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1 Introduction

During the course of this paper I will try to give an overview of what supersymmetry (SUSY) is and how to work with the
mathematical structures that it contains. The next two chapters will introduce the necessary mathematical tools, which we
require for chapters four through six. Some sections, such as 3.3, 3.4, and 3.6 are not necessary to understand later chapters,
but give further insight into the physical interpretation of these mathematical constructs and introduce some notation that
will be used afterwards.
This chapter is based on [1] and [2]. Without going too much into detail, I will give a short introduction as to what SUSY is.
Up until the 1960s, attempts were made to combine all known symmetries into a single group. It wasn’t until Coleman and
Mandula released their famous ”no-go” theorem, that it was realized all such efforts would be in vain. This theorem states
that the most general bosonic symmetry can be written as a direct product of the Poincare group and internal symmetries
[1], i.e.

G = GPoincare ×GInternal . (1)

However, the Coleman-Mandula theorem has a loophole. In 1975, Haag, Lopuskanski, and Sohnius managed to extend
the theorem to include fermionic symmetry generators, which are given by the letter Q, that map bosons to fermions and
vice-versa. As a result, it turns out that the most general symmetry group can be written as the direct product of the
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super-Poincare group, which is given by the Poincare generators and the fermionic generators Q, and internal symmetries
[1]. We therefore get that

G = Gsuper−Poincare ×GInternal . (2)

Let’s look at transformation properties of Q. If we apply a unitary operator U that represents a full rotation of 360◦, we get
that

UQ|boson〉 = UQU−1U|boson〉 = U|fermion〉 (3)

UQ|fermion〉 = UQU−1U|fermion〉 = U|boson〉 . (4)

We also know that under a 360◦ rotation, the two states transform as

U |fermion〉 = −|fermion〉 (5)

U |boson〉 = |boson〉 . (6)

Since the sum of all fermionic and bosonic states form the basis of our Hilbert space, we get that

UQU−1 = −Q , (7)

which transforms exactly like a fermionic state [2]. During the course of chapter 4 we will calculate the anticommutator
{Q,Q†} = QQ† + Q†Q. It should be noted that while the Qs will not be unitary in general, {Q,Q†} is. In addition, the
anticommutator will have positive eigenvalues, since

〈...|QQ†|...〉+ 〈...|Q†Q|...〉 = |Q†|...〉|2 + |Q|...〉|2 ≥ 0 . (8)

A further analysis will show that this anticommutator can be written as a linear combination of the energy and momentum
operators

{Q,Q†} = αE +
#»

β
#»

P . (9)

In addition, the sum over all the Qs is proportional to the energy operator, as all other terms will cancel out∑
all Q

{Q,Q†} ∝ E . (10)

Since the left-hand-side is positive, the energy spectrum can either be only positive or negative. If, for physical reasons, we
require energies bounded from below, the proportionality factor is positive. This would then require our energy values to be
non-negative.
In chapters 4 and 6, we will analyze the representations of the super-Poincare group, which correspond to families of particles.
Since any supersymmetry transformation will turn a particle into something else, these families will always contain more
than one particle [2]. This tells us that all families, which are also called supermulitplets, must contain at least one boson
and one fermion.
Before we start with section 2, there is one more thing I would like to mention that will not be discussed in later chapters. As
we will see, our Qs will commute with the energy and momentum operators. This in turn, means that Q changes neither the
energy nor the momentum of the particle and therefore all states in the supermultiplet must have the same mass. However,
we do not see this in nature, which tells us that either supersymmetry isn’t fundamental to nature or there is spontaneously
broken symmetry, which means that our ground state will not be invariant under SUSY transformations. Spontaneously
broken symmetry would lift this mass degeneracy [2].

2 Lorentz and Poincare Groups and their Algebras

This chapter is based on [3] and [4].

2.1 Lorentz Group

The Lorentz group O(1, 3) is given by all linear transformations in R4 that conserve the Minkowski metric. In other words,

O(1, 3) = {A ∈ GL(4,R)|(Ax,Ax) = (x, x),∀x ∈ R4} , (11)

where (x, y) = x0y0−x1y1−x2y2−x3y3 and x, y ∈ R4. If we write A, where A ∈ O(1, 3), as a matrix, this can be interpreted
as follows:

AT gA = g,where g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (12)
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While these matrices have a great many number of properties, we are only interested in a handful of them. In the following,
I will make certain claims and prove them as well [3].
Claim 1: det(A) = ±1
Proof:

det(AT gA) = det(AT )det(g)det(A) = det(g) , (13)

which implies that det(A) = ±1.
Claim 2: (A00)2 ≥ 1
Proof:

AT gA = g , (14)

where A = (Aij) implies that ∑
k,l

AikgklAjl = gij . (15)

For i = j = 0, we now have ∑
k,l

A0kgklA0l = g00 . (16)

We also know that gkl = 0 for k 6= l. This relationship therefore allows us to remove one of the indices, which gives us

A2
00 −A2

01 −A2
02 −A2

03 = 1 . (17)

Since all entries of A are real, their squares must be greater than or equal to zero. This, in turn, proves that A2
00 ≥ 1.

We will use these two claims to split O(1, 3) into four classes. But before that, we will examine some elements of the Lorentz
group [3].
Orthogonal Transformations in R3: 

1 0 0 0
0
0 R
0

 (18)

where R ∈ O(3) is an orthogonal transformation. These matrices form a subroup.
Lorentz Boosts:

L(χ) =


cosh(χ) 0 0 sinh(χ)

0 1 0 0
0 0 1 0

sinh(χ) 0 0 cosh(χ)

 (19)

This matrix represents a Lorentz boost in the z-direction with rapidity χ ∈ R. Lorentz boosts in the x- or y-direction can be
constructed analogously. These matrices are used in special relativity to change from one inertial system to another. One of
their more important properties is that L(χ1)L(χ2) = L(χ1 + χ2).
Space Inversion:

P =


1
−1

−1
−1

 (20)

Time Inversion:

T =


−1

1
1

1

 (21)

These two discrete Lorentz transformations, along with 1 and PT , generate an Abelian group of order 4.
We will now define two additional subgroups of O(1,3), of which the latter will help us create the four classes.

O+(1, 3) = {A ∈ O(1, 3)|A00 ≥ 1} (22)

SO+(1, 3) = {A ∈ O+(1, 3)|det(A) = 1} (23)
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In the last paragraph I have ever so slightly made a proposition, but have not proven it. I have namely stated that both
of these sets are subgroups, which beforehand does not necessarily have to be true. The following two proofs will do just
that[3].
Claim 3: O+(1, 3) is a subgroup of O(1, 3). More specifically, it is the set of Lorentz transformations that maps the vectors
inside the future light cone(Z+) to vectors inside the future light cone(Z+).
Proof:
We will prove the second statement first. Let A ∈ O+(1, 3). If x ∈ Z+ then Ax must lie within the light cone, since
0 ≤ (x, x) = (Ax,Ax). We must now show that Ax indeed lies in the future light cone, i.e. (Ax)0 > 0. We will now introduce

the following notation:
#  »

A0 = (A01, A02, A03) and #»x = (x1, x2, x3). The 0-component of Ax will then be:

x′0 = A00x
0 +

#  »

A0 · #»x (24)

Now since (a, a) = 1, where a is the first row of A(this will not be proven, but can easily be shown by checking that AT

is a Lorentz transformation and then using definition (12)), a must lie within the light cone. This, in turn, implies that

| #  »

A0| < A00. By using this, and the fact that | #»x | < x0, we obtain the following relation:

x′0 ≥ A00x
0 − | #  »

A0|| #»x | > 0 (25)

We have thus shown that Ax ∈ Z+. All that remains to be proven for the second part of the proposition is that Lorentz
transformations A, which map Z+ to Z+, are elements of O+(1, 3). This transformation must map (1, 0, 0, 0)T onto a vector
in Z+, i.e. the 0-component must be positive. This, in turn, means that A00 > 0.
Having finally proven the second part, all that is left to show is that O+(1, 3) is a subgroup. It is clear that a product of
transformations from Z+ to Z+ must once again be a mapping from Z+ to Z+. We must now only prove that if A ∈ O+(1, 3),
so must also be A−1 ∈ O+(1, 3).
Since A(−x) = −Ax, A maps the set Z− = −Z+ onto itself. Given that A ∈ O(1, 3), it maps Z = Z− ∪ Z+ bijectively onto
itself. It thusly follows that A−1 ∈ O+(1, 3)[3].
Claim 4: SO+(1, 3) is a subgroup of O(1, 3).
Proof:
Since SO+(1, 3) is in fact a subset of O+(1, 3), we actually only need to prove that SO+(1, 3) is a subgroup of O+(1, 3). Once
again, we must show that the product of two elements, as well as the inverse, still lies in SO+(1, 3). Our previous claim tells
us that if A,B ∈ SO+(1, 3), then AB ∈ O+(1, 3). We must now only show that det(AB) = 1.

det(AB) = det(A)det(B) = 1 · 1 = 1 (26)

To show that A−1 ∈ SO+(1, 3), we can once again take advantage of our previous claim. We know that A−1 ∈ O+(1, 3), but
we still must calculate its determinant.

