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Chapter 11

Kitaev’s Honeycomb Model and the
Toric code

Learning goals

• We know the physical motivation, Hamiltonian, and phase diagram of Kitaev’s honeycomb
model.
• We understand how some phases reduce to the toric code Hamiltonian.
• We know how to rewrite the ground state and low-lying excitations in terms of Majorana
degrees of freedom.
• We know the toric code model Hamiltonian and understand its ground state manifold.
• We know the emergent excitations above the ground states, and how to derive their statistics.

• A. Kitaev, Annals of Physics 321, 2–111 (2006)

So far, we have been concerned with symmetry protected topological states and considered
examples that were motivated by the topological classification of free fermion Hamiltonians.
The topological properties of these systems are manifest by the presence of protected boundary
modes. In this Chapter, we want to familiarize ourselves with the concept of intrinsic topological
order by ways of several examples. We will study the connections between different character-
izations of topological order, such as fractionalized excitations in the bulk and the topological
ground state degeneracy. Our examples will be in 2D space, as topologically ordered states do
not exist in 1D and are best understood in 2D.

11.1 Definition of the model
We want to physically motivate the following Hamiltonian

H = −Jx
∑

x−links
σxj σ

x
k − Jy

∑
y−links

σyj σ
y
k − Jz

∑
z−links

σzjσ
z
k, (11.1.1)

acting on spin 1/2 degrees of freedom on a honeycomb lattice, where the bonds in the 3 inequiv-
alent directions have been labeled x, y, z. This Hamiltonian has been proposed to be relevant to
the honeycomb iridates Na2IrO3 and Li2IrO3, see Fig. 11.1, and there is mounting experimental
evidence that α-RuCl3 is governed (in part) by this Hamiltonian. In addition, there is a Heisen-
berg term allowed and competing with this term in the materials, but since we are interested in
the physics in some integrable limit, we consider the Hamiltonian (11.1.1) on its own right.
A model is called integrable if it has an extensive number of integrals of motion. In what we
studied so far, we have simply used the powers of the primitive translation operator (or the
momentum operator) as the conserved quantities. For Hamiltonian (11.1.1), we can construct
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Figure 11.1: Examples of the structural units formed by 90 degree TM-O-TM bonds and corre-
sponding spin-coupling patterns. Gray circles stand for magnetic ions (e.g., Ir), and small open
circles denote oxygen sites, and black is sodium, for example. From [PRL 102, 017205 (2009)].
Spins come from the Ir 5d orbitals, which in the octahedral coordination split in t2g and eg. The
former further split into a j = 1/2 and a j = 3/2 sector by spin-orbit coupling. In the j = 1/2
sector, the 90 degree Ir-O-Ir bonds give rise to the Kitaev exchange interaction.

local conserved quantities as follows: consider around any plaquette p of the hexagonal lattice
the operator

Wp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 , (11.1.2)

where 1 · · · 6 label the sites around the plaquette in such a way that the link leading out of the
plaquette from site i is a α = x, y, z link if σαi appears in Wp [see Fig. 11.2 a)]. Observe that
Wp has eigenvalues ±1 and commutes with the Hamiltonian. Thus the Hilbert space splits up
in sectors with fixed eigenvalues wp = ±1 of each operator Wp. The honeycomb lattice has 1/2
plaquette per spin, hence for N vertices the total Hilbert space dimension 2N is reduced to 2N/2
subspaces of dimension 2N/2. Hence, the problem is not completely solved by splitting it into
wp sectors, but we made some progress still.
Further progress can be made by representing the spins in terms of Majorana operators: Consider
at every site j of the honeycomb lattice four Majorana operators bxj , b

y
j , bzj , and cj , which obey

the usual relations
{bαj , bα

′
j } = 2δα,α′ , {bαj , cj} = 0, c2

j = 1. (11.1.3)

