z, i.e.,

M H (b, by, =k )M = Mk, Ky, k). (10.4.1)

Without loss of generality, we further assume M = o, (in a spin-orbit coupled system, we would
have M = io, for it to commute with time-reversal symmetry). On the mirror planes k, = 0, 7,
the symmetry then prevents o, and o, from entering the Hamiltonian. Degeneracies are thus
zeros of the real function d,(k,, k,) in a Hamiltonian of the form

H (kg by, 0,7) = do(ka, ky)oo + da ke, ky)o-. (10.4.2)

Zeros of a scalar real function in two-dimensional parameter space are generically lines — the
nodal line band degeneracies. Away from the mirror plane, there is no local (in k) symmetry
constraint on the Hamiltonian and the line-like degeneracy can thus gap out. It is confined to
the mirror plane.
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