AA−1 = 1⇒ det(AA−1) = 1⇒ det(A−1) = det(A)−1 = 1 (27)

Finally, we can categorize the Lorentz group into four classes[3].
Claim 5: Every Lorentz transformation lies in exactly one of the following classes: SO+(1, 3), {PX|X ∈ SO+(1, 3)}, {TX|X ∈
SO+(1, 3)}, {PTX|X ∈ SO+(1, 3)}
Proof:
Claims 1 & 2 already show that the determinant must either be 1 or −1 and |A00| ≥ 1. This already gives us the four
classes[3]. If X ∈ SO+(1, 3), then

det = 1 det = −1
A00 ≥ 1 X PX
A00 ≤ −1 PTX TX

2.2 Lie Algebra

Definition:
A one-parameter group is a mapping R → GL(n,K), t 7→ X(t), K = R or C, if it is continuously differentiable, X(0) = 1,
and ∀t, s ∈ R X(s+ t) = X(s)X(t).
Claim 6: ∀X ∈Mat(n,K), t 7→ exp(tX) is a one-parameter group.
Proof:
We know that tXsX = sXtX, which then leads to exp(tX)exp(sX) = exp(tX + sX). exp(tX) is clearly continuously
differentiable since d

dxexp(tX) = exp(tX)X. For t = 0, we get the identity.
Definition:
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If a one-parameter group is given by t 7→ exp(tX), then X is called the (infinitessimal) generator.
Claim 7: All one-parameter groups are given by t 7→ exp(tX).
Proof:
We know that if t 7→ X(t) is a one-parameter group, X(t) must then satisfy the following differential equation:

d

dx
exp(tX) = lim

h→0

X(t+ h)−X(t)

h
= lim
h→0

X(t)X(h)−X(t)

h
(28)

= X(t) lim
h→0

X(h)− 1)

h
= X(t) ˙X(0), (29)

where X(0) = 1. Due to the uniqueness of the solution, it follows that:

X(t) = exp(tX(0)) (30)

Definition:
A (Matrix-)Lie-group is a closed subgroup (i.e. for all convergent series Xj in GL(n,K), Xj ∈ G ∀j ⇒ limj→∞Xj ∈ G) of
GL(n,K).
We can then also define

Lie(G) = {X ∈Mat(n,K)| exp(tX) ∈ G ∀t ∈ R}. (31)

Lie(G) is called the Lie-algebra of the Lie-group G.
Definition:
The commutator of X and Y ∈Mat(n,K) is given by:

[X,Y ] = XY − Y X (32)

The commutator will then have the following properties:

(i) [λX + µY,Z] = λ[X,Z] + µ[Y,Z], where λ, µ ∈ K (33)

(ii) [X,Y ] = −[Y,X] (34)

(iii) [[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0 (35)

Definition:
A real or complex vector space g, equipped with a ”Lie-bracket” [ , ] : g × g → g, which exhibits the properties (i)-(iii), is
called a (real or complex) Lie-algebra.
This means, for example, that Lie(G) has the structure of a real Lie-algebra.

2.3 Lorentz Algebra

For the rest of the chapter we will be using the Einstein summation convention. Having finally discussed the Lorentz group,
as well as Lie algebrae, we can finally construct the Lorentz algebra. Since all elements of the Lorentz algebra can generate
a one-parameter group that is connected to the identity, we expect that only the connected space that contains the unity
to play a role. This means that only SO+(1, 3) is of importance to us. Since it can be shown (we will not prove this) that
SO+(1, 3) only contains rotations, as well as boosts, we should expect six generators that will span the algebra[4]. The
previous chapter implies that each A ∈ SO+(1, 3) that is close to the identity can be written as:

A = 1 + ωρσJ
ρσ + ... , (36)

where the ωρσ are real parameters and Jρσ are the generators. In quantum mechanics however, there is a different preferred
notation, which does not change the theory, but creates Hermitian generators.

A = 1+
i

2
ωρσJ

ρσ + ... . (37)

We will use equation (37) from now on. We will now define transformations close to the identity with the help of ωρσ and
then use this to find our generators.

Λµν = δµν + ωµν (38)

By applying the definition of elements in the Lorentz group, we get

ηρσ = ηµν(δµρ + ωµρ)(δ
ν
σ + ωνσ]) (39)

= ησρ + ωσρ + ωρσ +O(ω2) . (40)
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By only keeping the linear terms, we see that this is simply an anti-symmetry condition for ωµν [4].

ωµν = −ωνµ (41)

Since µ, ν = 0, ..., 3, the anti-symmetry tells us that there are only six independent components, which is what we were
expecting. We can now find the six generators that go along with these six components. Since ωρσ is anti-symmetric, we can
choose Jρσ to be anti-symmetric as well. By comparing (37) to (38), we get that

1 ω01 ω02 ω03

−ω01 1 ω12 ω13

−ω02 −ω12 1 ω23

−ω03 −ω13 −ω23 1

 = 1+
i

2
ωρσJ

ρσ . (42)

This tells us that

J01 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 J02 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 J03 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0



J12 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 J23 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 J31 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 .

Now that we have the generators, we can find the commutation relations.

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ (43)

We can turn this complicated relation into three simpler commutation relations by separating the generators into rotation
and boost generators. We will group the three rotation generators in the angular-momentum three-vector[4]

J = {J23, J31, J12} (44)

and the boost generators in the ”boost” three-vector

K = {J01, J02, J03} . (45)

As a result, we now get

[Ji, Jj ] = iεijkJk (46)

[Ji,Kj ] = iεijkKk (47)

[Ki,Kj ] = −iεijkJk . (48)

2.4 Poincare Group

The Poincare group describes the symmetries of the Minkowski space and is given by the set of transformations of the form:

xµ → x′µ = Λµνx
ν + aν (49)

The Λµν are the Lorentz transformations, which we have just seen, whereas the aν parameterizes translations. Elements of
the Poincare group can be written as (Λ, a), where (Λ, 0) would purely be a Lorentz transformation and (1, a) would be a
pure translation. One can easily verify that the Poincare group is a semi-direct product of the Lorentz and 4-translation
groups[4], i.e.

(Λ1, a1) · (Λ2, a2) = (Λ1Λ2,Λ2a1 + a2) . (50)

2.5 Poincare Algebra

Similar to chapter 2.3, we will study transformations close to the identity.

U(Λ, a) = 1+
i

2
ωρσJ

ρσ − iερP ρ + ... , (51)

where Λµν = δµν + ωµν and aµ = εµ. Once again, the ”i”′s are there to make the operators Hermitian. By expanding the
following equation to the first order, we can then find necessary relations:

U(Λ, a)U(1 + ω, ε)U−1(Λ, a) = U(Λ(1+ ω)Λ−1,Λε− ΛωΛ−1a) (52)
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This then namely leads to

U(Λ, a)[
1

2
ωρσJ

ρσ − ερP ρ]U−1(Λ, a) =
1

2
(ΛωΛ−1)µνJ

µν − (Λε− ΛωΛ−1a)µP
µ . (53)

By equating the coefficients of ωρσ and ερ, we thusly get

U(Λ, a)JρσU−1(Λ, a) = Λ ρ
µ Λ σ

ν (Jµν − aµP ν + aνPµ) (54)

U(Λ, a)P ρU−1(Λ, a) = Λ ρ
µ P

µ , (55)

which tells you that for homogenous Lorentz transformations, i.e. aµ = 0, Jµν transforms as a tensor and P ν as a vector.
By applying these two rules to an infinitessimal transformation, i.e. Λµν = δµν + ωµν and aµ = εµ, and expanding everything
to first order in ωµν and εµ, we get

i[
1

2
ωµνJ

µν − εµPµ, Jρσ] = ω ρ
µ J

µσ + ω σ
ν J

ρν − ερPσ + εσP ρ (56)

i[
1

2
ωµνJ

µν − εµPµ, P ρ] = ω ρ
µ P

µ . (57)

By once again equating the coefficients of ωµν and εµ, we get the following commutation relations[4]

i [Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ (58)

i [Pµ, Jρσ] = ηµρPσ − ηµσP ρ (59)

[Pµ, P ρ] = 0 . (60)

In quantum mechanics, these 10 operators play a very important role. P 1, P 2, and P 3 will be the momentum operator
components, whereas P 0 will play the role of the Hamiltonian. We have already discussed the role of the other six generators
in chapter 2.3. By renaming P 0 = H and once again grouping the other generators into a momentum three-vector P, an
angular momentum three-vector J, and a ”boost” three-vector K:

P = {P 1, P 2, P 3} (61)

J = {J23, J31, J12} (62)

K = {J01, J02, J03} , (63)

we can simplify the commutation relations into

[Ji, Jj ] = iεijkJk (64)

[Ji,Kj ] = iεijkKk (65)

[Ki,Kj ] = −iεijkJk (66)

[Ji, Pj ] = iεijkPk (67)

[Ki, Pj ] = −iHδij (68)

[Ji, H] = [Pi, H] = [H,H] = 0 (69)

[Ki, H] = −iPi . (70)

As a side note, the Lie algebras discussed in chapter 2 are the same for the representations of the Lorentz and Poincare group.
That is why I have used the same notation for the generators that many authors use for the generators of the representation.
I will employ the same letters for them as well, but it should be clear as to how I am using them.

3 Spinors

This chapter is based on [5], [6], and [7].

3.1 Introduction to the Spinor Representation

We have discussed the Lorentz transformations in detail and now know their commutation relations, but are there other
matrices that solve the Lorentz algebra? Yes! We will do this by explicitly constructing the spinor representation[5]. To start
off the search for these matrices, we will define the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν1 , (71)
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where γµ, with µ = 0, ..., 3, are a set of four matrices. This means that

γµγν = −γνγµ when µ 6= ν (72)

(γ0)2 = 1 (73)

(γi)2 = −1 for i = 1, 2, 3 . (74)

It can easily be shown that 2 × 2 or 3 × 3 matrices cannot satisfy these conditions. So, the simplest representation of the
Clifford algebra is in terms of 4× 4 matrices. Four such matrices that fulfill the Clifford algebra are

γ0 =

(
0 1

1 0

)
γi =

(
0 σi

−σi 0

)
, (75)

where each element is given by a 2× 2 matrix and σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (76)

Now we have found four matrices, but we require six, since that is the number of generators the Lorentz transformation has.
We will now construct six matrices out of these four by using the commutator[5].

