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Abstract

We study the isotropic one dimensional Heisenberg spin chain, focusing on
its integrability. As a starting point we motivate the Heisenberg Hamiltonian.
The main objective of the report is demonstrating the model’s integrability.
This is accomplished by constructing a family of commuting operators in which
the Hamiltonian is contained. In order to provide some motivation for the con-
struction employed, we briefly review Liouville integrability of classical systems
and its Lax pair formalism.
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1 The Heisenberg model

This report is based on the presentation about Classical Integrability and the Heisen-
berg Spin Chain, given in the Spring Semester of 2018 at ETH Zürich as part of the
Proseminar in Algebra, Topology, and Group Theory in Physics.
The Heisenberg model of an isotropic one dimensional spin chain describes a chain
of N-electron sites. Consequently, the Hilbert space H consists of the tensor product
space of all individual quantum spin spaces, where we identify each quantum spin
space with C2.

H = C2 ⊗ ...⊗ C2

The Hamiltonian is given by the sum of all nearest neighbour interactions,

H = −J
N∑
i=1

(
Si · Si+1 −

1

4
I
)
.

The Heisenberg model is a simple model which gives insight to ferromagnetic and
anti-ferromagnetic properties of materials. The structure of the Heisenberg model
will be motivated by taking a look at the exchange interaction occurring for identical
particles. An important aspect is that it is an integrable model, which allows for
a solution even in the thermodynamical limit of N → ∞. Rather than discussing
explicit results, we focus on the integrability of the Heisenberg model. In section 2.1
the notion of Liouville integrability is first introduced in its classical understanding.
By looking at the special case of Lax pairs we will motivate the mathematical steps
needed in order to show that the Heisenberg model is integrable. In section 3 the
integrability of the Heisenberg model is explicitly shown. Applying the Lax operator
formalism we will construct a monodromy matrix and extract a family of N − 1
commuting operators. By showing that the Hamiltonian itself is part of this family
we show that the N − 1 operators are also conserved. In order to fulfil the criteria
of integrability we will enlarge the N − 1 operators to a family of N commuting and
conserved operators by adding one component of the total spin.

1.1 Motivation of the Heisenberg model

We motivate this section by following the thesis Heisenberg Model, Bethe Ansatz and
Random Walks by Lenhard L. Ng [3].

We consider a one dimensional crystal consisting of N identical atoms. Each atom
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has, apart from closed shells, only one conduction electron. In general this is a com-
plicated many-body structure. There is an internal structure of each atom within
the closed shells and there are interactions between all electrons.
Our goal is to approximate this complicated system via a simpler spin-spin interac-
tion. This is done by only focusing on the single conduction electron of each atom.
We lose all information about the internal structure of each atom, but keep the part
that is relevant for the description of (anti-) ferromagnetism.

1.1.1 Exchange interaction

We start of by looking at the exchange interaction. It is important to note that
the exchange interaction only occurs between identical particles. As an example we
consider a two particle system. Since both particles are identical we can write the
total wave function of the system in a symmetric and antisymmetric way,

ΨS(~r1, ~r2) =
1√
2

[φ1(~r1)φ2(~r2) + φ2(~r1)φ1(~r2)],

ΨA(~r1, ~r2) =
1√
2

[φ1(~r1)φ2(~r2)− φ2(~r1)φ1(~r2)].

Here φi(·) denotes the single particle wave function and the symmetry refers to the
exchange of particle labels e.g. identifying particle 1 with particle 2 and vis versa.

The symmetry of the wave function in position space has an effect on the expectation
value of the Hamiltonian,

ES =< ΨS|H|ΨS >=

∫∫
Ψ∗S(~r1, ~r2) Ĥ ΨS(~r1, ~r2) d3r1d

3r2 ,

EA =< ΨA|H|ΨA >=

∫∫
Ψ∗A(~r1, ~r2) Ĥ ΨA(~r1, ~r2) d3r1d

3r2 .

