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Chapter 13

The fractional quantum Hall effect II

Learning goals

• We know what a coherent state path integral is.
• We know the concept of a composite fermion.
• We know how to get from composite fermions to a Chern-Simons theory.

• Willett, R. et al., Phys. Rev. Lett. 59, 1776 (1987)

13.1 Path integrals

13.1.1 Why do we need a path integral

In this section we try to argue why we need a path integral representation of the partition sum

Z =
ˆ
D[φ̄φ]e−S[φ̄,φ]. (13.1.1)

First of all, we trade non-commuting bosonic operators with an integral over all “field” configu-
rations, i.e.,

[., .]→ D[φ̄, φ]. (13.1.2)

Moreover, we replace complicated anti-commutations for fermions we a simple tool called Grass-
mann numbers. Before we are going to explain what we exactly mean with expression (13.1.1),
we list a few nice properties that we will gain from a path integral formalism.

1. We can use Gaussian integrals
ˆ
D[φ̄φ]e−φ̄TAφ = 1

detA. (13.1.3)

2. We can complete the square
ˆ
D[φ̄φ]e−φ̄TAφ+ϑTφ̄+ϑ̄Tφ =

ˆ
D[φ̄φ]e−(φ̄−A−1ϑ̄)TA(φ−A−1ϑ)+ϑ̄TA−1ϑ = eϑ̄

TA−1ϑ

detA . (13.1.4)

This completing of the square in turn has three important applications:

(a) Greens functions (or more generally, two-point correlators) in a quadratic theory can
be calculated by coupling sources ϑ

〈φ̄iφj〉 =
´
D[φ̄φ]φ̄iφje−S[φ̄,φ]´
D[φ̄φ]e−S[φ̄,φ]

= δ2

δϑiδϑ̄j

∣∣∣∣
ϑ=ϑ̄=0

eϑ̄
TA−1ϑ = [A−1]ij . (13.1.5)
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(b) “Integrating out” linearly coupled quadratic degrees of freedom
ˆ
D[φ̄φ]D[ϑ̄ϑ]e−S[φ̄,φ]+φTϑ̄+φ̄Tϑ−ϑ̄TBϑ =

ˆ
D[φ̄φ]e−S[φ̄,φ]+φ̄TB−1φ =

ˆ
D[φ̄φ]e−Seff [φ̄,φ]. (13.1.6)

(c) Or the reverse of it, called Hubbard Stratonovich transformation
ˆ
D[φ̄φ]e−φ̄TAφ+φ̄Tφφ̄Tφ =

ˆ
D[φ̄φ]D[ϑ]e−(ϑ̄−φ̄Tφ)(ϑ−φ̄Tφ)−φTAφ+φ̄Tφφ̄Tφ (13.1.7)

=
ˆ
D[φ̄φ]D[ϑ]e−ϑ̄ϑ+2ϑφ̄Tφ−φ̄Tφφ̄Tφ−φ̄TAφ+φ̄Tφφ̄Tφ (13.1.8)

=
ˆ
D[φ̄φ]D[ϑ]e−ϑ̄ϑ−φ̄T(A+2ϑ)φ (13.1.9)

=
ˆ
D[ϑ]e−ϑ̄ϑ−tr log[A+2ϑ]. (13.1.10)

This is still not a quadratic theory, but the logarithm can be expanded step by step
to get an effective theory.

3. We can do mean-field calculations

δS[φ̄, φ]
δφ̄

= 0 ⇒ φMF. (13.1.11)

After all these expected profits, let us start introducing such a path integral representation of
the partition sum.

13.1.2 Coherent state path integral

Given a quantum mechanical problem defined by a Hamiltonian H, we want to express the
partition sum

Z = tr e−βH =
∑
n

〈m|e−βH |m〉, (13.1.12)

as a path integral. For this we use coherent states

|φ〉 = eη
∑

i
φic
†
i |vac〉 ⇒ ci|φ〉 = φi|φ〉, (13.1.13)

and we used η = ±1 for bosons (fermions), respectively. Remember that they are not orthogonal

〈φ|ϑ〉 = eφ̄
Tϑ. (13.1.14)

For bosons, φi ∈ C. For fermions we need to take care of anti-commutations. This can be
achieved by requiring φi to be Grassmann numbers.
Grassmann numbers are defined by

φiφj = −φjφi; ∂φiφj = 0;
ˆ
dφi = 0;

ˆ
dφiφi = 1. (13.1.15)

From this follows immediately
ˆ
dφ̄idφi e

−φ̄iaφi =
ˆ
dφ̄idφi [1− φiφia] = a. (13.1.16)
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Which immediately leads toˆ
d(φ̄φ) e−φ̄TAφ =

∏
n

ˆ
dφ̄ndφn e

−
∑

rs
φ̄rArsφs = detA. (13.1.17)

Note that this is similar to the bosonic case, however [detA]−1 is replaced with detA.
With the help of the coherent states |φ〉 we can now write a complicated but tremendously useful
resolution of the unity

1 =
ˆ
d(φ̄φ) e−φ̄Tφ|φ〉〈φ|. (13.1.18)

To prove this identity, we have to show that ci and c†i commute with the right-hand side:

ci

ˆ
d(φ̄φ) e−φ̄Tφ|φ〉〈φ| =

ˆ
d(φ̄φ) e−φ̄Tφci|φ〉〈φ| =

ˆ
d(φ̄φ) e−φ̄Tφφi|φ〉〈φ| (13.1.19)

= −
ˆ
d(φ̄φ) [∂φ̄ie

−φ̄Tφ]|φ〉〈φ| (13.1.20)

P.I.=
ˆ
d(φ̄φ) e−φ̄Tφ[(∂φ̄i |φ〉)︸ ︷︷ ︸

=0

〈φ|+ |φ〉(∂φ̄i〈φ|)] (13.1.21)

=
ˆ
d(φ̄φ) e−φ̄Tφ|φ〉〈φ|ci. (13.1.22)

In the last line we used

c†i |φ〉 = ∂φi |φ〉 ⇒ ∂φi〈φ| = 〈φi|ai. (13.1.23)

With this we showed that ci indeed commutes with the alleged unity. For c†i one starts from
the other end end and goes through the same manipulations (show!). As all operators in the
Fock space can be written as products (and sums) of the creation and annihilation operators,
we have shown that indeed ˆ

d(φ̄φ) e−φ̄Tφ|φ〉〈φ| ∝ 1. (13.1.24)

Let us check for the proportionality factor

〈vac|1|vac〉 = 1 =
ˆ
d(φ̄φ) e−φ̄Tφ〈vac|φ〉〈φ|vac〉. (13.1.25)

Let us now rewrite the trace in the partition sum

Z =
∑
n

〈n|e−βH |n〉 =
ˆ
d(φ̄φ)

∑
n

〈n|φ〉〈φ|e−βH |n〉e−φ̄Tφ (13.1.26)

=
ˆ
d(φ̄φ) e−φ̄Tφ

∑
n

〈ηφ|n〉〈n|e−βH |φ〉 =
ˆ
d(φ̄φ) e−φ̄Tφ〈ηφ|e−βH |φ〉. (13.1.27)

Now we need to fix an important property. In order for our path integral approach to go through,
we need to normal order our Hamiltonian. This means, we arrange all operators in H such that
all c†i stand to the left of all ci. As the fields φi are just complex numbers (for bosons, at least),
this will be the last time we can take care of the operator nature of second quantized quantum
mechanics. We write for the normal ordered Hamiltonian explicitly

Z =
ˆ
d(φ̄φ) e−φ̄Tφ〈ηφ|e−βH(c†,c)|φ〉. (13.1.28)