Sρσ = − i
4

[γρ, γσ] =

{
0 ρ = σ

− i
2γ

ργσ ρ 6= σ

}
= − i

2
γργσ +

i

2
ηρσ (77)

Claim 8: [Sµν , γρ] = −iγµηνρ + iγνηρµ

Proof:
Without loss of generality we can set µ 6= ν and obtain

[Sµν , γρ] = − i
2

[γµγν , γρ] (78)

= − i
2
γµγνγρ +

i

2
γργµγν (79)

= − i
2
γµ{γν , γρ}+

i

2
γµγργν +

i

2
γµ{γν , γρ} − i

2
γµγργν (80)

= −iγµηνρ + iγνηρµ . (81)

Claim 9: The matrices Sµν form a representation that satisfies the commutation relation of the Lorentz algebra, which is
given by

i [Sµν , Sρσ] = ηνρSµσ − ηµρSνσ − ησµSρν + ησνSρµ . (82)

Proof:
By setting ρ 6= σ and using claim 8, we get

i [Sµν , Sµν ] =
1

2
[Sµν , γργσ] (83)

=
1

2
[Sµν , γρ] γσ +

1

2
γρ [Sµν , γσ] (84)

= − i
2
γµγσηνρ +

i

2
γνγσηρν − i

2
γργµηνσ +

i

2
γργνησµ . (85)

By now taking equation (77), which gives us that γµγσ = 2iSµσ + ηµσ, we get

i [Sµν , Sρσ] = ηνρSµσ − ηµρSνσ − ησµSρν + ησνSρµ . (86)

3.2 Spinors

Having finally found six 4 × 4 matrices that fulfill the Lorentz algebra, we now need a field on which they act upon. Here,
we call this field the Dirac spinor field ψα(x)[5]. We require ψα(x) to have four complex components, which we will by
α = 1, 2, 3, 4. For clarity, we will also index the rows and columns of our 4 × 4 matrices with α, β = 1, 2, 3, 4. So, under
Lorentz transformations, we have

ψα(x)→ S[Λ]αβψ
β(Λ−1x) , (87)

where

Λ = exp

(
i

2
ωρσJ

ρσ

)
(88)

S[Λ] = exp

(
i

2
ωρσS

ρσ

)
. (89)
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Whilst the generators Jρσ and Sρσ are different, we still use ωρσ in both cases. This makes sure that we are acting on x and
ψ equally. With the help of two examples, we will now show how these two representations are indeed different.
Rotations:

Sij = − i
2

(
0 σi

−σi 0

)(
0 σj

−σj 0

)
= −1

2
εijk

(
σk 0
0 σk

)
(for i 6= j) (90)

By writing the parameters as ωij = −εijkϕk, the rotation matrix is then given by

S[Λ] = exp

(
i

2
ωρσS

ρσ

)
=

(
e+i

#»ϕ · #»σ /2 0
0 e+i

#»ϕ · #»σ /2

)
. (91)

Here, #»ϕ = (ϕ1, ϕ2, ϕ3) and #»σ = (σ1, σ2, σ3). Let us now consider a rotation by 2π around the x3-axis, i.e. #»ϕ = (0, 0, 2π).
For a vector we would expect the rotation matrix to be the identity, but that is not the case for the spinor rotation matrix

S[Λ] =

(
e+iπσ

3

0

0 e+iπσ
3

)
= −1 . (92)

This means that under a 2π rotation
ψα → −ψα . (93)

Boosts:

S0i = − i
2

(
0 1

1 0

)(
0 σi

−σi 0

)
= − i

2

(
−σi 0

0 σi

)
(94)

By writing the boost parameters as ωi0 = χi, we then get

S[Λ] =

(
e

#»χ · #»σ /2 0
0 e−

#»χ · #»σ /2

)
. (95)

Representations of the Lorentz Group are not Unitary
For the rotations, we have S[Λ]†S[Λ] = 1, which implies that S[Λ] is unitary. But for boosts, that is no longer the case. It
can be shown that there are in fact no finite dimensional unitary representations of the Lorentz group[5].

3.3 Constructing an Action

Having finally found a new field, the next step would be to find a Lorentz invariant equation of motion. To do this, we will
first find a Lorentz invariant action. Looking at the four matrices that fulfill the Clifford algebra, it can easily be shown that
(γ0)† = γ0 and (γi)† = −γi, which then leads to the conclusion that for all µ = 0, 1, 2, 3, we have

γ0γµγ0 = (γµ)† . (96)

This then tells us that

(Sµν)† =
i

4

[
(γν)†, (γµ)†

]
= − i

4

[
(γµ)†, (γν)†

]
(97)

= − i
4

[
γ0γµγ0, γ0γνγ0

]
= γ0

(
− i

4
[γµ, γν ]

)
γ0 (98)

= γ0Sµνγ0 . (99)

This identity can be used to obtain the following result

S[Λ]† = exp

(
− i

2
ωρσ(Sρσ)†

)
= γ0S[Λ]−1γ0 . (100)

With this in mind, we now define the Dirac adjoint

ψ(x) = ψ†(x)γ0 . (101)

Claim 10: ψψ is a Lorentz scalar
Proof:
By applying a Lorentz transformation, we get that

ψ(x)ψ(x) = ψ†(x)γ0ψ(x) (102)

→ ψ†(Λ−1x)S[Λ]†γ0S[Λ]ψ(Λ−1x) (103)

= ψ†(Λ−1x)γ0ψ(Λ−1x) (104)

= ψ(Λ−1x)ψ(Λ−1x) , (105)
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which is exactly how a Lorentz scalar should transform[5].
Claim 11: ψγµψ is a Lorentz vector, which implies that it transforms as

ψ(x)γµψ(x)→ Λµνψ(Λ−1x)γµψ(Λ−1x) . (106)

This means that we can treat the µ = 0, 1, 2, 3 as a true vector index.
Proof:
For convenience, we will not explicitly write x. Under a Lorentz transformation, we get

ψγµψ → ψS[Λ]−1γµS[Λ]ψ , (107)

which tells us that if ψγµψ transforms as a Lorentz vector, it must be that

S[Λ]−1γµS[Λ] = Λµνγ
ν . (108)

This is the equality that we will now show. If we work infinitessimally, we get

Λ = exp

(
i

2
ωρσJ

ρσ

)
≈ 1+

i

2
ωρσJ

ρσ + ... (109)

S[Λ] = exp

(
i

2
ωρσS

ρσ

)
≈ 1+

i

2
ωρσS

ρσ + ... , (110)

which tells us that the requirement (110) turns to

−[Sρσ, γµ] = (Jρσ)µνγ
ν . (111)

We will show this by using Claim 8. The right side of (111) can be written out as

(Jρσ)µνγ
ν = (iησµδρν − iηρµδσν )γν (112)

= iησµγρ − iηρµγσ , (113)

which then turns (111) into
−[Sρσ, γµ] = iησµγρ − iηρµγσ , (114)

which is exactly what Claim 4 says[5].
Claim 12: ψγµγνψ is a Lorentz tensor. To be precise, the symmetric part transforms as a Lorentz scalar and is proportional
to ηµνψψ, whereas the anti-symmetric part is given by a Lorentz tensor and is proportional to ψSµνψ.
Proof:
Just like Claim 11.
To build the Lorentz invariant action, we only need ψψ and ψγµψ.

S =

∫
d4x ψ(x)(iγµ∂µ −m)ψ(x) (115)

This is known as the Dirac action. As a side note, after quantization, this theory describes particles of mass |m| and spin 1
2 .

3.4 The Dirac Equation

By varying the action given by (115) with respect to ψ and ψ independently, we obtain the equations of motion. If we vary
with respect to ψ, we obtain the famous Dirac equation.

(iγµ∂µ −m)ψ = 0 (116)

We can then obtain the conjugate equation by varying with respect to ψ.

i∂µψγ
µ +mψ = 0 (117)

The Dirac equation is Lorentz invariant, which may be a bit surprising, since it doesn not contain second order (or higher)
derivatives. In addition, the Dirac equation mixes up the different components of ψ with the help of the matrices γµ. Nev-
ertheless, all of the four components solve the Klein-Gordon equation.

(∂µ∂
µ +m2)ψα = 0 (118)

To show this, we start by writing

(iγν∂ν +m)(iγµ∂µ −m)ψ = −(γνγµ∂ν∂µ +m2)ψ = 0 . (119)
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But since γνγµ∂ν∂µ = 1
2{γ

ν , γµ}∂ν∂µ = ∂µ∂
µ, we then get

−(∂µ∂
µ +m2)ψ = 0 . (120)

Since there are no matrices present, this equation implies that each component ψα fulfills equation (118)[5].
The Slash
To make notation more compact, I will introduce some new notation

Aµγ
µ = /A . (121)

The Dirac equation can then be written as
(i/∂ −m)ψ = 0 (122)

3.5 Chiral Spinors

At the beginning of Chapter 3, we explicitly wrote down four matrices that fulfill the Clifford algebra. As we will see in a
later subsection, these are NOT the only possible solution. In our case, we used the chiral representation

γ0 =

(
0 1

1 0

)
γi =

(
0 σi

−σi 0

)
. (123)

In this representation, we ended up with block diagonal spinor transformations

S[Λrot] =

(
e+i

#»ϕ · #»σ /2 0
0 e+i

#»ϕ · #»σ /2

)
S[Λboost] =

(
e

#»χ · #»σ /2 0
0 e−

#»χ · #»σ /2

)
, (124)

which means that the Dirac spinor representation is reducible. We can therefore deconstruct these matrices into two irreducible
representations, which only act on two-component spinors u±. In the chiral representation, these are defined as

ψ =

(
u+
u−

)
. (125)

These u± are called Weyl spinors or chiral spinors. It’s easy to see that under rotation, both transform as

u± → e+i
#»ϕ · #»σ /2u± , (126)

whereas under boosts, we get
u± → e±

#»χ · #»σ /2u± . (127)

As we will discuss in Chapter 4, u+ is in the ( 1
2 , 0) representation of the Lorentz group, while u− is in the (0, 12 ) representation.