Four Majorana operators furnish a 4-dimensional Hilbert space M̃j (one can build 2 complex
fermions from them). This is twice as large as the Hilbert space of a single spin. We reduce M̃j

to a physical subspaceMj ⊂ M̃j by the following constraint

|ξj〉 ∈ Mj ⇔ Dj |ξj〉 = |ξj〉, (11.1.4)

where Dj = bxj b
y
j b
z
jcj . We see that Dj is the total parity of the two fermionic levels defined

from the four Majoranas. We now want to represent the Pauli operators on M̃j such that the
respective operators obey the same algebra on Mj and commute with Dj (i.e., they preserve
the subspaceMj). We choose

σ̃αj = ibαj cj , α = x, y, z. (11.1.5)

Observe that σ̃xj σ̃
y
j σ̃

z
j = iDj , and Dj is the identity onMj , compatible with σxj σ

y
j σ

z
j = i.

We can use this Majorana representation to rewrite all the terms in our Hamiltonian

σαj σ
α
k → (ibαj cj)(ibαk ck) = −i(ibαj bαk )cjck, (11.1.6)

where α = x, y, z is not summed over. We can rewrite

H̃ = i
4
∑
j,k

Âjkcjck (11.1.7)
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z
<latexit sha1_base64="nZ7LcPz38gQBvI7pHnitrjO22gY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZoQ9lsJ+3azSbsboQa+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84hK81jemUmCfkSHkoecUWOl5lO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctK3c3jKMIJnMI5eHAFdbiFBrSAAcIzvMKb8+C8OO/Ox6K14OQzx/AHzucP5SWM8A==</latexit>

Jx = Jy = 0
<latexit sha1_base64="kmPDJcnMR93TqfSymxalpZ70Ens=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0Euh4EV6qmA/pA1hs920S3c3YXcjhtBf4cWDIl79Od78N27bHLT1wcDjvRlm5gUxo0o7zrdVWFvf2Nwqbpd2dvf2D8qHRx0VJRKTNo5YJHsBUoRRQdqaakZ6sSSIB4x0g8nNzO8+EqloJO51GhOPo5GgIcVIG+mh6T/Vm35ad/xyxak6c9irxM1JBXK0/PLXYBjhhBOhMUNK9V0n1l6GpKaYkWlpkCgSIzxBI9I3VCBOlJfND57aZ0YZ2mEkTQltz9XfExniSqU8MJ0c6bFa9mbif14/0eG1l1ERJ5oIvFgUJszWkT373h5SSbBmqSEIS2putfEYSYS1yahkQnCXX14lnVrVvajW7i4rDSePowgncArn4MIVNOAWWtAGDBye4RXeLGm9WO/Wx6K1YOUzx/AH1ucPz3KPsw==</latexit>

Jy = Jz = 0
<latexit sha1_base64="MSMz7rlA9/Fb9z4UIpGvVny+wLo=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoJdCwYv0VMF+SBvCZrtpl242YXcjxNBf4cWDIl79Od78N27bHLT1wcDjvRlm5vkxZ0rb9rdVWFvf2Nwqbpd2dvf2D8qHRx0VJZLQNol4JHs+VpQzQduaaU57saQ49Dnt+pObmd99pFKxSNzrNKZuiEeCBYxgbaSHppfWm95T3fbKFbtqz4FWiZOTCuRoeeWvwTAiSUiFJhwr1XfsWLsZlpoRTqelQaJojMkEj2jfUIFDqtxsfvAUnRlliIJImhIazdXfExkOlUpD33SGWI/VsjcT//P6iQ6u3YyJONFUkMWiIOFIR2j2PRoySYnmqSGYSGZuRWSMJSbaZFQyITjLL6+STq3qXFRrd5eVhp3HUYQTOIVzcOAKGnALLWgDgRCe4RXeLGm9WO/Wx6K1YOUzx/AH1ucP0oKPtQ==</latexit>