By explicitly plugging in the expressions for ΨS(~r1, ~r2) and ΨA(~r1, ~r2) we can compute
the difference of the two expectation values,

ES − EA = 2 < φ1(~r1)φ2(~r2)|Ĥ|φ2(~r1)φ1(~r2) > . (1)

The energy thus depends on the symmetry of the total wave function and the differ-
ence in energy is proportional to the exchange interaction

Jij =< φi(~ri)φj(~rj)|Ĥ|φj(~ri)φi(~rj) > . (2)

4



The next step is to approximate the complicated Hamiltonian acting on position
space as an effective Hamiltonian acting only on spin space. This can be done by
only considering the single conduction electrons of each atom. Due to the Pauli
exclusion principle they will determine the symmetry of the wave function.

1.1.2 Two electron system

In a system made up of two electrons each electron has a position in R3 and a spin in
hj ∼= C2. So the Hilbert space of the total system is given by the tensor product of
a space component and a spin component. This means that the total wave function
of the system can be written as the tensor product Ψspace ⊗Ψspin.
The Pauli exclusion principle states that the total wave function of a system con-
sisting of electrons must be antisymmetric. Therefore the symmetry of the spin
component of the wave function determines the symmetry of the space component of
the wave function, which in turn determines the energy of our effective Hamiltonian.
The symmetry of Ψspin is determined by the expectation value of S1 · S2. This is
shown by writing down all symmetric and antisymmetric spin wave functions.

ΨS
spin ∼ | ↑↑〉 ; | ↓↓〉 ; | ↑↓〉+ | ↓↑〉

ΨA
spin ∼ | ↑↓〉 − | ↓↑〉

By rewriting the operator S1 · S2 = 1/2(S+
1 S
−
2 + S−1 S

+
2 ) + Sz1S

z
2 , we find that both

the symmetric spin wave functions and the antisymmetric spin wave function are
eigenvectors of the operator S1 · S2 but with different eigenvalues.

ΨS
spin eigenvector of S1 · S2 with eigenvalue

~2

4
,

ΨA
spin eigenvector of S1 · S2 with eigenvalue − 3~2

4
.

We can thus indeed differentiate between symmetric and antisymmetric spin wave
functions via the operator S1 · S2.
Now we can explicitly construct an effective Hamiltonian acting on the spin space
which will formally be equivalent to the Hamiltonian acting on position space,

Hspin = −2J12S1 · S2 −
1

2
I. (3)

The formal equivalence to Hspace comes from the fact that when we act with Hspin

on one of our spin wave functions we find

Hspin ΨS
spin = E

′

AΨS
spin , Hspin ΨA

spin = E
′

SΨA
spin ,
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which is equivalent up to a constant shift to the energy we find when acting with
Hspace on the position wave function with the opposite symmetry to the spin wave
function. This Hamiltonian can be generalised to N-electrons by taking the sum of
two-particle interactions.

1.1.3 Heisenberg Hamiltonian

The exchange interaction is proportional to the overlap of the two single wave func-
tions of the involved electrons. This means that the further apart two electrons are,
the smaller is the exchange interaction. Since this falloff is very rapid and we are
considering a crystal with localised electrons, we can make the further approximation
that only nearest neighbours interact

Jij =

{
J, i,j nearest neighbor
0, else.

Therefore the Heisenberg Hamiltonian for an isotropic one dimensional spin chain
with N sites is given by summing over all nearest neighbour sites.

H = −J
N∑
i=1

(
Si · Si+1 −

1

4
I
)
. (4)

Here the periodic boundary condition SN+1 = S1 is implied.

2 Classical integrability

As a preparation for the Heisenberg spin chain, we discuss integrability in classical
systems. This section is adapted from the book Introduction to Classical Integrable
Systems by O. Babelon, D. Bernard and M. Talon [4].

