Problem Set 11

1. Half a harmonic oscillator

Consider a particle in one dimension and in the potential

$$
V(x)= \begin{cases}\infty, & (x<0) \\ \frac{1}{2} x^{2}, & (x>0)\end{cases}
$$

Find the eigenvalues and eigenfunctions of the corresponding Hamiltonian in units $m=\hbar=$ 1.

Hint: The divergent part of the potential can be replaced by a boundary condition $\psi(x=$ $0)=0$ for the wave function defined on $x \geq 0$, cf. exercise 9.1.

2. Time-energy uncertainty principle

For an operator A and a state ψ_{t} define $(\Delta A)^{2}:=\operatorname{Var}_{\psi_{t}}(A)$. The position-momentum uncertainty principle can then be written $\Delta p \cdot \Delta x \geqslant \hbar / 2$. In literature, one finds the claim

$$
\begin{equation*}
\Delta H \cdot \Delta t \geqslant \frac{\hbar}{2} \tag{1}
\end{equation*}
$$

H the Hamiltonian, which seems to bear some similarity to the position-momentum uncertainty principle. However, the interpretation of (1) is complicated by the fact that there is no "time-observable" in quantum mechanics. Below are two possible interpretations (both by Mandelshtam, Tamm 1945).
(i) The expectation value of an observable A changes at a rate $\dot{A}:=d\langle A\rangle_{\psi_{t}} / d t$. The time t (according to this interpretation) is the one at which A exceeds or falls below a specific value. Since the measurement of A is subject to a variation ΔA, we define

$$
\Delta t:=\frac{\Delta A}{|\dot{A}|}
$$

Show (1).
Hints: Use the equation of motion in the Heisenberg picture,

$$
\begin{equation*}
\dot{A}(t)=\frac{\mathrm{i}}{\hbar}[H, A(t)] . \tag{2}
\end{equation*}
$$

(ii) The evolution of a state ψ_{0} is given by the Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{d}{d t} \psi_{t}=H \psi_{t} \tag{3}
\end{equation*}
$$

Let $t_{0}>0$ be a time at which the state ψ_{t} is definitely distinguishable from the initial state ψ_{0} :

$$
\left\langle\psi_{0}, \psi_{t_{0}}\right\rangle=0 .
$$

Show:

$$
\Delta H \cdot t_{0} \geqslant \hbar \cdot \frac{\pi}{2} .
$$

Hints: Estimate $|\dot{f}(t)|$, where $f(t)=\left|\left\langle\psi_{0}, \psi_{t}\right\rangle\right|^{2}$. The computation yields the expression $\left\langle\psi_{t},[P, H] \psi_{t}\right\rangle$ with $P=\psi_{0} \psi_{0}^{*}$; use then the uncertainty principle. Eventually, use the comparison

$$
\begin{equation*}
\dot{f}(t) \geqslant g(f(t)), \dot{f}_{0}(t)=g\left(f_{0}(t)\right), f(0)=f_{0}(0) \quad \Longrightarrow \quad f(t) \geqslant f_{0}(t),(t \geqslant 0) . \tag{4}
\end{equation*}
$$

(iii) Conversely, interpretation (ii) has a counterpart for position and momentum, e.g. in dimension 1: let ψ_{x} be the state ψ_{0} shifted by x, and let x_{0} be such that $\left\langle\psi_{0}, \psi_{x_{0}}\right\rangle=0$. Show:

$$
\Delta p \cdot x_{0} \geqslant \hbar \cdot \frac{\pi}{2} .
$$

Hint: Choose H appropriately in (3).

Due: 25.05.2016.