Jx = Jz = 0
<latexit sha1_base64="5uWxFeGEbmSKJT6tYW4e/+WIxdo=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrtV0Euh4EV6qmA/pF2WbJptQ5PskmTFWvorvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvDDhTBvX/XZWVtfWNzZzW/ntnd29/cLBYVPHqSK0QWIeq3aINeVM0oZhhtN2oigWIaetcHg99VsPVGkWyzszSqgvcF+yiBFsrHRfCx4rteCp4gaFoltyZ0DLxMtIETLUg8JXtxeTVFBpCMdadzw3Mf4YK8MIp5N8N9U0wWSI+7RjqcSCan88O3iCTq3SQ1GsbEmDZurviTEWWo9EaDsFNgO96E3F/7xOaqIrf8xkkhoqyXxRlHJkYjT9HvWYosTwkSWYKGZvRWSAFSbGZpS3IXiLLy+TZrnknZfKtxfFqpvFkYNjOIEz8OASqnADdWgAAQHP8ApvjnJenHfnY9664mQzR/AHzucP0PiPtA==</latexit>

Ax
<latexit sha1_base64="Mltjk539M29Wnvm8fQHPQ27GTBA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjx4rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/rr31CuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+8Ur27KNfcPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEfZo2i</latexit>

Az
<latexit sha1_base64="BvXaDlA7B/9NdJhuoS90TByfxMQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjx4rGi/YA2lM120y7dbMLuRKihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/rr31CuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+8Ur27KNfcPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEibo2k</latexit>

Ay
<latexit sha1_base64="/63r1ga4fsN+aaoPfoQbzT1P9D8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeKF48V7Qe0oWy2k3bpZhN2N0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHkyXoR3QoecgZNVZ6uOln/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcx/oQqw5nAaamXakwoG9Mhdi2VNELtT+anTsmZVQYkjJUtachc/T0xoZHWWRTYzoiakV72ZuJ/Xjc14bU/4TJJDUq2WBSmgpiYzP4mA66QGZFZQpni9lbCRlRRZmw6JRuCt/zyKmnVqt5FtXZ/Wam7eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEg6o2j</latexit>

B
<latexit sha1_base64="1hWBsawmoN8Ss1yboBRqCcqb5Hc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5k2/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctK3c3jKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPkEWMuA==</latexit>

⌧r<latexit sha1_base64="5RFzuO81YDIKuWIaQWUYjGbKXH8=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxWME84BkCbOT2WTM7Mwy0yuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XQvEGCpS8nRpOk0jyVjS6nfmtJ26s0OoBxykPEzpQIhaMopOaXaRZz/RKZb/iz0FWSZCTMuSo90pf3b5mWcIVMkmt7QR+iuGEGhRM8mmxm1meUjaiA95xVNGE23Ayv3ZKzp3SJ7E2rhSSufp7YkITa8dJ5DoTikO77M3E/7xOhvFNOBEqzZArtlgUZ5KgJrPXSV8YzlCOHaHMCHcrYUNqKEMXUNGFECy/vEqa1UpwWaneX5Vrfh5HAU7hDC4ggGuowR3UoQEMHuEZXuHN096L9+59LFrXvHzmBP7A+/wBp2WPHw==</latexit>

(a) (b) (c)

Figure 11.2: a) Definition of x, y, z type bonds for the Kitaev Hamiltonian (11.1.1) on the
honeycomb lattice and of the numbering of sites within a plaquette that enter the Wp oper-
ator (11.1.2). b) Phase diagram of the Kitaev honeycomb model. c) Strong bonds that are
replaced with an effective spin-1/2 degree of freedom in the limit |Jz| � |Jx|, |Jy| to derive the
toric code Hamiltonian.

where Âjk = 2Jαjk
ûik is a hermitian operator when i and j are connected and 0 otherwise. We

defined ûjk := ibαj bαk which commutes with the Hamiltonian and with the other ûj′k′ . Each ûjk
has eigenvalues ujk = ±1 and in each sector we can simply obtain the Hamiltonian by replacing
operators by numbers, i.e.,Âjk → Ajk = 2Jαjk

uik. However, observe that {ûjk, Dj} = 0, i.e.,
ûjk does not leave the subspace Mj invariant. Starting from a ground state |Ψ̃u〉 of H̃u =
i
4
∑
j,k Ajkcjck, we can construct a state

|Ψw〉 =
∏
j

(1 +Dj

2

)
|Ψ̃u〉, (11.1.8)

where w is the collection of eigenvalues wp for each plaquette operator Wp. In therms of the
Majorana bilinear eigenvalues they are given by wp =

∏
j,k∈∂p;j<k ujk.