In the context of classical mechanics, only a few exact solutions of Newton’s equations
of motion are known. A famous example is the Kepler problem which was solved by
Newton himself.
In the nineteenth century, Liouville provided a general procedure to determine if the
equations of motion of a given system are “solvable by quadratures”. This is known
as Liouville integrability.
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2.1 Liouville integrability

In classical mechanics, the Hamiltonian of a system is a function on the phase space
H(pi, qi), where qi denotes the position coordinate on the phase space and pi denotes
the momentum. The equations of motion for a system are given by a first order
differential system,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (5)

where the dot refers to the time derivative. This implies that the time derivative of
any function on the phase space F (p, q) can be obtained by

Ḟ = {H,F}, (6)

where the Poisson bracket of two functions F and G is defined as

{F,G} ≡
∑
i

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
. (7)

The Poisson bracket for the phase space coordinates pi and qi are given by

{qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δij. (8)

In some cases, eqs. (5) can be solved exactly for a given dynamical system. These
dynamical systems are called Liouville integrable systems.

Definition. A dynamical system on a phase space of dimension 2n is Liouville inte-
grable if one can find n independent functions Fi on the phase space such that

H = F1, {Fi, Fj} = 0.

The solution of the equation of motion of a Liouville integrable system can be ob-
tained by “quadratures”, i.e. the solution can be expressed in terms of integrals.

2.2 Lax pair

For Liouville integrable systems there is a special way of writing the Hamilton evo-
lution equations (5) via a Lax pair,
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dL

dt
≡ L̇ = [M,L] . (9)

Where L and M are two matrices and [M,L] = ML−LM denotes the commutator
of the matrices M and L.

Example 1. In order to get a better understanding of eq. (9) we consider the
harmonic oscillator. Because this system is one dimensional, its integrability in
the Liouville sense is trivial. The conserved quantity is given by the Hamiltonian,
H = 1

2
(p2 + ω2q2) . By applying eqs. (5) we find the equations of motion q̇ = p and

ṗ = −ω2p. These can be described by the Lax pair

L =

(
p ωq
ωq −p

)
, M =

(
0 −ω/2
ω/2 0

)
. (10)

Applying eq. (9) we find

L̇ =

(
ṗ ωq̇
ωq̇ −ṗ

)
=

(
−ω2q ωp
ωp ω2q

)
= [M,L]. (11)

By comparing the entries of the two matrices in eq. (11) the equivalence to the
equations of motion is shown.

The existence of a Lax pair allows for an easy construction of conserved quantities.

Proposition All quantities On ≡ Tr (Ln) given by the trace of integer powers of the
Lax matrix are conserved,

d

dt
On = 0 . (12)

Proof. The proposition can be shown easily by explicitly computing the time deriva-
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tive Ȯn and using the cyclic property of the trace,

d

dt
On = Tr

(
d

dt
Ln
)

=
n−1∑
i=0

Tr
(
LiL̇Ln−i−1

)
(9)
=

n−1∑
i=0

Tr
(
Li [M,L]Ln−i−1

)
=

n−1∑
i=0

[
Tr(LiMLn−1)− Tr(Li+1MLn−i−1)

] cyc.
= 0 .

Example 2. In the case of the harmonic oscillator we can demonstrate how to find
the one conserved quantity of the system, the Hamiltonian, by applying eq. (12). By
direct calculation we find

L2 =

(
p2 + ω2q2 0

0 p2 + ω2q2

)
.

Therefore the Hamiltonian can be written as H = 1
4
Tr (L2). We further remark,

that only the trace of some integer powers of the Lax matrix yield interesting re-
sults. Looking back at the harmonic oscillator we find that Tr(L2n+1) = 0 which
is a trivially conserved quantity and 1

4
Tr(L2n) = Hn which does not provide new

conserved quantities.