We can therefore say that the Dirac spinor ψ lies in the ( 1
2 , 0)⊕ (0, 12 ) representation[5].

3.6 Weyl Equation

We will now write the Dirac Lagrangian using Weyl Spinors

L = ψ(i/∂ −m)ψ = iu†−σ
µ∂µu− + iu†+σ

µ∂µu+ −m(u†+u− + u†−u+) = 0 , (128)

where
σµ =

(
1, σi

)
and σµ =

(
1,−σi

)
. (129)

If the fermion has a mass, the last term ensures a coupling between u+ and u−. But, if we are working with massless fermions,
then they can be described by Weyl spinors. For the latter, we then obtain the equation of motion

iσµ∂µu+ = 0 (130)

or iσµ∂µu− = 0 . (131)

These are known as the Weyl equations[5].
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3.7 Majorana Fermions

So far, our spinors ψα have been complex objects. This is because our representation S[Λ] is usually complex. So even if we
try to make our spinor ψ real, applying a Lorentz transformation would make it complex again. This means that in order
to create real spinors, we would have to find a new basis for the Clifford algebra. Our new four matrices are known as the
Majorana basis and are defined by

γ0 =

(
0 σ2

σ2 0

)
γ1 =

(
iσ3 0
0 iσ3

)
(132)

γ2 =

(
0 −σ2

σ2 0

)
γ3 =

(
−iσ1 0

0 −iσ1

)
. (133)

Not only do they satisfy the Clifford algebra, they are also pure imaginary, i.e. (γµ)? = −γµ. This then creates pure
imaginary generators, which means that our matrices S[Λ] are real. By imposing the condition that

ψ = ψ? , (134)

we can now work with real spinors without worrying that a Lorentz transformation will make it complex. These spinors are
called Majorana spinors.
But what do we do if we use a general basis for the Clifford algebra? We only additionally require that our four matrices
satisfy (γ0)† = γ0 and (γi)† = −γi. We also need to define the charge conjugate of a Dirac spinor ψ,

γ(c) = Cψ? , (135)

where C is a 4× 4 matrix that fulfills
C†C = 1 and C†γµC = −(γµ)? . (136)

We should now first check that our definition is ”good”, i.e. ψ(c) transforms nicely under Lorentz transformations.

ψ(c) → CS[Λ]?ψ? = S[Λ]Cψ? = S[Λ]ψ(c) , (137)

where we used (136) to take C through S[Λ]. In addition, ψ(c) also fulfills the Dirac equation, if ψ does.

(i/∂ −m)ψ = 0 ⇒ (−i/∂? −m)ψ? = 0 (138)

⇒ C(−i/∂? −m)ψ? = (+i/∂ −m)ψ(c) = 0 (139)

The general Lorentz invariant reality condition on a Dirac spinor is then

ψ(c) = ψ . (140)

As a side note, after quantization, Majorana spinors define fermions that are its own anti-particle.
We will now find the matrix C for two representations of the Clifford algebra. As you may recall, in the Majorana basis, our
γµ are purely imaginary. This, in turn, gives us CMaj = 1 and our Majorana condition ψ(c) = ψ is simplified to ψ? = ψ.

For chiral basis (123), only γ2 is imaginary, which allows us to take Cchiral = iγ2 =

(
0 iσi

−iσi 0

)
. With this, we can also

find how the Majorana condition (134) looks in terms of Weyl spinors. By plugging in all the various definitions, we get that
u+ = iσ2u?− and u− = −iσ2u?+[5]. This then gives us

ψ =

(
u+

−iσ2u?+

)
. (141)

3.8 Weyl Spinors and Invariant Tensors

Using our knowledge of Dirac spinors, we can determine how Weyl spinors transform:

ψα → ψ′α = M β
α ψβ α, β = 1, 2 , (142)

where M ∈ SL(2,C). It is easy to verify that the Dirac adjoint of a Weyl spinor will once again be a Weyl spinor. Using this
information, we can then define a barred Weyl spinor, which transforms as

ψα̇ → ψ′α̇ = (M?) β̇α̇ ψβ̇ α̇, β̇ = 1, 2 . (143)

It should be noted at this point that lower undotted indices can be seen as row indices, while upper undotted indices describe
columns. The dotted indices follow the opposite convention.
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We know that ηµν can be used to raise and lower O(1, 3) indices and some of you may wonder if the same can be done for
Weyl spinors. The answer is yes! We will use the following spinor contractions

εαβ = εα̇β̇ =

(
0 −1
1 0

)
(144)

εαβ = εα̇β̇ =

(
0 1
−1 0

)
, (145)

where the dotted indices are just indices for the barred spinor, i.e. ψ. We can then define

ψα = εαβψβ , ψα = εαβψ
β , (146)

ψ
α̇

= εα̇β̇ψβ̇ , ψα̇ = εα̇β̇ψ
β̇
. (147)

Having seen how Lorentz transformations act on Dirac spinors, we can derive how they act on Weyl spinors. It is easy to
check that the matrices that obey the Lorentz algebra and generate our desired transformations are given by[6]

(σµν) βα = − i
4

(σµσν − σνσµ) βα (148)

(σµν)α̇
β̇

= − i
4

(σµσν − σνσµ)α̇
β̇
, (149)

which tells us that the left and right spinors transform as[7]

ψα →
(
e
i
2ωµνσ

µν
) β
α
ψβ (150)

χα̇ →
(
e
i
2ωµνσ

µν
)α̇
β̇
χβ̇ . (151)

4 N=1 super-Poincare Algebra and its Representations

This chapter is based on [2], [4], [6], [7], and [8].

4.1 General Irreducible Representations of the Homogenous Lorentz Group

We know that representations of the Lorentz group must fulfill the Lorentz algebra. In Chapter 2, we used the contravariant
notation for our generators. Now, we will use covariant generators to help you differentiate between the generators of the
algebra and generators of the representation. We know that the commutation relation is given by

[Jµν ,Jρσ] = i(Jρνησµ + Jµρηνσ − Jσνηρµ − Jµσηνρ) . (152)

Similar to Chapter 2, we will now define two vectors of generators, where

J = (J1,J2,J3) = (J23,J31,J12) (153)

K = (K1,K2,K3) = (J10,J20,J30) . (154)

We then can write the commutation relations as

[Ji,Jj ] = iεijkJk (155)

[Ji,Kj ] = iεijkKk (156)

[Ki,Kj ] = −iεijkJk . (157)

However, it’s very convenient to replace the J and K matrices with two decoupled spin three-vectors

A ≡ 1

2
(J + iK) (158)

B ≡ 1

2
(J − iK) . (159)

Our ”new” commutation relations are then

[Ai, Aj ] = iεijkAk (160)

[Bi, Bj ] = iεijkBk (161)

[Ai, Bj ] = 0 . (162)
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Matrices that fulfill this Lie algebra are found in the same way that one searches for matrices representing spins of two
uncoupled particles–as a direct sum. This means that we label the rows and columns of these matrices with a pair of integers
and/or half-integers a and b, that can take the values

a = −A,−A+ 1, ..., A− 1, A (163)

b = −B,−B + 1, ..., B − 1, B (164)

and use

(A)a′b′,ab = δb′bJ
(A)
a′a (165)

(B)a′b′,ab = δb′bJ
(B)
a′a , (166)

where J(A) and J(B) are the spin matrices we have seen in quantum mechanics. The indices A and B denote their respective
spin.

(J
(A)
3 ) = aδa′a (167)

(J
(A)
1 ± iJ(A)

2 )a′a = δa′,a±1
√

(A∓ a)(A± a+ 1) (168)

The same goes for J(B). Our represenations will be labelled by the values of two positive integers and/or half-integers A and
B. This means that the (A,B) representation has dimensionality (2A+ 1)(2B + 1) [4].
Those who were paying close attention might have realized something important that I have neglected to mention. Since
we started off with Hermitian matrices A and B, this means that J is Hermitian, while K is very much anti-Hermitian.
This, in turn, tells us something very important about finite-dimensional representations of the Lorentz group. They are
NOT unitary. This is not a problem, as we are working with fields, not wave functions. As result, we do not need a Lorentz
invariant positive norm.
It should be noted, that the generators of the rotation group are given by the matrices

J = A + B . (169)

Using the rules of vector addition, it can easily be shown that a field, which lives in the (A,B) representation, has components
that rotate as if the had spin j, with

j = A+B, ..., |A−B| . (170)

We can use this to identify the (A,B) representations with more familiar objects. For example, a (0, 0) field is a scalar with
j = 0, whereas ( 1

2 , 0) or (0, 12 ) only allows j = 1
2 . These are our Weyl spinors. The ( 1

2 ,
1
2 ) field has components with j = 1

and j = 0, which respectively correspond to the spatial part v and time-component v0 of a four-vector vµ. In general, an
(A,A) field contains terms with only integer spins 2A, 2A− 1, ..., 1, 0 and corresponds to a traceless symmetric tensor of rank
2A. A general tensor of rank N transforms as the direct product of N ( 1

2 ,
1
2 ) four-vector representations. This can then be

decomposed into irreducible terms (A,B), with A = N
2 ,

N
2 − 1, ... and B = N

2 ,
N
2 − 1, ...[4]. It should be noted, that there is

a tensor product rule ( 1
2 , 0)⊗r ⊗ (0, 12 )⊗s = ( s2 ,

s
2 ), which just comes from the tensor product rules of SU(2) [7]. Using what

we have learned here, we can identify the Poincare generators Pµ and Mµν as (bosonic) generators with (A,B) = ( 1
2 ,

1
2 ) and

(1, 0)⊕ (0, 1) respectively [8].