The lowest energy state is obtained if all ujk = +1, which is a nontrivial statement. The relevant
Hamiltonian is given by

Hvortex−free = i
4
∑
k

(
c−k,A c−k,B

)( 0 if(k)
−if(k)∗ 0

)(
ck,A
ck,B

)
(11.1.9)

where

f(k) = 2(Jxeik·a1 + Jye
ik·a2 + Jz), a1 = 1

2(1,
√

3), a2 = 1
2(−1,

√
3). (11.1.10)

The spectrum corresponds to that of anisotropic graphene. Time-reversal symmetry and inver-
sion symmetry, which protect the Dirac cones, are retained. Hence the system can only gap
out if the anisotropy is large enough for two cones to meet (at one of the TRIM points). Said
differently, zero energy solutions Jxeik·a1 + Jye

ik·a2 + Jz = 0 are obtained if and only if

|Jx| ≤ |Jy|+ |Jz|, |Jy| ≤ |Jx|+ |Jz|, |Jz| ≤ |Jx|+ |Jy|. (11.1.11)

This gives a phase diagram with three gapped phases Ax, Ay, Az and a gapless phase B [see
Fig. 11.2 b)]. The gapless phase has Majorana Dirac cones.
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11.2 The gapped phases
Topological properties of a gapped phase are constant throughout the phase and we may study
them in a parameter regime that is convenient for us. We will focus on the phase Az and study
it in the limit |Jz| � |Jx|, |Jy|. The Hamiltonian is given by H = H0 + V where

H0 = −Jz
∑

z−links
σzjσ

z
k, V = −Jx

∑
x−links

σxj σ
x
k − Jy

∑
y−links

σyj σ
y
k , (11.2.1)

is the dominant term and the perturbation, respectively. Out of two spins connected by a z-
link, H0 selects the states where these spins are both parallel or anti-parallel [see Fig. 11.2 c)].
We may thus replace these two spins by a single spin 1/2, which is acted upon with the V
perturbation. Let us act on these spins with Pauli matrices ταr to distinguish them from the
original spins. The sites r live now on the links of a square lattice. It turns out that, to get back
to the degenerate ground state subspace of H0, one needs to apply the perturbation V 4 times.
After going to fourth order in perturbation theory, and applying a unitary transformation, we
obtain the Hamiltonian

Heff = −Jeff

(∑
s

As +
∑
p

Bp

)
(11.2.2)

where Jeff = J2
xJ

2
y/(16|Jz|3). Here, the four spins that sit on the bonds emanating from a given

site r of the lattice are referred to as a star s. The four spins that sit on the bonds surrounding
a square of the lattice are called a plaquette p. We defined two sets of operators

As :=
∏
r∈s

τxr , Bp :=
∏
r∈p

τ zr . (11.2.3)

We will analyze this exact same Hamiltonian in the following section.

11.3 Gapping the gapless phase
The gapless phase B has both vortex-like excitations which are gapped and fermionic excitations
which are gapless (they live on a Majorana cone). The statistics of the vortices is not well defined
due to the interaction with the gapless fermionic background. The gapless nature of the fermions
is protected by (inversion times) time-reversal symmetry, just as in graphene. This is true for
all flux sectors, as Z2 flux does not break time-reversal symmetry. The fermions can, however,
be gapped out when breaking time-reversal symmetry. Consider applying an external magnetic
field

δHB = −
∑
j

B · σj . (11.3.1)