Next, we re-write

βH(c†, c) = β

N

N∑
i=1

H(c†, c) (13.1.29)
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and we insert a unity in between all resulting factors

Z =
ˆ
φ1=ηφN , φ̄1=ηφ̄N

N∏
i=1

d(φ̄iφi)e
β
N

∑N

i=1
(φ̄i−φ̄i+1)φi

β/N
+H(φ̄i,φi)

. (13.1.30)

Note that the superscript i labels the i’th insertion of the unity. One often calls β the “imaginary
time” in relation to the real time propagator exp(itH). Within this interpretation, i corresponds
to the i’th time slice. If we now take the limit N → ∞, we are taking a continuum limit in
imaginary time where

φi → φ(τ) and β

N

∑
i

→
ˆ β

0
dτ. (13.1.31)

We can now write down our sought path integral

Z =
ˆ
D[φ̄φ]e−S[φ̄,φ], (13.1.32)

S[φ̄, φ] =
ˆ β

0
dτ φ̄T∂τφ+H(φ̄, φ), (13.1.33)

D[φ̄, φ] = lim
N→∞

N∏
i=1

d(φ̄iφi); φ̄(0) = ηφ̄(β), φ(0) = ηφ(β). (13.1.34)

13.1.3 Kubo formula

We already got acquainted with the Kubo formula in Chap. 2. We want to revisit it here in
the language of our newly introduced coherent state path integral. Imagine a “force” F (r, ω)
coupled to the “coordinate”

X̂ =
∑
αβ

c†αXαβcβ. (13.1.35)

We then ask for the linear response coefficient

X(r, ω) =
ˆ
dr′χ(r − r′, ω)F (r′, ω). (13.1.36)

In path integral formalism the expectation value on the right hand side is expressed as

X(τ) =
∑
αβ

〈φ̄α(τ)Xαβφβ(τ)〉F , (13.1.37)

where the subscript F indicates that we have to evaluate this expression in the presence of the
force F

δSF =
ˆ β

0
dτ F (τ)φ̄α(τ)Xαβφβ(τ). (13.1.38)

To generate the expectation value (13.1.37) we can add another ficticious force F ′ to the action

δSF ′ =
ˆ β

0
dτ F ′(τ)φ̄α(τ)X ′αβφβ(τ). (13.1.39)

With this addition, one can write

X(τ) = − δ

δF ′(τ)
∣∣
F ′=0 log(Z[F, F ′]). (13.1.40)

For the sake of linear response, we imagine F to be small. Therefore, we can apply a Taylor
expansion

X(τ) =
ˆ
dτ ′

[
δ2

δF ′(τ)δF (τ ′)

∣∣∣∣
F=F ′=0

log(Z[F, F ′])
]
F (τ ′) (13.1.41)
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With this expression we can immediately indentify the linear response coeffiecient. If we assume
at X(τ) = 0 in the absence of the force

χ(τ, τ ′) = − 1
Z

δ2

δF ′(τ)δF (τ ′)

∣∣∣∣
F=F ′=0

Z[F, F ′]. (13.1.42)

Electromagnetic response

We consider a system subject to an electromagnetic field Aµ = (iϕ,A). The system might react
via a redistribution of charge ρ or via an onset of a current j. We write jµ = (iρ, j) and look for

jµ(x) =
ˆ
t′<t

dx′Kµν(x− x′)Aν(x′), (13.1.43)

where x describes the four-coordinate (it,x). We remember that we coupled the Aµ-field as
jµA

µ to the Hamiltonian. Therefore,

jµ = δS

δAµ
⇒ F = F ′ = Aµ. (13.1.44)

With this we find
Kµν(x− x′) = − 1

Z

δ2

δAµ(x)δAν(x′)Z[Aµ]. (13.1.45)

Effective theories

If we have a system of charged particles, H(c†, c), and we are interested in its electro-magnetic
response, all we need to know is Kµν . In a path integral language, we say we integrate out the
fermions to obtain an effective action in terms of the Aµ-field alone. The peculiar structure of
Kµν will fully describe our system in terms of its electro-magnetic system

Seff[Aµ] =
ˆ β

0
dτ

ˆ
dxdx′Aµ(x)Kµν(x− x′)Aν(x′). (13.1.46)

13.2 Composite fermions

13.2.1 From a wave functions to a field theory

In the last chapter we got to know the Laughlin wave function for filling fractions ν = 1
2p+1 with

p ∈ N
ψ({zi}) =

∏
i<j

(zi − zj)
1
ν e−

1
4
∑

i
|zi|2 . (13.2.1)

These wave functions are manifestly in the lowest Landau level and in addition to the (zi− zj)1

term needed for the Pauli principle there are two (for ν = 1/3) more zeros attached to the
coincidence of two particles. This observation is identical to attaching 1/ν − 1 fluxes of 2π to
each particle1

In the last chapter, we only considered the Laughlin wave function and analyzed its properties.
Here, we follow a more ambitious goal. Building on the insight gained through the Laughlin

1Up to the fact that a pure flux attachment would require a factor

e
−2i
∑

i<j
arg(zi−zj) =

∏
i<j

(zi − zj)2

|zi − zj |2
. (13.2.2)

The absence of the factor 1/|zi − zj |2 in the Laughlin wave function can be seen as the effect of the projection to
the lowest Landau level.
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wave function, we want to construct an effective theory for the fractional quantum Hall effect
including the Hamiltonian! However, we want to assume that the important players are not
electrons, but the “bound states of electrons with statistical fluxes” that were at the heart of the
Laughlin wave function. In other words, we want to go from an electron wave function (theory),
to one of composite fermions by

ψ({xi}) 7→ ψ({xi})e2is
∑

i<j
arg(xi−xj) with s ∈ Z. (13.2.3)

This amounts to attaching 2s phase vortices to each electron2

Our task is now to find a many-body theory formulated in terms of this new degrees of freedom.
In a second quantized version, Eq (13.2.3) looks like

c†(x) 7→ c†(x) exp
[
−2is

ˆ
dx′ arg(x− x′)ρ(x′)

]
. (13.2.4)

Substituted into the Hamiltonian this leads to

H 7→
ˆ
dx c†(x)

[ 1
2m

(
−∂x + Â(x)

)2
+ V (x)

]
c(x) +Hint[ρ], (13.2.5)

where

Â(x) = Aext(x) + â(x) with â(x) = −2s
ˆ
dx′

(x1 − x′1)x̂1 + (x2 − x′2)x̂2
|x− x′|2

ρ(x′). (13.2.6)

This is very annoying! The kinetic energy operator became highly non-local and depends on six
operators. Let us fix this. We can relocate the condition (13.2.6) to another place in the action.
Two observations are needed for this:

(i) Eq. (13.2.6) is only giving rise to the transversal part of A: â = â⊥ as
∑
i ∂iâi = 0.

(ii) b = εij∂ia⊥,j fulfills b = −4πsρ(x).