Since the harmonic oscillator is a one dimensional system and hence only possesses a
single conserved quantity, the Poisson commutation stated in Liouville integrability
is a trivial consequence. However in a more general case we must further show that
the quantities On indeed Poisson commute.
A convenient way of writing a matrix of all the Poisson-brackets between the elements
of the Lax matrix is via the tensor product,

{L1, L2} ≡
∑
ij,kl

{Lij, Lkl}Eij ⊗ Ekl

Proposition The Poisson commutation of the conserved quantities On is fulfilled if
we can find a matrix r12 such that {L1, L2} takes the special form of

{L1, L2} = [r12, L1]− [r21, L2]. (13)

Where r21 is given by the permutation of r12,

r12 =
∑
ij,kl

rij,klEij ⊗ Ekl and r21 =
∑
ij,kl

rij,klEkl ⊗ Eij .
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We prove the case where given eq. (13) the conserved quantities On will indeed
Poisson commute.
First we notice the following identity of the Poisson bracket:

{AB,C} = A{B,C}+ {A,C}B

By making use of this identity multiple times, we can rewrite {Ln1 , Lm2 } in the fol-
lowing way

{Ln1 , Lm2 } = Ln−11 Lm−12 {L1, L2}+ Ln−11 Lm−22 {L1, L2}L2 + ...+ Ln−11 {L1, L2}Lm−12

+ Ln−21 Lm−12 {L1, L2}L1 + ...+ {L1, L2}Ln−11 Lm−12

=
n−1∑
p=0

m−1∑
q=0

Ln−p−11 Lm−q−12 {L1, L2}Lp1L
q
2

By applying eq. (13) and using L1L2 = L2L1 we can write this in the more compact
form

{Ln1 , Lm2 } = [an,m12 , L1]− [bn,m12 , L2] (14)

with

an,m12 =
n−1∑
p=0

m−1∑
q=0

Ln−p−11 Lm−q−12 r12L
p
1L

q
2

bn,m12 =
n−1∑
p=0

m−1∑
q=0

Ln−p−11 Lm−q−12 r21L
p
1L

q
2

By taking the trace of eq. (14) we find that the lefthand side gives us the Poisson-
bracket of the conserved quantities On and Om and the righthand, being the trace
of a commutator, is zero. Therefore all conserved quantities On do indeed Poisson
commute.

In this section we have seen that for classical systems which can be written in the
special form of a Lax pair, there exists a systematic way of finding conserved quan-
tities by using the Lax matrix as a generating object of the conserved quantities.
The conserved quantities are found by taking the trace of integer powers of the Lax
matrix. Furthermore the Poisson commutation of the Lax matrix is described by a
special r-matrix.
We will find a very similar procedure in the quantum case of the Heisenberg spin
chain. Conserved quantities will be generated by the Lax-operator and the commu-
tation relations of the Lax-operator will be described by a special R-matrix.
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3 Heisenberg spin chain

This section is adapted from the paper How Algebraic Bethe Ansatz works for inte-
grable model by L. D. Faddeev [2].

We recall that the Hilbert space of the isotropic one-dimensional Heisenberg spin
chain is given by the tensor product of the individual quantum spin spaces

HN = h1 ⊗ ...⊗ hN .

The Hamiltonian of this particular system is given by

H =
∑
n

(
Sn · Sn+1 −

1

4
I
)
,

where we assume the periodic boundary condition SN+1 = S1 .
Our aim in this section is to find a family of N commuting operators and to show
that H itself is a part of this family. The computational steps will be closely related
to the steps performed in section 2.2

3.1 Conservation of total spin

If we choose to write the spins of the individual electrons in some orthogonal basis
along an axis, it is not difficult to see that our system is invariant with respect to
rotations around that given axis. This already suggests that the total spin of the
system is conserved,

Sα =
∑
n

Sαn , [H,Sα] = 0.

Proof. First we recall the commutation relations for spin operators and the fact that
operators which do not act on a common site of the Hilbert space commute.

[Sαn , S
β
n ] = i~εαβγSγn, [Sαn , S

β
m] = 0 for n 6= m.