Kitaev showed that in the vortex-free sector, the time-reversal symmetry breaking nature of this
term manifests to third order in perturbation theory (for Jx = Jy = Jz = J) as

δH
(3)
B = −BxByBz

J2

∑
i,k,l

σxj σ
y
kσ

z
l , (11.3.2)

where sites j, k, l are clockwise neighbors belonging to s single hexagon (i.e., there are six such
terms in each hexagon). In the fermionic language

σxj σ
y
kσ

z
l =(ibxj cj)(ib

y
kck)(ib

z
l cl)

=− ibxj cj bxkbxk b
y
kck b

z
kb
z
k b

z
l cl

=− i(bxkb
y
kb
z
kck)(bxj bxk)(bzkbzl )cjcl

= + iDkûjkûklcjcl.

(11.3.3)
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As

Bp

Figure 11.3: The toric code model is defined on a square lattice with spin-1/2 degrees of freedom
on every bond (black squares). The operator As acts with σx on all four spins one the bonds
that are connected to a lattice site (a star s). The operator Bp acts with σz on all four spins
around a plaquette p.

OmittingD in the physical subspace and using the standard gauge, ûjk = ûkl = 1, we have a term
icjcl which is exactly the NNN hopping of the Haldane model with φ = π/2 and t2 ∼ BxByBz/J2.
Thus, with the magnetic field switched on, the Majorana fermion bands acquire a Chern number
±1. We thus have a model formally equivalent to the chiral p-wave superconductor, with the
important difference that the Z2 vortices are dynamic objects this time, i.e., the system is
properly topologically ordered with non-Abelian Majorana anyons σ (a vortex) and the same
properties as discussed before.

11.4 The toric code
As an example of a topologically ordered state we study an exactly soluble model with vanishing
correlation length. The significance of having zero correlation length is the following. The
correlation functions of local operators decay exponentially in gapped quantum ground states
in 1D and 2D with a characteristic length scale given by the correlation length ξ. In contrast,
topological properties are encoded in quantized expectation values of nonlocal operators (for
example the Hall conductivity) or the degeneracy of energy levels (such as the end states of
the Su-Schrieffer-Heeger model). In finite systems, such quantizations and degeneracies are
generically only exact up to corrections that are of order e−L/ξ, where L is the linear system
size. Models with zero correlation length are free from such exponential finite-size corrections
and thus expose the topological features already for the smallest possible system sizes. The
down-side is that their Hamiltonians are rather contrived.
We define the toric code model on a square lattice with a spin-1/2 degree of freedom on every
bond j (see Fig. 11.3). The four spins that sit on the bonds emanating from a given site of the
lattice are referred to as a star s. The four spins that sit on the bonds surrounding a square of
the lattice are called a plaquette p. We define two sets of operators

As :=
∏
j∈s

σxj , Bp :=
∏
j∈p

σzj , (11.4.1)

that act on the spins of a given star s and plaquette p, respectively. Here, σx,zj are the respective
Pauli matrices acting on the spin on bond j.
These operators have two crucial properties which are often used to construct exactly soluble
models for topological states of matter

1. All of the As and Bp commute with each other. This is trivial for all cases except for the
commutator of As with Bp if s and p have spins in common. However, any star shares with
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any plaquette an even number of spins (edges), so that commuting As with Bp involves
commuting an even number of σz with σx, each of which comes with a minus sign.

2. The operators
1−Bp

2 ,
1−As

2 (11.4.2)

are projectors. The former projects out plaquette states with an even number of spins
polarized in the positive z-direction. The latter projects out stars with an even number of
spins in the positive x-direction.