Using these two observations we can write

Z =
ˆ
D[ψ̄ψ]D[a⊥]D[φ]eiSCF[ψ̄,ψ,a⊥,φ]+i Θ

2 S
′
CS[a⊥,φ], (13.2.7)

where Θ = 1/2πs. Furthermore,

SCF[ψ̄, ψ, a⊥, φ] =
ˆ
dx

ˆ
dt ψ̄

[
i∂t + µ− φ+ 1

2m
(
−i∂x + Â

)2
− V

]
ψ + Sint[ψ̄, ψ]. (13.2.8)

S′CS[a⊥, φ] = −
ˆ
dx

ˆ
dt φ εij∂ia⊥,j︸ ︷︷ ︸

b

. (13.2.9)

Â is still given by Aext + â, but the constraint (13.2.6) is replaced by the functional δ-function
ˆ
D[φ]ei

´
dx
´
dt φ( b

4πs+ρ). (13.2.10)

2Cartoon due Kwon Park.
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With this we are almost done. We see that a⊥ = (φ,a⊥) enters Z like a gauge field. However,
S′CS is not gauge invariant. Hence, we propose to use

SCS[a] = −
ˆ
dxµεµνσa

µ∂νa
σ. (13.2.11)

with xµ = (x0, x1, x2); ∂µ = (−∂0, ∂1, ∂2) which is gauge invariant. The old S′CS is nothing but
SCS evaluated in the Coulomb gauge ∂µaµ = 0. Therefore, our full effective theory is now given
by

Z =
ˆ
D[ψ̄ψ]D[a] exp

{
iSCF[ψ̄, ψ, a] + iΘ4 SCS[a]

}
, (13.2.12)

with

SCF[ψ̄, ψ, a] =
ˆ
dx

ˆ
dt ψ̄

[
i∂t + µ− φ+ 1

2m (−i∂x + Aext − a)2 − V
]
ψ+Sint[ψ̄, ψ]. (13.2.13)

13.2.2 Analyzing the composite fermion Chern-Simons theory

Before we embark on the analysis of the above effective theory, let us make a hand-waving
mean-field analysis. We see that for s = 1, each electron binds two flux quanta. If we assume
the density to be homogeneous (recall the plasma analogy for the Laughlin wave function), and
if we neglect fluctuations, then the electrons see on average a flux corresponding to Aext − 〈a〉.
In other words, the composite fermions see a smaller B-field! Several scenarios are possible

(i) Aext = 〈a〉 ⇒ no magnetic field. This happens at ν = 1/2. The fact that the composite
fermion prediction at ν = 1/2 looks like a Fermi liquid is one of the great successes of the
composite fermion construction [1].

(ii) Maybe, for some filling fraction ν, the effective B-field corresponding to Aext−〈a〉 leads to
an effective new filling fraction ν∗ ∈ Z, i.e., the fractional quantum Hall effect for electrons
would be mapped to an integer quantum Hall effect for composite fermions.

We are now trying to analyze the composite-fermion Chern-Simons (CF-CS) theory in mean-
field. The only term which gives a real headache is the interaction term Sint[ψ̄, ψ]. We re-write
it using a Hubbard-Stratanovich transformation

eiSint =
ˆ
D[σ] exp

{ i
2

ˆ
dx3dx′3 σ(x)[V −1](x, x′)δ(x0 − x′0)σ(x′) + i

ˆ
dx3(ρ(x)− ρ0)σ(x)

}
.

(13.2.14)
For the interpretation of the σ-field it helps to note that when completing the square, it appears
as next to ψ̄ψ, hence it describes a (rescaled) density field.3 Now ψ and ψ̄ (and ρ = ψ̄ψ) only
appear quadratically (linearly) in the action and we can integrate out ψ̄, ψ. With this we obtain
an effective theory

Seff[σ, a] = −i tr log
[
i∂0 + µ− a0 − σ + 1

2m(−i∇+A)2
]

︸ ︷︷ ︸
Sψ [a,A]

(13.2.15)

− ρ0

ˆ
dx3 σ(x) + 1

2

ˆ
dx3dx′3 σ(x)[V −1](x, x′)δ(x0 − x′0)σ(x′) (13.2.16)

+ Θ
4 SCS[a], (13.2.17)

where A = Aext + a. The first line arises from integrating out the fermions ψ. On this effective
theory we want to apply a mean-field, or saddle-point, approximation. As there are no ψ-
fields present anymore, it can be difficult to interpret the different terms in the theory. To

3We also say that we decouple the action in the density-density channel.
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provide remedy to this problem, we note that the local density of fermions is given by taking
the derivative of the original fermionic action with respect to a0(x). This property obviously
survives the elimination of the ψ field. Therefore, we can get an “effective” expression for the
density by

δSψ
δa0

= ρ[a, σ]. (13.2.18)

Therefore,

ρ[a, σ] =
[
i∂0 + µ− a0 − σ + 1

2m(−i∇+A)2
]−1

(x, x). (13.2.19)

Next, let us write down the saddle-point (Euler-Lagrange) equations. We start with
δSeff

δao

∣∣∣∣
σ̄,ā

= 0 : ρ[ā, σ̄] = 1
4πsb̄. (13.2.20)

This is nothing but the expected relation between the b̄ field and the density.4
Next, we also need to minimize the action with respect to the field σ

δSeff

δσ

∣∣
σ̄,ā

= 0 ⇒ ρ(x)− ρ0 = −
ˆ
dx′3[V −1](x, x′)σ(x′)δ(x0 − x′0), (13.2.21)

or
σ(x) = −

ˆ
dx′3V (x− x′)[ρ(x′)− ρ0]

∣∣
x′0=x0

. (13.2.22)

Here we recognize that deviations of ρ(x) from its mean value give rise to an “interaction
potential” σ(x). We can solve the mean-field equations by

ρ[ā, 0] = ρ0 (13.2.23)
σ̄ = ā = 0 (13.2.24)
b̄ = 4πsρ0 ⇒ a = 2sνAext. (13.2.25)

When can we expect this mean-field calculation to be reliable? Certainly, if the resulting ground-
state is gapped, we can hope that fluctuations around the mean-field solutions will not do too
much harm. One way to ensure a gapped mean-field solution is by asking for the effective
A−Aext − a to give rise to a filled effective Landau level. Therefore we ask

νeff = p or Φeff = 2πN
p

with Φeff = (Bext − b̄)L2. (13.2.26)

Inserting b = 4πsN/L2 we immediately obtain

ν = 2πN
BextL2 = 2πN

2πN
p + 4πsN

⇒ ν = p

1 + 2sp. (13.2.27)

We can summarize the mean-field discussion with the following list and Fig. 13.1

(i) We can explain many fractions which are symmetrically distributed around 1/2s by an
integer quantum Hall effect for composite fermions. Note, however, that the gap is entirely
due to interactions!

(ii) For ν = p/2s, CF-CS predicts a Fermi-liquid theory in Beff = 0

(a) This seems to describe ν = 1/2 well [1].
(b) For 3/2 = 1/2+1 and 5/2 = 1/2+2 one could have expected the same Fermi-liquid as

they are nothing but the 1/2 plateaus in higher (real) Landau levels. This is however
not the case. One can imagine that in these cases, residual interactions beyond the
mean-field descriptions lead to an instability of the Fermi surface.

4Check that the minimization of the action with respect to a1 and a2 only provides the continuity equation of
the density and does not give any further constraints in the mean-field value of a.

University of Zurich 8 ETH Zurich



Topological condensed matter physics Chapter 13.2

12
O
CT
O
BE
R
19
87

V
O
LU
M
E
59
,
N
U
M
BE
R
15

PH
Y
SI
CA
L
RE
V
IE
W

LE
TT
ER
S

2.
5—

))
I

I
I

I
I

I
l

I
I

I
I

I
I
~~
I

I
f

I
I

I
I

I
I

I
I

[
I

I
I

I

32
N
=1

N
=
0

v=
4
3

1.
5—

i
a)
',

/3
3/
5 4/
7 5/
9 6/
11 7/

1/
2

3/
7

4/
9

5/
11

6/
13

2/
5

4/
5

5/
7

10
25

30
0

15
20

L
J

M
A
G
N
ET
IC

FI
EL
D

I
T] d

'b
ed

in
te
xt
.
Th
e
us
e
of
a
hy
br
id

m
ag
ne
t
w
ith

an
d
H
al
l
re
sis
ta
nc
e
p„
~
of
sa
m
pl
e

es
cr
i
e

in
ex
.