By making use of these commutation relations and Einstein summation convention
we can compute the commutator between H and Sα,

[H,Sα] =
∑
n,m

[SjnS
j
n+1, S

α
m] = i~

∑
n

(
εjαγS

γ
nS

j
n+1 + εjαγS

j
nS

γ
n+1

)︸ ︷︷ ︸
= 0

= 0 .

11



where in the last line we made use of the anti-symmetry of the epsilon tensor.

In order for the system to be integrable we now need to find further N −1 conserved
quantities which all commute. In order to achieve this we take a look at the Lax
operator.

3.2 Lax operator

The generating object in the case of the isotropic one-dimensional spin chain is given
by the Lax operator Ln,a (λ). The Lax operator is an operator which depends on
a complex variable λ called the spectral parameter and acts on states in the tensor
product space hn ⊗ V where the quantum spin space hn is denoted by the subscript
n and the auxiliary space V is denoted by the subscript a. In our case the auxiliary
space V is given by C2. Therefore both the quantum spin space as also the auxiliary
space are given by the same vector space. It is important to note that, in contrast
to the quantum spin space hn, the auxiliary space V has no physical meaning and
is only used temporarily in order to compute the conserved quantities. This is very
similar to the case of the Lax matrix, where only the entries of the Lax matrix
were functions on the phase space. The structure of the matrix corresponded to an
auxiliary space and had no physical meaning.
The explicit form of the Lax operator is given by

Ln,a (λ) = λIn ⊗ Ia + i
∑

α∈{x,y,z}

Sαn ⊗ σαa , (15)

where σαa denotes the Pauli matrices acting in the auxiliary space V .

In similarity to the Lax matrix we can also write the Lax operator in a matrix
notation

Ln,a(λ) =

(
λ+ iS3

n iS−n
iS+

n λ− iS3
n

)
,

where the entries are operators on the quantum spin space hn and the matrix struc-
ture corresponds to the auxiliary space V . Alternatively, we can write the Lax
operator as

Ln,a(λ) = (λ− i

2
)In,a + iPn,a , (16)
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where P is the permutation operator in C2⊗C2. This expression makes sense, since
hn and V are in fact both given by C2. Explicitly the permutation operator is given
in the following form:

P =
1

2
(I⊗ I +

∑
α

σα ⊗ σα),

Pa⊗ b = b⊗ a for a⊗ b ∈ C2 ⊗ C2

(17)

Eq. (16) will be useful when computing the commutation relation for the Lax oper-
ator.

3.3 The RLL relation

In analogy to the classical case of the Lax pair, the commutation relations of the
entries of the Lax operator is needed in order to find commuting operators.
Proposition. The fundamental commutation relation (FCR) of the Lax operator is
given by

Ra1,a2(λ− µ)Ln,a1(λ)Ln,a2(µ) = Ln,a2(µ)Ln,a1(λ)Ra1,a2(λ− µ), (18)

where the explicit form of the R-matrix is given by

Ra1,a2(λ) = λIa1,a2 + iPa1,a2 .

Note that eq. (18) is written in a triple tensor product space hn ⊗ V1 ⊗ V2. The two
different auxiliary spaces V1 and V2 are now denoted by the subscripts a1 and a2.
Furthermore by looking at the explicit expression for the R-matrix and comparing it
with eq. (16) we notice that the R-matrix and the Lax operator are related by

Ln,a (λ) = Rn,a (λ)− i

2
In,a.

Proof. We recall the commutation relation for permutations:

Pn,a1Pn,a2 = Pa1,a2Pn,a1 = Pn,a2Pa2,a1
Pa1,a2 = Pa2,a1

(19)

The commutation relations for permutations can be easily shown by explicitly com-
puting the action on a vector a⊗ b⊗ c in the vector space hn ⊗ V1 ⊗ V2, e.g. :

Pn,a1Pn,a2a⊗ b⊗ c = Pn,a1c⊗ b⊗ a = b⊗ c⊗ a
= Pa1,a2b⊗ a⊗ c = Pa1,a2Pn,a1a⊗ b⊗ c
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Making use of this, proving the RLL relation is reduced to commutation relations of
permutations.