4.2 Graded Lie Algebra

Definition:
A graded Lie Algebra of grade n is a vector space

L =

i=n⊕
i=0

Li , (171)

such that all Li are vector spaces and the product

[ , } : L× L→ L (172)

has three properties:

[Li, Lj} ∈ Li+j mod n+ 1 (173)

[Li, Lj} = −(−1)ij [Lj , Li} (174)

[Li, [Lj , Lk}}(−1)ik + [Lj , [Lk, Li}}(−1)ij + [Lk, [Li, Lk}}(−1)jk = 0 . (175)
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The first property, for example, tells us that L0 is a Lie algebra, while the others are not. For our purpose, which is to create

the super-poincare algebra, n = 1. L0 will be the Poincare algebra, whereas L1 = (QIα, Q
I

α), with I = 1, ..., N . QIα and Q
I

α

will be a set of N +N = 2N anticommuting fermionic generators that transform like Weyl spinors.
In our case, the product [Li, Lj} will be the commutator if i and/or j = 0 and otherwise it will be the anti-commutator { , },
which is defined as

{A,B} = AB +BA . (176)

I have used the terms bosonic and fermionic generators once or twice during this paper. To clarify, bosonic operators are
elements of L0, whereas fermionic operators lie in L1. [6]
It should be noted that since the Q’s generate space-time symmetries, we expect them to be representations of the Lorentz
group. I mentioned that they will be in the ( 1

2 , 0) or (0, 12 ) representation, but how do we see this? We know that if QIα lies

in the (j, j′), Q
I

α must lie in (j′, j) . As a result, the anti-commutator {QIα, Q
I

α} contains (j + j′, j + j′), which has to lie in
L0 due to (173). This has to be Pµ, which is ( 1

2 ,
1
2 ). As a result, Q is either ( 1

2 , 0) or (0, 12 ) [2].

4.3 N=1 Super-Poincare Algebra

I will now first write down the graded algebra and then set out to prove it. Since we are looking at simple supersymmetry,
we expect I = 1, which simplifies our set of fermionic generators. Since I is therefore a fixed number, rather then an index,
will not explicitly write it.

i [Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ (177)

i [Pµ, Jρσ] = ηµρPσ − ηµσP ρ (178)

[Pµ, P ρ] = 0 (179)

[Qα, J
µν ] = (σµν) βα Qβ (180)

[Qα, P
µ] = 0 (181){

Qα, Q
β
}

= 0 (182){
Qα, Qβ̇

}
= 2(σµ)αβ̇Pµ (183)

The first three equations are just the Poincare algebra and therefore don’t hold any new information. To show the other four
(anti-) commutation relations, we will often implicitly use representation theory to determine what the left-hand side can be
equal to.
Claim 13: [Qα, J

µν ] = (σµν) βα Qβ
Proof:
We know that Qα transforms as a spinor, which tells us that under a infinitessimal Lorentz transformation, we get

Q′α =
(
e
i
2ωµνσ

µν
) β
α
Qβ (184)

≈
(
1+

i

2
ωµνσ

µν

) β

α

Qβ . (185)

But we also know that Qα is an operator, which then also must transform as

Q′α = U†QαU (186)

U =
(
e
i
2ωµνJ

µν
)
. (187)

(186) tells us that

Q′α ≈
(
1− i

2
ωµνJ

µν

)
Qα

(
1+

i

2
ωµνJ

µν

)
. (188)

By setting (185) and (188) equal to one another, we get

Qα +
i

2
ωµν (σµν)

β
α Qβ = Qα +

i

2
ωµν (QαJ

µν − JµνQα) +O(ω2) , (189)

which finally tells us that
[Qα, J

µν ] = (σµν) βα Qβ . (190)

By doing a similar calculation, we also get the corresponding commutation relation of the right-handed representation[
Q
α̇
, Jµν

]
= (σµν)α̇

β̇
Q
β̇
. (191)
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Claim 14: [Qα, P
µ] = 0

Proof:
Representation theory, as well as the need for a correct index structure, would suggest that the actual result of our commutator
could look like this:

[Qα, P
µ] = c(σµ)αα̇Q

α̇
. (192)

We must now show that c = 0. (192) actually gives us two equations, since we can take the corresponding equation for Q.

[Q
α̇
, Pµ] = c?(σ)α̇αQα , (193)

which can be derived by taking the Hermitian conjugate of (192). As a last step, we will use the Jacobi identity for Pµ, P ν ,
and Qα.

0 = [Pµ, [P ν , Qα]] + [P ν , [Qα, P
µ]] + [Qα, [P

µ, P ν ]] (194)

= −c (σν)αα̇

[
Pµ, Q

α̇
]

+ c (σµ)αα̇

[
P ν , Q

α̇
]

(195)

= |c|2 (σν)αα̇ (σµ)
α̇β
Qβ − |c|2 (σµ)αα̇ (σν)

α̇β
Qβ (196)

= |c|2(σνµ) βα Qβ (197)

We thusly conclude that c = 0.
Claim 15: {Qα, Qβ} = 0
Proof:
We again use a similar argument and write {Qα, Qβ} in a general form

{Qα, Qβ} = k(σνµ) βα Jµν . (198)

We might have expected a (σµν)PµPν term as well. But due to the antisymmetry of (σµν) in µ and ν, no such term could
exist. We know that due to Claim 14, the left-hand side manifestly commutes with P . Our Poincare algebra tells us that
the right-hand side does not, except when k = 0.
Claim 16: {Qα, Qβ̇} = 2(σµ)αβ̇Pµ
Proof:
Once again, we use the same index argument to write this commutation relation as

{Qα, Qβ̇} = t(σµ)αβ̇Pµ . (199)

This time, however, we cannot find an argument to set t = 0. By convention, we set t = 2.
Let me quickly explain our last relation in words. If |F 〉 represents a fermionic state and |B〉 a bosonic state, our SUSY
algebra tells us that

Q|F 〉 = |B〉 Q|F 〉 = |B〉 (200)

Q|B〉 = |F 〉 Q|B〉 = |F 〉 . (201)

Our last anticommutation relation tells us that
QQ|B〉 ∼ P |B〉 , (202)

which means that the product of these two generators preserves the spin, but translates the particle in spacetime. Thus, the
SUSY generators ”know” all about spacetime. The Q’s are therefore spacetime symmetries, rather than internal symmetries
[8].

4.4 Commutators with Internal Symmetries

We know that internal symmetry generators commute with all of the Poincare generators. This carries over to the SUSY
algebra. For an internal symmetry generator Ta, we get

[Ta, Qα] = 0 . (203)

There is one exception though. The SUSY generators create an additional internal symmetry, which is called R-Symmetry.
There exists an automorphism that acts on the SUSY algebra and preserves the algebra.

Qα → eitQα (204)

Qα̇ → e−itQα̇ , (205)

where t is a real parameter. This is a U(1) internal symmetry. Let’s call R the generator of the U(1) [8]. Our operators then
transform as

Qα → e−iRtQαe
iRt . (206)

By comparing (204)-(206), we get

[Qα, R] = Qα (207)[
Qα̇, R

]
= −Qα̇ . (208)
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4.5 Representations of the Poincare Group

Before we talk about the representations of the super-Poincare algebra, we need to cover representations of the Poincare
group. Our first step will be to find the Casimir operators of the Poincare group. These will be two operators that commute
with all of the Poincare generators. To do this, we need to define the Pauli Ljubanski vector Wµ

Wµ = −1

2
εµνρσJ

νρPσ , (209)

where ε0123 = −ε0123 = +1.
Claim 17: [Wµ, Pν ] = 0
Proof:

[Wµ, Pα] = −1

2
εµνρσ [JνρPσ, Pα] = −1

2
ηαβεµνρσ

[
JνρPσ, P β

]
(210)

= −1

2
ηαβεµνρσ

(
Jνρ

[
Pσ, P β

]
+
[
Jνρ, P β

]
Pσ
)

(211)

= −1

2
ηαβεµνρσ

([
Jνρ, P β

]
Pσ
)

(212)

= − i
2
ηαβεµνρσ

(
P ρηβν − P νηβρ

)
Pσ (213)

=
i

2
ηαβεµνρσ

(
P νηβρ − P ρηβν

)
Pσ (214)

=
i

2
η ρα εµνρσP

νPσ − i

2
η να εµνρσP

ρPσ (215)

=
i

2
εµνασP

νPσ − i

2
εµαρσP

ρPσ (216)

=
i

2
εµνασP

νPσ +
i

2
εµνασP

νPσ (217)

= iεµνασP
νPσ (218)

= 0 (219)

since ε is anti-symmetric, whereas P νP ρ symmetric.
Claim 18: [Wµ, Jρσ] = iηµρWσ − iηµσWρ