FI
G
.
l.
O
ve
rv
ie
w

of
di
ag
on
al

re
sis
tiv
ity

p
„a
n

(
k

t
=1
2
T)
.
Te
m
pe
ra
tu
re
s

w
er
e
=
15
0
m
K
ex
-

fi
ur
e
fro
m

fo
ur
di
fre
re
nt

tra
ce
s

br
ea

s
at
=

ci
cl
i

lit
d

b
f
to
25
fo

1
it

Fi
li

ce
pt
fo
r
th
e

ig
-
e

a
h'

h-
fi

ld
H

11
tra
ce

at
T=
85

m
K
.
Th
e
hi
gh
-fi
el
d

p
„t
ra
ce

is
re
du
ce

in
am
p

i
u
e

fa
ct
or

v
an
d
La
nd
au

le
ve
ls

1V
ar
e
in
di
ca
te

.d.

Tr
an
sp
or
t
m
ea
su
re
m
en
ts

w
er
e
pe
rfo
rm
ed

at
m
ag
ne
tic

fie
ld
s
up

to
30
T
an
d
at
te
m
pe
ra
tu
re
s

do
w
n
to
20

m
w
ith

tw
o
di
fre
re
nt

di
lu
tio
n-
re
fri
ge
ra
to
r-m
ag
ne
t

sy
ste
m
s.

G
re
at
ca
re

ha
s
be
en

ex
er
ci
se
d

in
or
de
r
to
as
su
re

th
er
m
al

eq
ui
lib
riu
m

et
w
ee
n

e
1
b

b
t

th
e
2D

el
ec
tro
ns

an
d
th
e
cr
ys
ta
l
la
t-

tic
e.

Si
nc
e
la
rg
e
ch
an
ge
s

in
re
sis
tiv
ity

w
er
e
ob
se
rv
ed

up
on

co
ol
in
g
of
th
e
cr
ys
ta
l
la
tti
ce

fro
m
40

to
25

m
K
(a
s

m
ea
su
re
d

w
ith

a
ne
ar
by

ca
rb
on

re
sis
ta
nc
e
th
er
m
om
et
er
)

a
gr
os
s
el
ec
tro
n-
la
tti
ce

di
se
qu
ili
br
iu
m

se
em
s
un
lik
el
y.

r
1
di
s
la
ys

th
e
lo
w
-te
m
pe
ra
tu
re

di
ag
on
al

an
H
al
l
re
sis
tiv
iti
es

ov
er
a
w
id
e
ra
ng
e
of
m
ag
ne
tic

e
an

ed
,
re
ve
al
in
g

ou
r
m
os
t
sta
rtl
in
g

re
su
lt.

Th
e
p
~
da
ta

at
25
m
K
sh
ow

a
pl
at
ea
u
fo
rm
in
g
at
th
e
fie
ld
co
rre
sp
on
di
ng

to
v=

—'
in
te
rs
ec
te
d

by
th
e
cl
as
sic
al

H
al
l
lin
e
de
te
r-

2

m
in
ed

fro
m

th
e
m
ea
su
re
d

2D
de
ns
ity
.

M
or
e
im
po
rta
nt
-

1,
th
is
pl
at
ea
u

is
ce
nt
er
ed

at
p
~
—
&
h,
e
„2

0.
5%
.
Si
m
ul
ta
ne
ou
sly

a
de
ep

re
la
tiv
e
m
in
im
um

is
fo
un
d

in
p

W
hi
le

no
t
ye
t
fu
lly

de
ve
lo
pe
d,

th
es
e
fe
at
ur
es

X
X

em
er
ge

in
a
mm
an
ne
r

an
al
og
ou
s

to
co
nv
en
tio
na
l

od
d-

de
no
m
in
at
or

FQ
H
E
sta
te
s.

Ta
ke
n
to
ge
th
er
,
th
es
e
da
ta

pr
ov
id
e

str
i
in
g

ev
i
e

d
k

id
en
ce

fo
r

an
ev
en
-d
en
om
in
at
or

FQ
H
E.

To
hi
gh
lig
ht

fu
rth
er

th
e
p
~
da
ta

co
nt
ai
ne
d

in
Fi
g.
2,

th
e
po
sit
io
ns

o
e

i
f
th

hi
gh
-o
rd
er

od
d-
de
no
m
in
at
or

fra
c-

tlo
ns

13
a

13
2

d
—"

'n
di
ca
te
d
(—'
~
1.
5%
).
N
o
fe
at
ur
es

ar
e

ou
n

in
p

a
f

d
'

t
th
es
e
fra
ct
io
ns

w
hi
ch

lie
w
el
l
cl
ea
r
of

th
e
ob
se
rv
ed

—
,
pl
at
ea
u.

Fr
om

th
is

it
ca
n
be

as
su
m
e

th
at

th
e

2
pl
at
ea
u

is
no
t
lik
el
y
th
e
co
ns
eq
ue
nc
e
of
tw
o

hi
gh
-o
rd
er

od
d-
de
no
m
in
at
or

pl
at
ea
us

bl
en
di
ng

to
ge
th
er

to
fo
rm

an
ap
pa
re
nt
,
bu
t
sp
ur
io
us
,
pl
at
ea
u
at
v=

2
.

Fi
gu
re

2
al
so

sh
ow
s

th
at

th
e

str
on
g

te
m
pe
ra
tu
re

de
pe
nd
en
ce

of
th
e
— ',
m
in
im
um

in
p
„c
om
m
en
ce
s
be
lo
w

10
0
m
K
,
in
di
ca
tin
g

a
ve
ry

sm
al
l
as
so
ci
at
ed

en
er
gy

sc
al
e.

A
lth
ou
gh

no
t
sh
ow
n

in
th
e
fig
ur
e,

th
e
pl
at
ea
u

in
p
~
at

v=
—'
ex
hi
bi
ts

th
e
sa
m
e
te
m
pe
ra
tu
re

de
pe
nd
en
ce

as
th
e

v
—
, ex
iis

A
bo
ve

ab
ou
t
10
0
m
K

th
e
pl
at
ea
u

m
in
im
um

in
p

.
ov

1
di
sa
pp
ea
rs

an
e

a
d
th

H
al
l
re
sis
ta
nc
e

fo
llo
w
s
th
e
cl
as
sic
a

1
Th

de
ve
lo
pm
en
t

of
th
e

re
sis
tiv
ity

fe
at
ur
e

is
no
te
w
or
th
y.

In
ste
ad

of
fo
rm
in
g

a
ze
ro

in
p„
,

e
m
in
im
um

its
el
f
re
m
ai
ns

ro
ug
hl
y
co
ns
ta
nt

w
hi
le
th
e
ad
ja
-

ce
nt

fla
nk
s
ris
e
ste
ep
ly

as
th
e
te
m
pe
ra
tu
re

is
re
du
ce
d.

Th
e

sa
m
e

ph
en
om
en
on

ha
s

be
en

ob
se
rv
ed

at
od
d-

uc
h
be
ha
vi
or

re
su
lts

de
no
m
in
at
or

fra
ct
io
ns

as
w
e
.

f
th

m
pe
tit
io
n

be
tw
ee
n

th
e
te
nd
en
cy

fo
r
th
e
p
„

ba
ck
gr
ou
nd

to
ris
e
as
th
e
te
m
pe
ra
tu
re

fa
lls

an
d
t
e
e-

ve
lo
pm
en
t
of
th
e
re
sis
tiv
ity

m
in
im
um
.