By using eq. (16) we can rewrite eq. (18), where the lefthand side becomes

Ra1,a2(λ− µ)Ln,a1(λ)Ln,a2(µ) = [(λ− µ)I + iPa1,a2 ][(λ− i
2
)I + iPn,a1 ]

· [(µ− i
2
)I + iPn,a2 ].

The righthand side can be written analogously. We can now explicitly expand the
FCR on both sides. For the left-hand side, this gives

Ra1,a2(λ− µ)Ln,a1(λ)Ln,a2(µ) = (λ− µ)(λ− i
2
)(µ− i

2
)I + i(λ− µ)(λ− i

2
)Pn,a2

+ i(λ− µ)(µ− i
2
)Pn,a1 + i(λ− i

2
)(µ− i

2
)Pa1,a2

+ i2(λ− µ)Pn,a1Pn,a2 + i2(λ− i
2
)Pa1,a2Pn,a2

+ i2(µ− i
2
)Pa1,a2Pn,a1 + i3Pa1,a2Pn,a1Pn,a2

The first four terms appear in both expansions of the lhs and the rhs of eq. (18).
Concentrating on the last four terms of the expansion we notice that

Pn,a1Pn,a2 = Pa1,a2Pn,a1 and Pa1,a2Pn,a1Pn,a2 = Pn,a2Pn,a1Pa1,a2 .

The zero order term in the spectral parameters of the lhs expansion directly trans-
forms into the zero order spectral parameter term of the rhs expansion. In order
to transform the remaining terms of order one in the spectral parameters we first
contract both terms containing Pa1,a2Pn,a1 ,

i2(λ− µ)Pn,a1Pn,a2︸ ︷︷ ︸
Pa1,a2Pn,a1

+i2(λ− i
2
)Pa1,a2Pn,a2 + i2(µ− i

2
)Pa1,a2Pn,a1 =

i2(λ− i
2
)Pa1,a2Pn,a1 + i2(λ− i

2
)Pa1,a2Pn,a2

We rewrite the last term of the rhs by adding and subtracting µ such that in total
we again have three terms of order one in the spectral parameters,

i2(λ− i
2
)Pa1,a2Pn,a2 = i2(λ− µ)Pa1,a2Pn,a2 + i2(µ− i

2
)Pa1,a2Pn,a2 .

As a last step we make use of the commutation relation for permutations

Pa1,a2Pn,a2 = Pn,a2Pn,a1 = Pn,a1Pa1,a2 .
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Therefore the terms in the lhs expansion of order one in the spectral parameters can
be rewritten as

i2(λ− i
2
)Pa1,a2Pn,a1 + i2(λ− µ)Pn,a2Pn,a1 + i2(µ− i

2
)Pn,a1Pa1,a2 ,

which correspond to the order one spectral parameter terms of the rhs expansion in
eq. (18). Having shown the RLL relation, we can now make use of the Lax operator
in order to construct the monodromy matrix TN,a(λ) which will act on the whole
Hilbert space.

3.4 Monodromy matrix and the RTT relation

The monodromy matrix TN,a(λ) is constructed by taking the ordered product of the
Lax operator acting on every quantum spin space.