Proof:

[Wµ, Jρσ] = −1

2
εµλχθ

[
JλχP θ, Jρσ

]
= −1

2
εµλχθ

(
Jλχ

[
P θ, Jρσ

]
+
[
Jλχ, Jρσ

]
P θ
)

=
1

2
εµλχθ

(
Jλχ

(
iη θρ Pσ − iη θσ Pρ

)
− i
(
Jλση

χ
ρ + Jχρη

λ
σ − Jλρη χσ − Jχση λρ

)
P θ
)

=
i

2
εµλχθ

(
Jλχ

(
η θρ Pσ − η θσ Pρ

)
−
(
2Jχρη

λ
σ − 2Jλρη

χ
σ

)
P θ
)

=
i

2
εµλχθ

(
ηστη

θ
ρ − ηρτη θσ

) (
JλχP τ − 2JλτPχ

)
At this point we will need the identity ελχτγWγ =

(
JλχP τ − 2JλτPχ

)
. This identity will not be proven. We can now turn

this into

=
i

2
εµλχθ

(
ηστη

θ
ρ − ηρτη θσ

)
ελχτγWγ (220)

= −i
(
η τµ η

γ
θ − η

γ
µ η

τ
θ

) (
ηστη

θ
ρ − ηρτη θσ

)
Wγ (221)

= iηµρWσ − iηµσWρ . (222)

Claim 19: [Wµ,Wν ] = −iεµνρσW ρPσ

Proof:

[Wµ,Wν ] = −1

2
ενρστ [Wµ, J

ρσP τ ] (223)

= −1

2
ενρστ [Wµ, J

ρσ]P τ (224)

= − i
2
ενρστ

(
η ρµW

σ − η σµ W ρ
)
P τ (225)

= −iεµνρσW ρPσ (226)
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Claim 20: [Wµ, Qα] = i (σµν)
β
α QβPν

Proof:

[Wµ, Qα] = −1

2
ηµνενρστ [JρσP τ , Qα] (227)

=
1

2
εµρστ (σρσ)

β
α QβP

τ (228)

= i (σµν)
β
α QβPν (229)

The Poincare Casimirs are given by

C1 = PµPµ (230)

C2 = WµWµ . (231)

We can use Claims 17-20 to show that they indeed commute with all Poincare generators, but not with the Qs.
Poincare multiplets are then labelled by |m,ω〉, where m and w are the quantum numbers associated with C1 and C2

respectively. The eigenvalue pµ of the generator Pµ will be used as a label for states within the representation. To find more
labels, we will start with Pµ as given and look for additional quantum numbers.
Massive Particles
For massive particles we can choose the rest frame, where pµ = (m, 0, 0, 0). For Wµ, we then get

W0 = 0 (232)

Wi = −mJi , (233)

where the Ji satisfy the rotation group algebra. Every irreducible representation is given by |m, j, pµ, j3〉 and describes a
massive particle of spin j.
Massless Particles
A massless particle’s momentum is given by pµ = (E, 0, 0, E), which tells us that

(W0,W1,W2,W3) = E (J3,−J1 +K2,−J2 −K1,−J3) (234)

=⇒ [W1,W2] = 0 , [W3,W1] = −iEW2 , [W3,W2] = iEW1 . (235)

These are the commutation of the Euclidean group in two dimensions. For finite dimensional representations W1, as well as
W2, have to be zero. This tells us that Wµ = λPµ. We can then label our states |0, 0, pµ, λ〉 =: |pµ, λ〉, where we call λ the
helicity. Under CPT, the helicity changes sign, which tells us that our state |pµ, λ〉 is mapped to |pµ,−λ〉. The relation

exp (2πiλ) |pµ, λ〉 = ±|pµ, λ〉 (236)

tells us that λ must be either an integer or a half-integer [7].

4.6 N=1 Supersymmetry Representations

For simple supersymmetry, C1 is still a good Casimir, whereas C2 is not. This tells us that one can have particles of different
spin within our supermultiplet. The new Casimir operator, C̃2, is defined by

Bµ := Wµ −
1

4
Qα̇ (σµ)

α̇β
Qβ (237)

Cµν := BµPν − PνBµ (238)

C̃2 := CµνC
µν . (239)

Claim 21: The number nB of bosons equals the number nF of fermions in every supermultiplet, i.e.

nB = nF . (240)

Proof:
We first create the fermion number operator (−1)F = (−)F , which is defined as

(−)F |B〉 = |B〉 (241)

(−)F |F 〉 = −|F 〉 . (242)

We have now created something that anti-commutes with Qα, since

(−)FQα|F 〉 = (−)F |B〉 = |B〉 = Qα|F 〉 = −Qα(−)F |F 〉 (243)

=⇒
{

(−)F , Qα
}

= 0 . (244)
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To attain our desired result, we must first calculate the following trace:

Tr
{

(−)F
{
Qα, Qβ̇

}}
= Tr

{
(−)FQαQβ̇ + (−)FQβ̇Qα

}
(245)

= Tr
{
−Qα(−)FQβ̇ +Qα(−)FQβ̇

}
(246)

= 0 , (247)

where we used (244) and the fact that the trace is invariant under cyclic permutation.

We also know that
{
Qα, Qβ̇

}
= 2(σµ)αβ̇Pµ, which tells us that

Tr
{

(−)F
{
Qα, Qβ̇

}}
= Tr

{
(−)F 2(σµ)αβ̇Pµ

}
(248)

= 2(σµ)αβ̇pµTr
{

(−)F
}
. (249)

We thusly get

0 = Tr
{

(−)F
}

=
∑
bosons

〈B|(−)F |B〉+
∑

fermions

〈F |(−)F |F 〉 (250)

=
∑
bosons

〈B|B〉 −
∑

fermions

〈F |F 〉 (251)

= nB − nF . (252)

4.7 Massless Supermultiplet

As in section 4.5, the Pµ-eigenvalues for massless particles can be written as pµ = (E, 0, 0, E). In this case both Casimirs will
be zero. We know that {

Qα, Qβ̇

}
= 2(σµ)αβ̇Pµ = 2E

(
σ0 + σ3

)
αβ̇

(253)

= 4E

(
1 0
0 0

)
αβ̇

, (254)

which proves that Q2 is zero: {
Q2, Q2̇

}
= 0 =⇒ 〈pµ, λ|Q2̇Q2|p̃µ, λ̃〉 = 0 (255)

=⇒ Q2 = 0 (256)

The equation for Q1, on the other hand, can be written as
{
Q1, Q1̇

}
= 4E. We now define creation- and annihilation

operators a and a†

a :=
Q1

2
√
E

(257)

a† :=
Q1̇

2
√
E
, (258)

which then give us the anti-commutation relations {
a, a†

}
= 1 (259)

{a, a} =
{
a†, a†

}
= 0 . (260)

We also know that because
[
a, J3

]
= 1

2

(
σ3
)
11
a = 1

2a

J3 (a|pµ, λ〉) =
(
aJ3 −

[
a, J3

])
|pµ, λ〉 (261)

=
(
aJ3 − a

2

)
|pµ, λ〉 (262)

=

(
λ− 1

2

)
a|pµ, λ〉 , (263)

which tells us that a|pµ, λ〉 has helicity λ− 1
2 . Doing a similar calculation, we find that a†|pµ, λ〉 has helicity λ+ 1

2 . To build
a representation, we will start with the lowest helicity state, which we will call the vacuum state |Ω〉. It should be clear that
a|Ω〉 = 0 and a†a†|Ω〉 = 0|Ω〉 = 0 [7]. The whole multiplet therefore consists of

|Ω〉 = |pµ, λ〉 (264)

a†|Ω〉 = |pµ, λ+
1

2
〉 . (265)
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Since we need CPT invariance, we must add the CPT conjugate to attain the final result

|pµ,±λ〉 , |pµ,±(λ+
1

2
)〉 . (266)

4.8 Massive Supermultiplet

For m 6= 0, we get Pµ-eigenvalues pµ = (m, 0, 0, 0) and Casimirs

C1 = PµPµ = m2 (267)

C̃2 = CµνC
µν = 2m4Y iYi , (268)

where Yi is called the superspin.