In
ad
di
tio
n

to
th
e
pl
at
ea
u
at
v=

2
th
er
e
is
ot
he
r
ev
i-

de
nc
e
o

t
e

f
h
F~
H
E

in
th
e
fir
st
ex
ci
te
d
La
nd
au

le
ve
l,

4&
v&

2.
A
s
sh
ow
n

in
Fi
g.
2,
th
er
e
ar
e
br
oa
d
m
in
im
a

17
77

V
O
LU
M
E
59
,
N
U
M
BE
R
15

PH
Y
SI
CA
L
RE
V
IE
W

LE
TT
ER
S

12
O
CT
O
BE
R
19
87

0.
5—

/7

25
m
K

40
m
K

10
0
m
K

3

0.
3
I-

10
0Q

] I

0—
Ji

4
5

6
M
A
G
N
ET
IC

FI
EL
D
[T
]

FI
G
.2
.
D
ia
go
na
l
re
sis
tiv
ity

p„
an
d

H
al
l
re
sis
ta
nc
e
p
~
en
-

la
rg
ed

se
ct
io
n
(a
)
of
Fi
g.
1]
at
T
=1
00

to
25
m
K
.
Fi
lli
ng

fa
c-

to
rs

v
ar
e
in
di
ca
te
d

in
p„
„w
hi
le

qu
an
tu
m

nu
m
be
rs

p/
q

ar
e

sh
ow
n

in
p~
~.

ne
ar
v=

4
an
d

'4
'
w
hi
ch

sh
ift

co
ns
id
er
ab
ly

w
ith

te
m
pe
r-

at
ur
e.

By
th
e
lo
w
es
t
te
m
pe
ra
tu
re
s

a
pl
at
ea
u,

oA
th
e
cl
as
-

sic
al

lin
e,

ha
s
fo
rm
ed

at
'&
'
co
rro
bo
ra
tin
g

th
e
ea
rli
er

w
or
k
of
Cl
ar
k
et
al
.'

an
d
a
m
uc
h
w
ea
ke
r
on
e
is
ap
pe
ar
-

in
g
ne
ar
v=

—
,
.
Th
us
,
as
id
e
fro
m
v=

— ',
,
w
e
ha
ve

no
ev
i-

de
nc
e

fo
r
an

ev
en
-d
en
om
in
at
or

FQ
H
E

in
th
e
ra
ng
e

3&
v&
2.

m
th
e

A
t
h'

h
te
m
pe
ra
tu
re

(=
10
0
m
K
)
p„
da
ta

fro
m

e
ig

hi
gh
er

sp
in

sta
te

of
th
e

fir
st

ex
ci
te
d

La
nd
au

le
ve
,

4
&
v&

3,
ar
e
br
oa
dl
y

sim
ila
r
to
th
e
ra
ng
e
3
&
v&

2.
A

m
in
im
um

is
fo
un
d
at
v=

— ,'as
w
el
l
as

in
th
e
vi
ci
ni
ty

of
v=

4
an

=
'4
'

d
— ".

Lo
w
er
in
g

th
e
te
m
pe
ra
tu
re
s

ca
us
es

an
ov
er
al
l

in
cr
ea
se

in
re
sis
tiv
ity

ov
er

th
e

en
tir
e

ra
ng
e

w
ith
ou
t

sig
ni
fic
an
t

en
ha
nc
em
en
t

of
th
e

fra
ct
io
na
l

fe
at
ur
es
.

O
nl
y
w
ea
k
str
uc
tu
re

in
p
~
is
fo
un
d
at
v=

— ,'.
Po
te
nt
ia
l
ob
se
rv
at
io
n
of
th
e
FQ
H
E
at
v=

—
,'
aw
ai
ts

sa
m
-

pl
es
of
hi
gh
er

qu
al
ity
.

H
av
in
g

ev
id
en
ce

fo
r
an

ev
en
-d
en
om
in
at
or

fra
ct
io
n

w
ith
in

th
e
fir
st
ex
ci
te
d
La
nd
au

le
ve
l,
w
e
re
ex
am
in
ed

th
e

lo
w
es
t
La
nd
au

le
ve
l
fo
r
eq
ui
va
le
nt

fe
at
ur
es
.

U
sin
g
th
e

sa
m
e
sp
ec
im
en
,
w
e
fo
cu
se
d

on
v&

1.
g.

1.
A
s
Fi
.

1
sh
ow
s

th
er
e
ex
ist

a
br
oa
d
ba
sin

in
p„
„a
ro
un
d
v=
,',

v=
—'

bu
t
no

in
fle
ct
io
n
oc
cu
rs

in
p
~.

In
fa
ct
,
in
th
is

fie
ld

ra
ng
e,

p„
~

fo
llo
w
s
th
e
cl
as
sic
al

H
al
l
lin
e.

Fu
rth
er
m
or
e,

th
e
br
oa
d

fe
at
ur
e

ar
ou
nd

v
=

—
,'
is

in
sta
rk

co
nt
ra
st

to
th
e
m
uc
h

sh
ar
pe
r

ne
ig
hb
or
in
g

od
d-
de
no
m
in
at
or

m
in
im
a

w
hi
ch

ha
ve

no
w
be
en

ob
se
rv
ed

w
ith

de
no
m
in
at
or
s

up
to
q
=1
3

(F
ig
.
I )
.
Th
e
ab
se
nc
e
of
a
qu
an
tiz
ed

pl
at
ea
u

in
p„
r
an
d

th
e
un
ch
ar
ac
te
ris
tic
al
ly

w
id
e
de
pr
es
sio
n

in
p„
,in

sp
ite

of
th
e
fa
ct

th
at

hi
gh
er

m
ag
ne
tic

fie
ld
s
va
stl
y

am
pl
ify

FQ
H
E
fe
at
ur
es
,
'
su
gg
es
ts

a
ch
ar
ac
te
ris
tic

di
ffe
re
nc
e
be
-

tw
ee
n
el
ec
tro
n
co
rre
la
tio
n

in
th
e
lo
w
es
t
an
d
fir
st
ex
ci
te
d

La
nd
au

le
ve
ls.

A
sim

ila
r

ob
se
rv
at
io
n

ca
n

be
m
ad
e

ar
ou
nd

v
=
— ,'w
hi
ch

w
as
cl
os
el
y
in
ve
sti
ga
te
d

. ;a
t
te
m
pe
ra
-

tu
re
s
as

lo
w

as
25

m
K

w
ith
ou
t

sh
ow
in
g

ev
id
en
ce

fo
r

ev
en
-d
en
om
in
at
or

qu
an
tiz
at
io
n.

W
ith

th
e
re
so
lu
tio
n

of
in
cr
ea
sin
gl
y

hi
gh
er
-o
rd
er

od
d-

3
de
no
m
in
at
or

fra
ct
io
na
l
sta
te
s
of

th
e
se
qu
en
ce
s

v=
~~

+
I)/
(2
m
+
I)

an
d

v=
m
/(2
m
+
I)

(m
=1
, 2,
3,

.
.
. ),

w
hi
ch

co
nv
er
ge

to
w
ar
d
v=

—
,',
th
e
br
oa
d
ba
sin

in
its

vi
-

ci
ni
ty

m
ay

ac
tu
al
ly

be
ca
us
ed

by
ev
en

hi
gh
er
-o
rd
er
,

ye
t

un
re
so
lv
ed

m
em
be
rs

of
th
e
sa
m
e
se
qu
en
ce
s.