TN,a(λ) = LN,a(λ)LN−1,a(λ)...L1,a(λ) (20)

The name monodromy matrix is motivated by the geometric interpretation of the Lax
operator as a connection along the spin chain. Ln,a(λ) defines the transport between
sites n and n + 1. Therefore by making use of the periodic boundary conditions we
can see that the full product in TN,a(λ) is a monodromy around our spin chain circle.
The monodromy matrix fulfils the same commutation relation as the Lax operator.
This commutation relation is also often referred to as the RTT relation,

Ra1,a2(λ− µ)TN,a1(λ)TN,a2(µ) = TN,a2(µ)TN,a1(λ)Ra1,a2(λ− µ) (21)

Proof. In order to show the RTT relation, we recall that two operators which only
act non-trivially on different subspaces commute. Therefore we have the following
commutation relation:

[Ln,a1(λ), Lm,a2(µ)] = 0 for n 6= m . (22)

Making use of eq. (22) it becomes clear that we can rewrite the product TN,a1(λ)TN,a2(µ)
as

TN,a1(λ)TN,a2(µ) = LN,a1(λ)LN−1,a1(λ)...L1,a1(λ)LN,a2(µ)LN−1,a2(µ)...L1,a2(µ)

(22)
= LN,a1(λ)LN,a2(µ)LN−1,a1(λ)LN−1,a2(µ)...L1,a1(λ)L1,a2(µ)
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With TN,a1(λ)TN,a2(µ) written in this form, proving eq. (21) is achieved by applying
the RLL relation to every pair Ln,a1(λ)Ln,a2(µ).
We see that the local commutation relation for the Lax operator can be extended to
a global commutation relation for the monodromy matrix.

We now make use of the RTT relation in order to show that the operators which can
be extracted from the monodromy matrix commute.

3.5 Extracting commuting operators

In order to remove the non-physical auxiliary space, we take the partial trace of the
monodromy matrix TN,a(λ) over the auxiliary space V.

Definition. Consider at an operator Aab =
∑

Aij,klEij ⊗ E
′

kl defined in the tensor

space Va ⊗ Vb. The partial trace of Aab over the space Va is then given by

Tra (Aab) =
∑
ij,kl

Aij,klTr(Eij)E
′

kl.

If we write an operator as the tensor product of two matrices O = A ⊗ B where
A ∈ Va and B ∈ Vb we find that Tra(O) = Tr(A)B is a matrix in Vb, therefore
eliminating the space Va.

We now find that by taking the trace of the monodromy matrix over the auxiliary
space V , we end up with a family of operators which purely act on the whole Hilbert
space H,

t(λ) = Tra(TN,a(λ)).

These operators indeed commute,

[t(λ), t(µ)] = 0.

Proof. The commutation of the two families of operators can be shown by using the
RTT relation. By inverting the R-matrix we can write

TN,a1(λ)TN,a2(µ) = R−1a1,a2(λ− µ)TN,a2(µ)TN,a1(λ)Ra1,a2(λ− µ).
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Because the two monodromy matrices act on different auxiliary spaces, we can take
the trace over V1 and V2 separately,

Tra1 (TN,a1(λ))Tra2 (TN,a2(µ)) = Tra1,a2
(
R−1a1,a2(λ− µ)TN,a2(µ)TN,a1(λ)Ra1,a2(λ− µ)

)
cyc.
= Tra2 (TN,a2(µ))Tra1 (TN,a1(λ)) ,

where in the last line we again used the cyclic property of the trace.
For the sake of completeness we must also show the existence of R−1a1,a2(λ). This can
be easily computed. For λ 6= ±i we find

R−1a1,a2(λ) =
1

λ2 + 1
(λIa1,a2 − iPa1,a2) .

It is important to note that for the points λ = ±i the inverse of Ra1,a2(λ) is not
defined. However, since t(λ)t(µ) is a polynomial in λ and µ we can argue that the
commutation of t(λ) and t(µ) still holds for λ = ±i via continuity.

In order to be able to extract the commuting operators, we note that the monodromy
matrix is a polynomial in λ of degree N . This can be seen by explicitly expanding
the individual Lax operators.

TN,a = (λIN ⊗ Ia + i
∑
α

SαN ⊗ σαa )...(λI1 ⊗ Ia + i
∑
α

Sα1 ⊗ σαa )

The highest order term λN is proportional to the identity. The second highest term
λN−1 is proportional to

∑
Sαn ⊗ σαa . All lower order terms contain product of the

terms (Sαi ⊗ σαa )(Sαj ⊗ σαa ).
Therefore by taking the trace of the monodromy matrix over the auxiliary space, we
get

t(λ) = 2λN +
N−2∑
n=0

Qnλ
n.