11.4.1 Ground states

The Hamiltonian is defined as a sum over these commuting projectors

H = −Je
∑
s

As − Jm
∑
p

Bp, (11.4.3)

where the sums run over all stars s and plaquettes p of the lattice. Let us assume that both
Je and Jm are positive constants. Then, the ground state is given by a state in which all stars
s and plaquettes p are in an eigenstate with eigenvalue +1 of As and Bp, respectively. (The
fact that all As and Bp commute allows for such a state to exist, as we can diagonalize each of
them separately.) Let us think about the ground state in the eigenbasis of the σx operators and
represent by bold lines those bonds with spin up and and draw no lines along bonds with spin
down. Then, As imposes on all spin configurations with nonzero amplitude in the ground state
the constraint that an even number of bold lines meets at the star s. In other words, we can
think of the bold lines as connected across the lattice and they may only form closed loops. Bold
lines that end at some star (“open strings”) are not allowed in the ground state configurations;
they are excited states. Having found out which spin configurations are allowed in the ground
state, we need to determine their amplitudes. This can be inferred from the action of the Bp
operators on these closed loop configurations. The Bp flips all bonds around the plaquette p.
Since B2

p = 1, given a spin configuration |c〉 in the σx-basis, we can write an eigenstate of Bp
with eigenvalue 1 as

1√
2

(|c〉+Bp|c〉) , (11.4.4)

for some fixed p. This reasoning can be extended to all plaquettes so that we can write for the
ground state

|GS〉 =
(∏

p

1 +Bp√
2

)
|c〉, (11.4.5)

where |c〉 is a closed loop configuration [see Fig. 11.4 a)]. Is |GS〉 independent of the choice
of |c〉? In other words, in the ground state unique? We will see that the answer depends on
the topological properties of the manifold on which the lattice is defined and thus reveals the
topological order imprinted in |GS〉.
To answer these questions, let us consider the system on two topologically distinct manifolds,
the torus and the sphere. To obtain a torus, we consider a square lattice with Lx×Ly sites and
impose periodic boundary conditions. This lattice hosts 2LxLy spins (2 per unit cell for they are
centered along the bonds). Thus, the Hilbert space of the model has dimension 22LxLy . There
are LxLy operators As and just as many Bp. Hence, together they impose 2LxLy constraints on
the ground state in this Hilbert space. However, not all of these constraints are independent.
The relations

1 =
∏
s

As, 1 =
∏
p

Bp (11.4.6)
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|GSi = + + + · · ·

a)

b) c) d) e)

Figure 11.4: Visualization of the toric code ground states on the torus. a) The toric code
ground state is the equal amplitude superposition of all closed loop configurations. b)-e) Four
base configurations |c〉 entering Eq. (11.4.5) that yield topologically distinct ground states on
the torus.

make two of the constraints redundant, yielding (2LxLy − 2) independent constraints. The
ground state degeneracy (GSD) is obtained as the quotient of the Hilbert space dimension and
the subspace modded out by the constraints

GSD = 22LxLy

22LxLy−2 = 4. (11.4.7)

The four ground states on the torus are distinguished by having an even or an odd number of
loops wrapping the torus in the x and y direction, respectively. Four configurations |c〉 that can
be used to build the four degenerate ground states are shown in Fig. 11.4 b)-e). This constitutes
a set of “topologically degenerate” ground states and is a hallmark of the topological order in
the model.
Let us contrast this with the ground state degeneracy on the sphere. Since we use a zero
correlation length model, we might as well use the smallest convenient lattice with the topology
of a sphere. We consider the model (11.4.3) defined on the edges of a cube. The same counting
as above yields that there are 12 degrees of freedom (the spins on the 12 edges), 8 constraints
from the As operators defined on the corners and 6 constraints from the Bp operators defined on
the faces. Subtracting the 2 redundant constraints (11.4.6) yields 12− (8 + 6−2) = 0 remaining
degrees of freedom. Hence, the model has a unique ground state on the sphere.
On a general manifold, we have

GSD = 2number of noncontractible loops. (11.4.8)

An important property of the topologically degenerate ground states is that any local operator
has vanishing off-diagonal matrix elements between them in the thermodynamic limit. Similarly,
no local operator can be used to distinguish between the ground states. We can, however, define
nonlocal operators that transform one topologically degenerate ground state into another and
that distinguish the ground states by topological quantum numbers. (Notice that such operators
may not appear in any physical Hamiltonian due to their nonlocality and hence the degeneracy
of the ground states is protected.) On the torus, we define two pairs of so-called Wilson loop
operators as