Su
ch

a
co
n-

je
ct
ur
e

is
su
pp
or
te
d

by
di
sti
nc
t
fe
at
ur
es

no
w

ob
se
rv
ed

ar
ou
nd

v
=

4
.

W
ith

ou
r

hi
gh
-m
ob
ili
ty

sa
m
pl
e,

w
e

di
sc
ov
er
ed

re
pr
es
en
ta
tiv
es

of
bo
th

od
d-
de
no
m
in
at
or

se
-

=
3

qu
en
ce
s
co
nv
er
gi
ng

to
w
ar
ds

v=
4
.

ist
in
ct

m
in
im
a
ar
e

ob
se
rv
ed

at
v
=

5
an
d

v
=
— ,'a
ss
oc
ia
te
d

w
ith

pl
at
ea
us

(n
ot

sh
ow
n

in
Fi
g.
I)
qu
an
tiz
ed

to
th
e
ap
pr
op
ria
te

va
lu
es

to
be
tte
r
th
an

1%
.

To
su
m
m
ar
iz
e

ou
r
re
su
lts
,
in
th
e
fir
st
ex
ci
te
d
La
nd
au

le
ve
l
w
e
ha
ve

fir
m
ev
id
en
ce

fo
r
fra
ct
io
na
l
qu
an
tiz
at
io
n

of
th
e
H
al
l
ef
Ie
ct
to

an
ev
en
-d
en
om
in
at
or

fra
ct
io
n,
v=

— ,',
w
ith

no
ot
he
r
ev
en
-d
en
om
in
at
or

fra
ct
io
n

ap
pa
re
nt

at
v
p/
4
fo
r
te
m
pe
ra
tu
re
s

as
lo
w
as
=2
0
m
K
.
In
sp
ite

of
ou
r
re
so
lv
in
g

se
ve
ra
l
ne
w
fra
ct
io
ns

in
th
e
lo
w
es
t
La
nd
au

le
ve
l,
no

ev
id
en
ce

fo
r
ev
en
-d
en
om
in
at
or

qu
an
tiz
at
io
n

ex
-

ist
s
pr
es
en
tly

fo
r
v
&
2.

A
lth
ou
gh

no
ph
ys
ic
al

pr
in
ci
pl
e
ha
s
be
en

fo
un
d
ex
cl
ud
-

in
g
th
e
ob
se
rv
at
io
n

of
ev
en
-d
en
om
in
at
or

fra
ct
io
ns

in
th
e

FQ
H
E,

th
er
e

ex
ist
s

pr
es
en
tly

no
th
eo
re
tic
al

m
od
el

de
sc
rib
in
g

su
ch

sta
te
s.

Th
eo
ry

ha
s
be
en

ve
ry

su
cc
es
s
u
l

in
de
ve
lo
pi
ng

an
un
de
rs
ta
nd
in
g

of
od
d-
de
no
m
in
at
or

fra
c-

tio
ns

in
te
rm
s
of
a
hi
gh
ly

co
rre
la
te
d

qu
an
tu
m

flu
id
ex
ist
-

in
g

sp
ec
ifi
ca
lly

at
pr
im
iti
ve

od
d-
de
no
m
in
at
or

fil
lin
g

(v
=
—'
—'

I
—

—
,'
I
—

—
,', .

..
).

La
ug
hl
in
's

w
av
e

fu
nc
tio
n

fu
lfi
lls

th
e
re
qu
ire
m
en
t

fo
r
an
tis
ym
m
et
ry

of
th
e

w
av
e
fu
nc
tio
n

on
ly

fo
r
od
d-
de
no
m
in
at
or

ra
tio
na
l
fil
lin
g.

Th
e
sa
m
e
re
str
ic
tio
n

ap
pl
ie
s
to
th
e
hi
er
ar
ch
y
of
fra
ct
io
n-

al
da
ug
ht
er

sta
te
s
(v
=

$
s,

7
7

..
. )

de
riv
ed

fro
m

th
os
e
pr
im
iti
ve

pa
re
nt
al

gr
ou
nd

sta
te
s.

G
en
er
al
iz
at
io
n

of
th
is

th
eo
re
tic
al

m
od
el

to
in
cl
ud
e

ev
en
-d
en
om
in
at
or

qu
an
tu
m

nu
m
be
rs

re
qu
ire
s
th
e
pa
rti
-

cl
es
to
be

bo
so
ns

ra
th
er

th
an

fe
rm
io
ns
.
Su
ch

po
ss
ib
ili
tie
s

ha
ve

be
en

di
sc
us
se
d

pr
ev
io
us
ly

by
H
al
pe
rin
'

w
ho

pr
o-

po
se
s
bo
un
d-
el
ec
tro
n

pa
irs

as
su
ch

ca
nd
id
at
e

bo
so
ns
.

G
iv
en

th
e
lo
w

fie
ld

at
w
hi
ch

w
e
fin
d
th
e
v=

— ',
FQ
H
E

re
ad

an
d
th
e
co
ns
eq
ue
nt

sm
al
l
sp
in
Ze
em
an

en
er
gi
es
,
a
re
a

y
pr
ed
ic
te
d

to
in
flu
en
ce

th
e
FQ
H
E
sta
te
,
'
po
te
nt
ia
l
pa
ir-

in
g
m
ec
ha
ni
sm
s

in
vo
lv
in
g

sp
in
-re
ve
rs
ed

el
ec
tro
ns

ca
nn
ot

be
re
je
ct
ed

a
pr
io
ri.

N
um
er
ic
al

fe
w
-p
ar
tic
le

ca
lc
ul
a-

tio
ns

ha
ve

le
d
to
co
ns
id
er
ab
le

pr
og
re
ss

in
qu
an
tif
yi
ng

th
e
pr
op
er
tie
s
of
th
e
fra
ct
io
na
l
sta
te
s.

N
on
e
of
th
es
e
el
a-

bo
ra
te

te
ch
ni
qu
es

ha
s
hi
nt
ed

to
w
ar
ds

th
e
ex
ist
en
ce

of
ev
en

de
no
m
in
at
or
s.

A
re
ce
nt

co
op
er
at
iv
e

rin
g
ex
ch
an
ge

17
78

(1
,5
)

(1
,6
)

(1
,−

7)

(s
,p
)

Fi
gu

re
13

.1
:
O
ve
rv
ie
w

of
di
ag

on
al

re
sis

tiv
ity

ρ
x
x
an

d
H
al
lr

es
ist

an
ce
ρ
x
y
.
T
he

bl
ue

nu
m
be

rs
de

no
te

th
e
fr
ac
tio

ns
w
hi
ch

ar
e
w
el
le

xp
la
in
ed

by
an

in
te
ge
r
qu

an
tu
m

H
al
lp

la
te
au

of
co
m
po

sit
e
fe
rm

io
ns
.
T
he

in
se
t
sh
ow

s
th
e
de

ta
ils

ar
ou

nd
ν

=
5/

2.
Fi
gu

re
ad

ap
te
d
fr
om

R
ef
.[
2]

(C
op

yr
ig
ht

(1
98

7)
by

T
he

A
m
er
ic
an

Ph
ys
ic
al

So
ci
et
y)
.

University of Zurich 9 ETH Zurich



Topological condensed matter physics Chapter 13.3

13.2.3 Fluctuations around the mean-field solution

We want to take a step beyond the mean-field considerations. For this, let us expand S[a,A]
to second order in a.5 We could take the CF-CS action and expand to leading order around ā.
However, we can do a much simpler thing. Let us just say that

S(2)[a,A] = 1
2

ˆ
dx3dx′3 (A+ a)µ(x)Kµν(x− x′)(A+ a)ν(x′) + Θ

4 SCS[a]. (13.2.28)

Without actually calculating Kµν , we try to constrain it from general considerations

• Kµν has to be gauge invariant.