The second highest order term vanishes since the Pauli matrices are traceless. We
see that the monodromy matrix generates a family of N − 1 commuting operators
Qn.

3.6 Conservation of commuting operators

In this section our goal is to show that the N − 1 commuting operators Qn we
obtained are indeed conserved. One way of proving this statement is to show that
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the Hamiltonian H is part of the Qn. In order to show that the Hamiltonian H
belongs to the family of Qn, we must take a second look at the Lax operator and
determine some special points. By looking at eq. (16) we can see that λ = i/2 is
a special point, since the Lax operator becomes proportional to the permutation
operator Ln,a(i/2) = iPn,a. Furthermore, the derivative of the Lax operator with
respect to λ is equal to the identity, d

dλ
Ln,a(λ) = In,a. Lastly by looking at eq. (17)

and remembering that the Pauli matrices are traceless, we see that taking the trace of
a permutation operator over the auxiliary space yields the identity Tra(PN,a) = IN .
Therefore we can now compute the monodromy matrix for λ = i/2

Tn,a(i/2) = iNPN,aPN−1,a...P1,a
(19)
= iNP1,2P2,3...PN−1,NPN,a.

In the last line we made use of the commutation relations for permutations in order
to rewrite the monodromy matrix in such a way that only the last transposition acts
on the auxiliary space, which simplifies taking the trace of the monodromy matrix
over V and yields the following expression

tN(i/2) = iNP1,2P2,3...PN−1,N .

Making use of the fact that consecutively performing the same transposition twice
is equal to the identity, we find the inverse of tN(i/2) to be given by

t−1N (i/2) = i−NPN,N−1PN−1,N−2...P2,1.

We are now in a position to show that the Hamiltonian H belongs to the family of
Qn. First, we compute the derivative of the monodromy matrix with respect to λ
and evaluate the expression at the special point λ = i/2.

d

dλ
TN,a(λ)

∣∣∣∣
λ=i/2

= iN−1
∑
n

PN,a...Pn+1,aPn−1,a...P1,a

(19)
= iN−1

∑
n

P1,2...Pn−1,n+1...PN−1,NPN,a

After taking the trace of the resulting expression over the auxiliary space V , we can
multiply with t−1N (i/2) in order to simplify the result,[

d

dλ
tN(λ)

]
t−1N (λ)

∣∣∣∣
λ=i/2

=
1

i

∑
n

Pn,n+1
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By recalling eq. (17) we see that we can write

H =
1

2

∑
n

Pn,n+1 −
N

2
.

Therefore the Hamiltonian is given by

H =
i

2

d

dλ
ln(tN(λ))

∣∣∣∣
λ=i/2

− N

2
. (23)

This shows that all Qn do not only commute, but are also conserved operators. By
adding e.g. the z-component Sz of the total spin we can enlarge the family to N
commuting operators which coincides with the degrees of freedom of the system.
This shows that the Heisenberg spin chain is indeed an integrable system.

4 Conclusion

This report mainly explained the basics of the Heisenberg spin chain. The methods
of the Lax operator, the monodromy matrix and the auxiliary space used to construct
the conserved operators, are very important tools. The same holds for the mathe-
matical methods used when calculating the RLL and RTT relations. Therefore the
focus of this report was set on familiarising the objects and methods used, laying the
fundamentals in order to understand the other two topics presented, namely “Co-
ordinate Bethe Ansatz for Heisenberg Spin Chain” and especially “Algebraic Bethe
Ansatz for Heisenberg Spin Chain”, for which the understanding of the Lax operator
and the monodromy matrix are a prerequisite. Therefore I would like to refer to the
reports of the two mentioned topics for further reading.
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