Problem Set 4

1. Solution of the inhomogeneous wave equation

In class we saw how to solve the homogeneous wave equation $\square u=0$ on $\mathbb{R} \times \mathbb{R}^{3}$ using the Fourier transform. Here $\square=\frac{1}{c^{2}} \partial_{t}^{2}-\Delta$ is the d'Alambert operator.
(i) Using the Fourier transform, solve the inhomogeneous wave equation $\square u=f$ with given initial data $u(0, \cdot)$ and $\partial_{t} u(0, \cdot)$. Here $f: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a source.
(ii) Suppose that $u(0, \cdot)=\partial_{t} u(0, \cdot)=0$ and that $f(s, x)=0$ for $s \leqslant 0$. Show that your solution from (i) coincides with the retarded solution of the inhomogeneous wave equation derived in class.

Hints: Use the Fourier transform

$$
\hat{u}(t, k):=\int_{\mathbb{R}^{3}} \mathrm{~d} x u(t, x) \mathrm{e}^{-\mathrm{i} x \cdot k}, \quad u(t, x)=\int_{\mathbb{R}^{3}} \frac{\mathrm{~d} k}{(2 \pi)^{3}} \hat{u}(t, k) \mathrm{e}^{\mathrm{i} x \cdot k}
$$

To solve the resulting ordinary differential equation, recall Duhamel's principle, or the variation of constants formula, which states that the solution of the differential equation $X^{\prime}(t)=A X(t)+F(t)$ is $X(t)=\mathrm{e}^{A t} X(0)+\int_{0}^{t} \mathrm{~d} s \mathrm{e}^{A(t-s)} F(s)$, for any vector-valued function X and square matrix A.
You will also need to use (and prove!) the identity

$$
\begin{equation*}
\frac{\sin (|k| r)}{|k| r}=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(0)} \mathrm{d} y \mathrm{e}^{\mathrm{i} k \cdot y} \tag{1}
\end{equation*}
$$

for $r>0$, stated in class.

2. Solution of the wave equation in two dimensions

(i) Find the distributional solution $D_{2}(t, \underline{x})$ for the initial value problem

$$
\begin{gathered}
\square u(t, \underline{x})=0, \quad(t, \underline{x}) \in \mathbb{R} \times \mathbb{R}^{2}, \\
u(0, \underline{x}), \partial_{t} u(0, \underline{x}) \quad \text { given }
\end{gathered}
$$

in dimension 2.
Hint: Expand the formulation of the exercise to a 3-dimensional problem, with $\left(t, \underline{x}, x_{3}\right) \in$ $\mathbb{R} \times \mathbb{R}^{3}$, which is invariant under translations w.r.t. x_{3} and compute the 2-dimensional distributional solution from the 3 -dimensional one.
(ii) In 3 dimensions, $u(t, x)$ is uniquely determined by the values of $u(\tilde{t}, \tilde{x})$, with $(x-\tilde{x})^{2}=$ $c^{2}(t-\tilde{t})^{2}$ (light cone). What changes in the 2-dimensional case?