• Kµν(q) can be expanded in q.

• Via the Kubo formula (13.1.46), we know that Kµν encodes the electromagnetic response.

We know that σ11 = 0 due to the gap for composite fermions. The transverse response, σ12,
however, can be non-zero. Recall, that

σ12 = −i lim
q→0

1
ω
K12(ω, q). (13.2.29)

From this we conclude that we have

Kµν = −iσ(0)
12 εµσνqσ. (13.2.30)

Here σ(0)
12 denotes the composite fermion mean-field value for the transverse response. Inserted

into the expression for S(2)[a,A] we find

S(2)[a,A] = σ
(0)
12
2 SCS[a+A] + Θ

4 SCS[a]. (13.2.31)

This effective action is clearly (i) gauge invariant, (ii) the lowest order expansion in q, and (iii)
provides Kµν that reproduces the electromagnetic of the effective theory. Actually, we would
expect that

δ2Z

δAµδAν
(13.2.32)

provides us with the desired response function. However, this is only true after we integrated out
the fluctuations in a! What we need in the following is the formula valid for quadratic actions
(Show!) ˆ

D[a] ec1S[a+b]+c2S[b] = e
1

1
c1

+ 1
c2
S[b]

. (13.2.33)

Using this formula we obtain after integrating over the field a

Seff[A] = 1
1
σ0

12
+ 2

Θ
SCS[A]. (13.2.34)

And hence,

σ12 = e2

h

p

1 + 2sp s, p ∈ Z. (13.2.35)
5Why not in σ?
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13.3 ν = 5/2
We have seen that composite fermions allow us to extend the idea of the Laughlin wave function
to many other fillings in a simple way. We also mentioned that the prediction of a Fermi-liquid
at zero effective magnetic field was one of the great successes of the composite fermion approach.
There is, however, even more interesting physics emerging from half-filled Landau levels.
In the presence of interactions, a Fermi surface is generically unstable towards symmetry break-
ing. At least at low enough temperatures. It seems, however, that for the lowest Landau level,
the attached fluxes already account for all interaction effects (recall that the Laughlin wave-
function is exact if we neglect pseudo-potentials vs with s > 1).6 A natural question that arises
is what happens in higher Landau levels. Let us go through a chain of (somewhat handwaving)
arguments

• For the lowest Landau level the flux attachment “exactly” accounts for interaction effects
and renders the ν = 1/2 state a gapless Fermi liquid.

• In the next Landau level, the free Hamiltonian is less optimized. Hence we can expect it
to be slightly better tailored to satisfy the interaction effects.

• If we optimally absorbed the interaction effects in the lowest Landau level, we overdue in
the second Landau level.

• To compensate for the over-accounted interactions, there is a residual attraction between
composite fermions.

6Let us examine the two-particle problem on top of a Fermi surface[
−~2

m
∇2 + V (r)

]
ψ(r) =

(
E + ~2k2

F

m

)
ψ(r), (13.3.1)

where r is the relative coordinate of the two-particle wave-function of a singlet of electrons. The energy E is
measured with respect to the Fermi energy ~2k2

F/2m. We use the Fourier transform of the wave-function and the
interaction potential

g(k) =
ˆ
dr e−ik·rψ(r) and V (k) =

ˆ
dr e−ik·rV (r). (13.3.2)

Inserted into the above equation we obtain

~2k2

m
g(k) +

ˆ
dk′

(2π)2 V (k − k′)g(k′) =
(
E + ~2k2

F

m

)
g(k). (13.3.3)

If now assume V (k) to be attractive with a strength −V0 in a shell around the Fermi-surface we find(
−~2k2

m
+ E + ~2k2

F

m

)
g(k) = −V0

ˆ
EF<(~k′)2/2m<EF+Λ

dk′g(k′). (13.3.4)

We can now divide by the bracket on the left and integrate over k in the shell around the Fermi-surface. With
this we find the equation

1 = V0

ˆ
EF<(~k′)2/2m<EF

dk

(2π)2
1

~2k2
m
− E − ~2k2

F
m

. (13.3.5)

We now use the constant density of states to go from a momentum integral over to an integral over the energy
ξ = ~2k2/2m− EF, where N(0) is the density if states (at the Fermi level)

1 = V0N(0)
ˆ Λ

0
dξ

1
2ξ − E = V0N(0)

2 log
(
−2Λ
E

)
(13.3.6)

and therefore
E = −2Λe−

1
V0N(0) . (13.3.7)

In other words, two electrons bind into a Cooper pair [3]. Consequently, the Fermi-surface is unstable towards the
formation of such pairs. It is the content of the Bardeen Cooper Schrieffer theory [4] to determine the resulting
physics.
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• Due to the strong magnetic field, it is profitable to form a superconductor out of spin-
polarized composite fermions.

• The pairing has to be odd as the spin is symmetric.

• The resulting phase is a px + ipy superconductor of composite fermions.

• We end up with a filling 1+1+1/2 = 5/2. The two ones correspond to the two spin-species
filling the lowest Landau level.

• We have seen in Chap. 6 that this state has non-abelian excitations in the form of Majorana
zero modes bound to vortices.

It is important to note that due to the fact that we are dealing with a p-wave superconductor of
composite fermions the resulting state and excitations are significantly more complicated than
in the non-interacting case discussed in Chap. 6. In particular, ν = 5/2 state is an intrinsically
topologically ordered state with fractionally charged excitation with a charge e∗ = e/4 [5].
The link between the full theory of the 5/2-state in terms of the famous Moore-Read state [6]
and the p-wave superconductor interpretation was established by Read and Green [7]. In the
framework of the superconductor language it was shown in a particularly transparent way that
the quasiparticles exhibit non-abelian statistics by Ivanov [8].
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Chapter 14

Summary

Learning goals

• We understand how all the models and systems discussed in the lecture can be systematized
as part of the known types of topological phases.
• We understand the fundamental differences and the connections between noninteracting
topological phases and intrinsic topological order.
• We can embed the contents of the lecture in the historical context of the field.

This chapter consists of two parts: We will first give a short historical account of topological
condensed matter physics. Then, we will attempt to put the models and types of systems that
we studied in this lecture in a systematic structure.

14.1 A historical recap of the lecture
This review is somewhat biased to experiments, since the ultimate relevance of physical insights
lies in the connection to the real world, i.e., to experiments. There is much more theory work
that often foreshadowed experimental developments.
Topology entered condensed matter physics in the form of topological defects. Specifically,
Skyrmions (Tony Skyrme, 1962) were predicted as hypothetical particles, and much later con-
firmed in magnetic systems. Another topological defect – which found its experimental ver-
ification sooner – is a vortex in a superconductor or superfluid. It is at the basis of the
Berezinskii-Kosterlitz-Thouless transition (1971/1973; Nobel prize), which is understood as a
vortex-antivortex condensation in 2D (for instance in the XY spin model). The mechanism
describes well 2D or quasi-2D (disordered) superconductors and Josephson junction arrays. An-
other early point where topological concepts entered condensed matter research is the study of
defects in crystalline solids.
Then came the revolution of the quantum Hall effects, spearheaded by the integer quantum
Hall effect (von Klitzing 1980; Nobel prize). They introduced quantized topological response
functions, i.e., universally quantized observables that are expressed in constants of nature and
do not depend on the system details. (Note that this is a stricter quantization constraint
than in quantum mechanics, where for instance the energy quanta a system can absorb do
depend on the system’s details.) The mathematical understanding of the integer quantum
Hall effect was soon delivered by Laughlin, Thouless, Kohmoto, Nightingale, Den Nijis (1892),
defining the Chern number in a physical context by connecting it to the Hall conductivity
σxy = ne2/h, n ∈ Z. In essentially the same system, the fractional quantum Hall effect was
discovered (Laughlin, Störmer, Tsui 1982; Nobel prize) with Hall conductivities σxy = p