Yi = Ji −
1

4m
QσiQ =

Bi
m

(269)

[Yi, Yj ] = iεijkYk (270)

The eigenvalues of Y 2 = Y iYi are y(y + 1), which allows us to label the irreducible representations by |m, y〉. Once again,
we will use the anti-commutation relation for Q and Q to get the states.{

Qα, Qβ̇

}
= 2(σµ)αβ̇Pµ = 2m

(
σ0
)
αβ̇

(271)

= 2m

(
1 0
0 1

)
αβ̇

(272)

We now have two non-zero anti-commutation relations, which allows us to define two sets of ladder operators

a1,2 :=
Q1,2√

2m
(273)

a†1,2 :=
Q1̇,2̇√

2m
, (274)

which then have the following anti-commutation relations {
ap, a

†
q

}
= δpq (275)

{ap, aq} =
{
a†p, a

†
q

}
= 0 . (276)

Let’s again define a vacuum state |Ω〉, which is annihilated by a1,2. We therefore get

Yi|Ω〉 = Ji|Ω〉 −
1

4m
Qσi
√

2ma|Ω〉 (277)

= Ji|Ω〉 . (278)

This means that the spin number j and superspin number y are the same for |Ω〉. So, for a given m, y,

|Ω〉 = |m, j = y, pµ, j3〉 . (279)

We obtain the rest using

a1|j3〉 = |j3 −
1

2
〉 , a†1|j3〉 = |j3 +

1

2
〉 (280)

a2|j3〉 = |j3 +
1

2
〉 , a†2|j3〉 = |j3 −

1

2
〉 , (281)

which tells us that when the a†p act on |Ω〉, they behave like a coupling of two spins j and 1
2 . As a result, this yields a linear

combination of two spins j + 1
2 and j − 1

2 with Clebsch Gordan coefficients ki

a†1|Ω〉 = k1|m, j = y +
1

2
, pµ, j3 +

1

2
〉+ k2|m, j = y − 1

2
, pµ, j3 +

1

2
〉 (282)

a†2|Ω〉 = k3|m, j = y +
1

2
, pµ, j3 −

1

2
〉+ k4|m, j = y − 1

2
, pµ, j3 −

1

2
〉 . (283)

The fourth and final state is then
a†2a
†
1|Ω〉 = −a†1a

†
2|Ω〉 ∝ |Ω〉 , (284)
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which represents a spin j object. In total, we have

2 · |m, j = y, pµ, j3〉 (285)

1 · |m, j = y +
1

2
, pµ, j3〉 (286)

1 · |m, j = y − 1

2
, pµ, j3〉 . (287)

We will now discuss the case y = 0 separately.

|Ω〉 = |m, j = 0, pµ, j3 = 0〉 (288)

a†1,2|Ω〉 = |m, j =
1

2
, pµ, j3 = ±1

2
〉 (289)

a†1a
†
2|Ω〉 = |m, j = 0, pµ, j3 = 0〉 =: |Ω′〉 (290)

Since J is parity invariant, whereas K picks up a minus sign, parity interchanges (A,B) and (B,A). So, for example,
( 1
2 , 0) ↔ (0, 12 ). Let us now consider the two j = 0 states |Ω〉 and |Ω′〉, where the first is annihilated by ai and the second

one by a†i . Because parity interchanges Q and Q, parity interchanges ai and a†i and therefore |Ω〉 ↔ |Ω′〉 [7]. To attain two
states with defined parity, we need linear combinations

|±〉 := |Ω〉 ± |Ω′〉 (291)

P |±〉 = ±|±〉 . (292)

5 Wess-Zumino Model

This chapter is based on [2] and [9]. Before we continue our talk about the general supersymmetrtic algebra and its
representations, I will introduce one of the simplest supersymmetric models in four spacetime dimensions. In section 4.8, we
analyzed to case for y = 0 and got a supermultiplet with a single Majorana fermion and two complex bosonic fields, which
can be separated into a complex scalar and pseudoscalar field. We can then split our complex fields into two real fields. So,
what we get in total are one Majorana field ψ, one real scalar and pseudoscalar bosonic field, which we will call A and B,
respectively,and last but not least, a real scalar and pseudoscalar bosonic auxiliary field F and G [9]. Before I introduce the
model in its non-interacting and interacting form, I will introduce two new matrices and the index manipulations that come
with them.

5.1 γ5 and γ5

In chapter 3, I introduced four matrices, γi, where i = 0, 1, 2, 3. These could be written as

γµ =

(
0 σµ

σµ 0

)
, (293)

where

σµ =
(
1, σi

)
and σµ =

(
1,−σi

)
. (294)

We can then define γ5 as
γ5 = −iγ0γ1γ2γ3 . (295)

In addition, we can also try to lower the indices of our gamma matrices [2]. We do this by lowering the indices of our Pauli
matrices which then gives us

σµ =
(
1,−σi

)
and σµ =

(
1, σi

)
. (296)

Our ”new” gamma matrices are then

γµ =

(
0 σµ
σµ 0

)
(297)

and γ5 is then given by

γ5 = −iγ0γ1γ2γ3 . (298)
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5.2 On-Shell Non-Interacting Model

Without further ado, here is the free model Lagrangian

L =
1

2
(∂µA) (∂µA)− 1

2
m2A2 +

1

2
(∂µB) (∂µB)− 1

2
m2B2 +

i

2
ψ/∂ψ − 1

2
mψψ

= L0 + Lm .

By taking the Euler-Lagrange equations, we get that(
� +m2

)
A = 0 (299)(

� +m2
)
B = 0 (300)(

i/∂ −m
)
ψ = 0 , (301)

where � is the d’Alembert operator. This tells us that our scalar bosons satisfy the Klein-Gordon equation, whereas our
fermion fulfills the Dirac equation [9].

5.3 Off-Shell Interacting Model

In addition to terms that will depend on the mass, some will now have a coupling constant g. Our Lagrangian is then given
by

L =
1

2
(∂µA) (∂µA) +

1

2
(∂µB) (∂µB) +

i

2
ψ/∂ψ +

1

2

(
F 2 +G2

)
(302)

+m

(
FA+GB − 1

2
ψψ

)
(303)

+g
(
F
(
A2 −B2

)
+ 2GAB − ψ (A− iγ5B)ψ

)
(304)

= L0 + Lm + Lg , (305)

which then give us the following Euler-Lagrange equations

0 = −�A+mF + 2gFA+ 2gGB − gψψ (306)

0 = −�B +mG− 2gFB + 2gGA+ igψγ5ψ (307)

0 = F +mA+ 2g
(
A2 −B2

)
(308)

0 = B +mB + 2gAB (309)

0 = i/∂ψ −mψ − 2g (A− iγ5B)ψ . (310)

We see that two of the equations do not include derivatives. This allows us to rewrite F and G purely in terms of A and B.
We now see why they are called auxiliary fields. They are not actually needed to write our Lagrangian. If we rewrite our
Lagrangian without F and G, we then get the on-shell formalism [9].

5.4 On-Shell Interacting Model

Whereas the off-shell Lagrangian didn’t really resemble the free model, our new on-shell Lagrangian contains three extra
terms, but will otherwise look identical to it [9]. By plugging in (308) and (309) into the off-shell Lagrangian, we get

L =
1

2
(∂µA) (∂µA) +

1

2
(∂µB) (∂µB)− 1

2
m2
(
A2 +B2

)
+
i

2
ψ/∂ψ − 1

2
mψψ

−mgA
(
A2 +B2

)
− 1

2
g2
(
A2 +B2

)2 − gψ (A− iγ5B)ψ ,

which in turn gives us the following three EL-Equations.(
� +m2

)
A = −mg

(
3A2 +B2

)
− 2g2A

(
A2 +B2

)
− gψψ (311)(

� +m2
)
B = −2mgAB − 2g2B

(
A2 +B2

)
+ igψγ5ψ (312)(

i/∂ −m
)
ψ = 2g (A− iγ5B)ψ . (313)
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5.5 Conserved Supercurrent

Noether’s theorem states that each continuous symmetry leads to a conserved current. We know that the Wess-Zumino model
acts on a massive supermultiplet, which tells us that each of the SUSY generators should leave the Lagrangiang invariant (up
to a divergence). We will now look at only one of them and show that there is indeed a conserved supercurrent. Notice that
our result should not depend on whether we work with the off-shell or on-shell model. In our case, using the terms F and G
will help our steps look more compact, which means that we will use off-shell notation from now on. We will now show that
the following supersymmetric transformation indeed creates a conserved quantity.

δεA = εψ (314)

δεB = iεγ5ψ (315)

δεψ = −i/∂ (A+ iγ5B) ε+ (F + iγ5G) ε (316)

δεF = −iε/∂ψ (317)

δεG = εγ5 /∂ψ , (318)

where ε is a constant infinitessimal Majorana field. This obviously transforms fermions into bosons and vice versa, which
should reaffirm us that we are indeed working with a supersymmetric transformation. The conjugate spinor, ψ, is then varied
by

δεψ = δεψ
†γ0 = iε/∂ (A− iγ5B) + ε (F + iγ5G) . (319)

To prove the invariance of the Lagrangian, we will see how L0, Lm, and Lg transform. For L0, we first need that

1

2
δε (∂µA∂µA+ ∂µB∂µB) = ε∂µ (A+ iγ5B) ∂µψ

1

2
δε
(
F 2 +G2

)
= −iε (F + iγ5G) /∂ψ

δε
(
ψ/∂ψ

)
= iε/∂ (A− iγ5B) /∂ψ + ε (F + iγ5G) /∂ψ

−iε� (A+ iγ5B)ψ − ε/∂ (F − iγ5G)ψ ,

which are derived with the help of the following identities

εψ = ψε (320)

εγ5ψ = ψγ5ε (321)

εγµψ = −ψγµε (322)

εγ5γ
µψ = ψγ5γ

µε . (323)

This then tells us that the variation of L0 is given by

δεL0 = ∂µ (εV µ0 ) (324)

V µ0 =
1

2
γµ
{
/∂ (A+ iγ5B)− i (F − iγ5G)

}
ψ . (325)

We have now shown that the massless, non-interacting term is invariant under this susy transformation. Our next step will
be to show that the mass term is invariant as well. For this, we’ll need that

δε (FA+GB) = ε (F + iγ5G)ψ − iε (A+ iγ5B) /∂ψ (326)

δε
(
ψψ
)

= 2ε (F + iγ5G)ψ + 2iε/∂ (A− iγ5B)ψ , (327)

which in turn tells us that

δεLm = ∂m (εV µm) (328)

V µm = −im (A+ iγ5B) γµψ . (329)

Before we do the same for our interaction term, we first need that

δε
(
FA2 − FB2

)
= ε

{
2F (A− iγ5B)− i

(
A2 −B2

)
/∂
}
ψ

δε (2ABG) = 2ε
(
ABγ5 /∂ +BG+ iAGγ5

)
ψ

δε
(
Aψψ

)
= (εψ)

(
ψψ
)

+ 2Aε
{
F + iγ5G+ i/∂ (A− iγ5B)

}
ψ

δε
(
ψγ5ψ

)
= 2ε

{
(F + iγ5G) + i/∂ (A− γ5B)

}
γ5ψ

δε
(
Bψγ5ψ

)
= i (εγ5ψ)

(
ψγ5ψ

)
+ 2Bε

{
(F + iγ5G) + i/∂ (A− iγ5B)

}
γ5ψ .
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Equipped with these equations, as well as the fact that
(
ψψ
)

(εψ)+
(
ψγ5ψ

)
(εγ5ψ) = 0 (This will not be proven, but for those

who are interested, this can be derived from the Fiertz identities for Majorana spinors), we can find out that the variation
of Lg is

δεLg = ∂µ
(
εV µg

)
(330)

V µg = −ig (A+ iγ5B)
2
γµψ . (331)

We have finally shown that each of the three components are invariant under this transformation, which tells us that our
Lagrangian is invariant and

δεL = ∂µ (εV µ)

V µ = γµ
{

1

2
/∂ (A+ iγ5B)− i

2
(F − iγ5G)− im (A− iγ5B)− ig (A− iγ5B)

2

}
ψ .