W e
x/y :=

∏
j∈le

x/y

σzj , Wm
x/y :=

∏
j∈lm

x/y

σxj . (11.4.9)

Here, lex/y are the sets of spins on bonds parallel to a straight line wrapping the torus once along
the x- and y-direction, respectively. The lmx/y are the sets of spins on bonds perpendicular to a
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a) b)

c) d)

e1 e2
m2m1

e1

e2 m
e

m
e

Figure 11.5: Visualization of operations to compute the braiding statistics of toric code anyons.
a) Two e excitations above the ground state. b) Two m excitations above the ground state. c)
Loop created by braiding e1 around e2. c) Loop created by braiding e around m. A phase of
−1 results for this process because there is a single bond on which both a σx operator (dotted
line) and a σz operator (bold line) act.

straight line that connects the centers of plaquettes and wraps the torus once along the x and
y-direction, respectively. We note that the W e

x/y and Wm
x/y commute with all As and Bp[

W
e/m
x/y , As

]
=
[
W

e/m
x/y , Bp

]
= 0, (11.4.10)

and thus also with the Hamiltonian. Furthermore, they obey

W e
xW

m
y = −Wm

y W
e
x . (11.4.11)

This algebra must be realized in any eigenspace of the Hamiltonian. However, due to Eq. (11.4.11),
it cannot be realized in a one-dimensional subspace. We conclude that all eigenspaces of the
Hamiltonian, including the ground state, must be degenerate. In the σx basis that we used
above, Wm

x/y measures whether the number of loops wrapping the torus is even or odd in the x
and y direction, respectively, giving 4 degenerate ground states. In contrast, W e

x/y changes the
number of loops wrapping the torus in the x and y direction between even and odd.

11.4.2 Topological excitations

To find the topological excitations of the system above the ground state, we ask which are the
lowest energy excitations that we can build. Excitations are a violation of the rule that all stars
s are eigenstates of As and all plaquettes p are eigenstates of Bp. Let us first focus on star
excitations which we will call e. They appear as the end point of open strings, i.e., if the closed
loop condition is violated. Since any string has two end points, the lowest excitation of this type
is a pair of e. They can be created by acting on the ground state with the operator

W e
le :=

∏
j∈le

σzj , (11.4.12)

where le is a string of bonds connecting the two excitations e1 and e2 [see Fig. 11.5 a)]. The
state

|e1, e2〉 := W e
le |GS〉 (11.4.13)

has energy 4Je above the ground state energy. Similarly, we can define an operator

Wm
lm :=

∏
j∈lm

σxj , (11.4.14)
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that creates a pair of plaquette defects m1 and m2 connected by the string lm of perpendicular
bonds [see Fig. 11.5 b)]. (Notice that the operatorWm

lm does not flip spins when the ground state
is written in the σx basis. Rather, it gives weight +1/ − 1 to the different loop configurations
in the ground state, depending on whether an even or an odd number of loops crosses lm.) The
state

|m1,m2〉 := Wm
lm |GS〉 (11.4.15)

has energy 4Jm above the ground state energy. Notice that the excited states |e1, e2〉 and
|m1,m2〉 only depend on the positions of the excitations and not on the particular choice of
string that connects them. Furthermore, the energy of the excited state is independent of the
separation between the excitations. The excitations are thus “deconfined”, i.e., free to move
independent of each other.
It is also possible to create a combined defect when a plaquette hosts a m excitation and one
of its corners hosts a e excitation. We call this combined defect f and formalize the relation
between these defects in a so-called fusion rule

e×m = f. (11.4.16a)

When two e-type excitations are moved to the same star, the loop le that connects them becomes
a closed loop and the state returns to the ground state. For this, we write the fusion rule

e× e = 1, (11.4.16b)

where 1 stands for the ground state or vacuum. Similarly, moving two m-type excitations to the
same plaquette creates a closed loop lm, which can be absorbed in the ground state, i.e.,

m×m = 1. (11.4.16c)