q e
2/h,

with p, q ∈ Z. This is a remarkable coincidence, as the integer and fractional effects are radically
different from a theoretical perspective. The new paradigms coming with the fractional effect
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(intrinsic topological order and emergent quantum statistics) where therefore not understood
until a few years later, with important contributions from X.-G. Wen at the beginning of the
1990s. There followed many studies that aimed to understand the cuprate high-temperature
superconductors using topological physics in terms of anyons models and chiral spin liquids, but
no experimental confirmation could be found.
In a somewhat parallel development, spin models were studied for their topological properties.
Notably, Haldane conjectured that the spin-1 Heisenberg chains is gapped and supports topo-
logical spin-1/2 end excitations. An exactly soluble, but less natural model was conceived by
Affleck, Kennedy, Lieb, Tasaki (AKLT model, 1987). The Haldane conjecture was experimen-
tally confirmed in 1D spin chain materials in the 1990s.
While theoretical efforts in topological quantum matter diversified at the end of the 1990s,
one important realization was the description of non-Abelian statistics of vortices in p-wave
superfluids (Reed, Moore, Ivanov). All of this paved the way for Kitaev to write his most
influential papers: on the honeycomb spin model and its reduction to the toric code as well as
the work on Majorana chains. They proposed, respectively, the vision for topological software
and topological hardware of a quantum computer. In particular, the Majorana wire was still
a very abstract idea that was sharpened in several iterations by the community and eventually
fueled the effort on Majorana fermions at Microsoft, with Leo Kouwenhoven and Charles Marcus
as the lead experimentalists.
In parallel to researchers exploiting Kitaev’s insights, 2005/06 marked the time where a revolu-
tion in topological band theory started, with the prediction of the QSHE by Bernevig-Hughes-
Zhang and the experimental verification by Molenkamp as well as the theoretical discovery of
Z2 topological insulators in 2D by Kane and Mele. In quick succession the 3D versions of the
latter where predicted and found, setting in motion a back and forth between theoretical pre-
dictions and experimental verifications of new topological band structures that has not stopped
since. Milestones are the discovery of Weyl semimetals in 2015 and the formalism of topologi-
cal quantum chemistry in 2017. Furthermore, initiated by the work of Kane and Lubensky in
2013, researchers started to look for topological physics in classical systems, such as phononic,
acoustic, or photonic metamaterials.
One influential name that has not been mentioned so far is Grigory E. Volovik, who’s book “The
universe in a helium droplet” anticipated much of the ideas described above. In addition, there
has been a fruitful influx or exchange of ideas with high-energy and mathematical physicists over
the years. For instance, Roman Jackiw published solutions to domain wall and vortex bound
states (based on the Dirac equation) before they made an appearance in condensed matter.
Juerg Froehlich, Leonard Susskind, Edward Witten brought important field-theoretical ideas,
inspired often by quantum Hall physics where topological matter is the “cleanest”.

14.2 A systematizing recap of the lecture
We close by organizing the lecture contents according to our current physical understanding of
topological phases. Figure 14.1 attempts such a summary for gapped quantum phases at zero
temperature. The biggest differentiation is between topological phases with or without intrinsic
topological order: Those with intrinsic topological order always have a manifold-dependent topo-
logical ground state degeneracy. The others, so-called symmetry-protected topological phases
(SPT) always gapless boundary modes if the boundary does not break the protecting symmetry,
but never such a topological degeneracy in the ground state. (Note that some spatial symme-
tries give problems with the emergence of boundary modes, as any boundary may break them.).
The only phases that do not quite fit in here are the integer quantum Hall phases (which exist
both for fermions and for bosons). If we do not care about charge conservation (i.e., we are not
interested in the quantized Hall conductivity), these phases are still topological with anomalous
boundary modes that transport heat, but there is no symmetry needed to protect their topology.
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Symmetry protected topological phases Intrinsic topological order

Noninteracting topological insulators  
and superconductors 

Indicated by spatial symmetry indicators

Protected by spatial symmetries

Classified by additional symmetries

AKLT chain/spin-1 Heisenberg chain

Bosonic quantum Hall effect*

Z2 topological insulator, QSH effect

p-wave superconductor


Z2 topological insulator with inversion

Mirror Chern insulators

TRS fractional topological insulators in 2D

Phases with fully deconfined quasiparticles

Fractional quantum Hall effect 

gapped B-phase of Kitaev model (Ising topo order)

Toric code


Fracton topological order (e.g., Haah code) 

Summary: Topology in zero-temperature, gapped ground states of quantum systems

Protected boundary modes
Topological ground state degeneracy 
Only in d > 1

Emergent (fractional) quantum statistics 
Topological quantum field theory description 
Not all have edge modes, but boundary anomaly

10-fold way classification

- Role of disorder: plateau transition only known in 2D

- topological (universally quantized) response function known for only few phases 

- invariants: holonomy integrals (Chern numbers…), symmetry indicators, Wilson 

loops, partition function

* not actually symmetry protected

Topological quantum chemistry

HOTIs with inversion


make Z2 gauge 

field dynamical

Chern insulator*

Legend:

Categories 
Examples

Properties

Figure 14.1: Overview of the lecture contents

Bosonic SPT phases always need interactions to be stabilized, as noninteracting Bosons fall
into a boring Bose condensate ground state. For fermionic SPTs we know of examples that
require interactions, but the ones we encountered in this lecture can all be defined for non-
interacting systems. (The superconductors are somewhat of an exception – physically, they
require interactions, but we considered only their mean-field BDG description which is effec-
tively a non-interacting theory.) Foundational for the understanding of noninteracting fermionic
SPTs is the 10-fold way. If spatial symmetries are added, their representation theory can be
used to detect in which topological phase from the 10-fold way classification a system is (e.g.,
the inversion symmetry criterion for topological insulators), in which case we say the phase is
symmetry-indicated. Furthermore, spatial symmetries can be used to protect new topological
phases, such as a mirror Chern insulator. Some of these are indicated by representation theory
invariants, but not all of them (for instance, in a Cn-symmetric TRS system, the mirror Chern
number is symmetry indicated modulo n).
Turning to intrinsic topological order, we have to state a few things that have not been shown
in the lecture. Intrinsic topological order exists for fermionic and bosonic systems in dimensions
d ≥ 2. In d = 2, the phases are fully classified and can always be understood from a topological
quantum field theory and from their content of emergent quasiparticles (anyons) with fractional
statistics. We have seen this at work in the FQHE and the toric code. In presence of additional
symmetries such as charge conservation, fractional quantized response functions (e.g., fractional
Hall conductivity) reflect the fractionalization. In d > 2 other types of intrinsic topological
orders, so-called fracton phases exist, which also have topologically degenerate ground states
but no quasiparticle picture can (fully) describe them.
It is important to realize that all intrinsic topological orders are not adiabatically connectable
to a trivial phase, even if no symmetries are imposed. (Symmetries only offer a refinement of the
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classification of intrinsic topological order phases among themselves.) This is in stark contrast
to the SPTs: With the exception of the Hall effect type phases, all of them are adiabatically
connected to a trivial phase if no symmetries are imposed.
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