Our Noether current is then given by

Jµ =
∂L

∂ (∂µφ)
δεφ− V µ , (332)

where φ will run over all our fields. We have our V µ, which means that we only need to determine

∂L

∂ (∂µφ)
δεφ . (333)

By using another Majorana identity, namely ψ/∂ψ = ∂µψγ
µψ, we get that

∂L

∂ (∂µφ)
δεφ = ∂µAεψ + i∂µBεγ5ψ −

i

2
δεψγ

µψ

= ε

{
2∂µ (A+ iγ5B)− 1

2
γµ /∂ (A+ iγ5B)− i

2
(F − iγ5G)

}
ψ .

Having finally calulated everything we need [9], we get that

εJµ = ε
{
/∂ (A− iγ5B) γµψ + imγµ (A− iγ5B)ψ + igγµ (A− iγ5B)

2
}
ψ

= −iδεψγµψ = iψγµδεψ .

6 Extended Supersymmetry

This chapter is based on [6], [7], and [10].

6.1 Extended Supersymmetry Algebra

Having previously discussed simple symmetry in chapter 4, as well as analyzed one potential model, we will now turn to the
more general case of N > 1, which is known as extended supersymmetry. Our Q-generators now obtain an additional label
A,B = 1, ..., N (It does not matter whether this index is on top or at the bottom. We are not somehow contracting over it)
and our extended algebra stays the same with two exceptions.{

QAα , Qβ̇B

}
= 2(σµ)αβ̇Pµδ

A
B (334){

QAα , Q
B
β

}
= εαβZ

AB , (335)

where the ZAB are in the (0, 0) representation (Internal Symmetries) and are known as the central charges [7]. The second
equation is derived in the same way we attained most of the results in chapter 4. We know that the (0, 0) generators are
the only possible elements that can be on the right-hand-side and the εαβ gives us the correct index structure. All possible
additional factors can be ”pulled into” the central charges. Since εαβ is anti-symmetric, we can choose our central charges
to be anti-symmetric as well. In addition, the ZAB commute with everything. We will now try to motivate equation (334).

Claim 22:
{
QAα , Qβ̇B

}
= 2(σµ)αβ̇Pµδ

A
B

Proof:

We would in general expect our expression to be of the form
{
QAα , Qβ̇B

}
= 2(σµ)αβ̇PµC

A
B , where CAB is some matrix. By
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taking the hermitian conjugate, we get that CAB = CB∗A , which tells us that C is in fact hermitian. There is therefore a
unitary transformation U , which diagonalizes C. Our Qs then transform as

QAα → UAKQ
K
α (336)

Q
B

β̇ → Q
L

β̇ (U−1) BL . (337)

We have now found the supercharges that give us a diagonal matrix C = diag(cl), but we would now like this matrix to be
δAB . To obtain this result, we will transform our Qs anew. Since all diagonal elements must be positive (energies must be
positive)

QAα →
√
clQ

A
α (338)

Q
B

β̇ →
√
clQ

B

β̇ . (339)

We have now found a basis of supercharges that fulfill equation (334) [10].

6.2 Massless Representations for N > 1

This section will be very similar to 4.7. We start with pµ = (E, 0, 0, E), which then gives us{
QAα , Qβ̇B

}
= 2(σµ)αβ̇Pµδ

A
B = 4E

(
1 0
0 0

)
αβ̇

δAB (340)

=⇒ Q A
2 = 0 . (341)

Equation (305) then immediately tells us that our central charges must vanish. Once again, we will use our Qs as ladder
operators,

aA :=
Q A

1

2
√
E

(342)

aA† :=
Q
A

1̇

2
√
E

(343)

=⇒
{
aA, aA†

}
= δAB . (344)

We start with a vacuum state |Ω〉, which is annihilated by the aA.

states helicity number of states

|Ω〉 λ0 1 =
(
N
0

)
aA†|Ω〉 λ0 + 1

2 N =
(
N
1

)
aA†aB†|Ω〉 λ0 + 1 1

2!N(N − 1) =
(
N
2

)
· · ·

· · ·

· · ·

aN†a(N−1)†...a1†|Ω〉 λ0 + N
2 1 =

(
N
N

)
This gives us a total number of 2N states, since

N∑
k=0

(
N

k

)
=

N∑
k=0

(
N

k

)
1k1N−k = 2N , (345)

where we used the binomial theorem in the last step. Before I conclude this section, there are a couple of interesting results
I’d like to discuss. First of all, the maximal difference of helicities in a supermulitplet is λmax − λmin = N

2 . We can use this
fact to find the maximal value for N . There is a strong belief amongst physicists that there are no massless particles with
helicity |λ| > 2. This, in turn, tells us that N can be no greater than 8 [7].

6.3 Massive Representations for N > 1

We will start out with pµ = (m, 0, 0, 0), which tells us that{
QAα , Qβ̇B

}
= 2m

(
1 0
0 1

)
αβ̇

δAB . (346)
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In contrast to the previous chapter, our anti-commutation relations do not require our central charges to vanish. We will
therefore look at two cases: one where ZAB = 0 and one where ZAB 6= 0.
Case 1: ZAB = 0
We have 2N pairs of creation and annihilation operators

aAα :=
Q A
α√
2m

(347)

aA†α̇ :=
Q
A

α̇√
2m

, (348)

which leads to 22n particles. Each of these particles has a spin j (not necessarily the same j for each particle), where j3 can
go from −j to j [7]. Let us look at one example, where N = 2 and the vacuum state |Ω〉 has spin 0. We then get

|Ω〉 1× spin 0

aA†α̇ |Ω〉 4× spin 1
2

aA†α̇ aB†
β̇
|Ω〉 3× spin 0 , 3× spin 1

aA†α̇ aB†
β̇
aC†γ̇ |Ω〉 4× spin 1

2

aA†α̇ aB†
β̇
aC†γ̇ aD†

δ̇
|Ω〉 1× spin 0

Case 2: ZAB 6= 0
Here, there are two cases; one where N is even and one where N is odd. Without proving it, I will now rely on a linear
algebra theorem, which states that if N is even, we can find a basis, such that our central charge matrix can be written as

ZAB =



0 Z1

−Z1 0
0 Z2

−Z2 0
... ...
... ...

0 ZN
2

ZN
2

0


. (349)

If, however, our N is odd, we can find a matrix with the same structure as before, only with an additional column and row
that consist of only zeros. So without loss of generality, we will assume N is even and continue our analysis. In this basis,
we define our annihilation operators as

a1α =
1√
2

(
Q1
α + εαβ

(
Q2
β

)†)
(350)

b1α =
1√
2

(
Q1
α − εαβ

(
Q2
β

)†)
(351)

a2α =
1√
2

(
Q3
α + εαβ

(
Q4
β

)†)
(352)

b2α =
1√
2

(
Q3
α − εαβ

(
Q4
β

)†)
(353)

... = ... (354)

... = ... (355)

a
N
2
α =

1√
2

(
QN−1α + εαβ

(
QNβ
)†)

(356)

b
N
2
α =

1√
2

(
QN−1α − εαβ

(
QNβ
)†)

. (357)

Our creation operators are defined accordingly. We then get the following anti-commutation relations between our ladder
operators {

arα,
(
asβ
)†}

= (2m+ Zr) δrsδαβ (358){
brα,
(
bsβ
)†}

= (2m− Zr) δrsδαβ (359){
arα,
(
bsβ
)†}

=
{
arα, a

s
β

}
= ... = 0 . (360)
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Since we expect non-negative values on the right-hand-side, we get that

2m ≥ |Zr| for r = 1, 2, ..,
N

2
. (361)

Now, for 2m > |Zr|, we get 22N states, where 22N−1 are bosonic and 22N−1 are fermionic. In addition, if our vacuum state
has spin λ0, our states will have spins that vary from λ0 − N

2 to λ0 + N
2 .

But what happens when 2m = |Zr| for some r? One of the anticommutations vanishes and that particular set of operators
becomes trivial. This mirrors the situation we had with massless particles, where half of the operators ”vanished”. Our
multiplet shortens and the dimension of our representation is reduced accordingly [6]. If this ”trivialization” occurs k times,
we get the following representations

k = 0 =⇒ 22N particles, ”long mulitplet” (362)

0 < k <
N

2
=⇒ 22(N−k) particles, ”short mulitplet” (363)

k =
N

2
=⇒ 2N particles, ”ultra− short mulitplet” . (364)
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