Superimposing the above processes yields the remaining fusion rules

m× f = e, e× f = m, f × f = 1. (11.4.16d)

It is now imperative to ask what type of quantum statistics these emergent excitations obey. We
recall that quantum statistics are defined as the phase by which a state changes if two identical
particles are exchanged. Rendering the exchange operation as an adiabatically slow evolution
of the state, in three and higher dimensions only two types of statistics are allowed between
point particles: that of bosons with phase +1 and that of fermions with phase −1. In 2D, richer
possibilities exist and the exchange phase ϑ can be any complex number on the unit circle,
opening the way for anyons. While the exchange is only defined for quantum particles of the
same type, the double exchange (braiding) is well defined between any two deconfined anyons.
We can compute the braiding phases of the anyons e, m, and f that appear in the toric code
one by one. Let us start with the phase resulting from braiding e1 with e2. The initial state is
W e
le |GS〉 depicted in Fig. 11.5 a). Moving e1 around e2 leaves a loop of flipped σx bonds around

e2 [see Fig. 11.5 c)]. This loop is created by applying Bp to all plaquettes enclosed by the loop
lee1 along which e1 moves. We can thus write the final state as ∏

p∈lee1

Bp

W e
le |GS〉 =W e

le

 ∏
p∈lee1

Bp

 |GS〉

=W e
le |GS〉.

(11.4.17)

Flipping the spins in a closed loop does not alter the ground state as it is the equal amplitude of
all loop configurations. We conclude that the braiding of two e particles gives no phase. Similar
considerations can be used to conclude that the braiding of two m particles is trivial as well.
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In fact, not only the braiding, but also the exchange of two e particles and two m particles is
trivial. (We have not shown that here.)
More interesting is the braiding of m with e. Let the initial state be Wm

lmW
e
le |GS〉 and move the

e particle located on one end of the string lein around the magnetic particle m on one end of the
string lm. Again this is equivalent to applying Bp to all plaquettes enclosed by the path lee of
the e particle, so that the final state is given by∏

p∈lee

Bp

Wm
lmW

e
le |GS〉 = −Wm

lm

∏
p∈lee

Bp

W e
le |GS〉

= −Wm
lmW

e
le |GS〉.

(11.4.18)

The product over Bp operators anticommutes with the path operator Wm
lm , because there is a

single bond on which a single σx and a single σz act at the crossing of lm and lee [see Fig. 11.5 d)].
As a result, the initial and final state differ by a −1, which is the braiding phase of e with m.
Particles with this braiding phase are called (mutual) semions.
Notice that we have moved the particles on contractible loops only. If we create a pair of e or
m particles, move one of them along a noncontractible loop on the torus, and annihilate the
pair, we have effectively applied the operators W e

x/y and Wm
x/y to the ground state (although in

the process we have created finite energy states). The operation of moving anyons on noncon-
tractible loops thus allows to operate on the manifold of topologically degenerate groundstates.
This exposes the intimate connection between the presence of fractionalized excitations and
topological groundstate degeneracy in topologically ordered systems.
From the braiding relations of e and m we can also conclude the braiding and exchange relations
of the composite particle f . This is most easily done in a pictorial way by representing the
particle worldlines as moving upwards. For example, we represent the braiding relations of e
and m as

e e e

=

e

=

m m m m

ti
m

e

e m e m

= � . (11.4.19)

The exchange of two f , each of which is composed of one e and one m is then

e m eme m em

=

e m

= �

m e|{z}
f

|{z}
f

(11.4.20)

Notice that we have used Eq. (11.4.19) to manipulate the crossing in the dotted rectangles.
Exchange of two f thus gives a phase −1 and we conclude that f is a fermion.
In summary, we have used the toric code model to illustrate topological ground state degeneracy
and emergent anyonic quasiparticles as hallmarks of topological order. We note that the toric
code model does not support topologically protected edge states.
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