
Theoretical physics Spring Semester 2016

Solution 1

1. Vector identities

Remark: We use the following conventions below: xi denotes the i-th component of the
vector x, δij is the Kronecker delta, and repetition of an index variable implies summation
over all the values of the index, e.g. xiyi ≡

∑
i xiyi.

(i) The first identity follows from a · (b × c) = εijkaibjck and εijk being invariant under
cyclic permutations of the indices. The second and third identity follow from

(a× (b× c))i = εijkεklmajblcm = (δilδjm − δimδjl)ajblcm ,
(a× b) · (c× d) = (εijkajbk)(εilmcldm) = (δjlδkm − δjmδkl)ajbkcldm .

(ii) We write ∂i = ∂/∂xi,

(∇× (∇f))i = εijk∂j∂kf = 0 .

∇ · (∇× v) = εijk∂i∂jvk = 0 .

(∇× (∇× v))i = εijkεklm∂j∂lvm = ∂j∂ivj − ∂j∂jvi .

(iii)

∇ · (fv) = ∂i(fvi) = (∂if)vi + f∂ivi .

(∇× (fv))i = εijk∂j(fvk) = εijk(∂jf)vk + fεijk∂jvk .

∇ · (v × w) = εijk∂i(vjwk) = εijk(∂ivj)wk − εjikvj∂iwk .

For the fourth identity we first calculate

((v · ∇)w + v × (∇× w)i = (vj∂j)wi + εijkvj(εklm∂lwm)

= (vj∂j)wi + (δilδjm − δimδjl)vj∂lwm = vj∂iwj .

Exchanging v and w and adding the two expressions leads to the claimed result.

(iv)

∇ · P (f(x)) = ∂iPi(f(x)) = Ṗi(f(x))∂if(x) .

(∇× P (f(x)))i = εijk∂jPk(f(x)) = εijkṖk(f(x))∂jf(x) .

(v) Let e(i), (i = 1, 2, 3) be a fixed basis vector.∫
∂D

f∇g · n Gauss
=

∫
D

∇ · (f∇g) =

∫
D

(∇g · ∇f + f(∇ · ∇g)) .∫
D

(f∆g − g∆f) =

∫
∂D

(f∇g − g∇f) · n−
∫
D

(∇g · ∇f −∇f · ∇g) .∫
D

∇f · e(i) =

∫
∂D

fe(i) · n , (∇g = e(i) in the first identity) .∫
∂S

fe(i) · s Stokes
=

∫
S

∇× fe(i) · n =

∫
S

(∇f × e(i) + f(∇× e(i))) · n .



2. Dipole densities

(i) The charge distribution corresponding to P (y) dy is −P (y)∇xδ(x − y) dy by (1.15),
thus using ∇xf(x− y) = −∇yf(x− y) we get

ρ(x) =

∫
P (y) · ∇yδ(x− y) dy

= −
∫

(∇ · P (y))δ(x− y) dy

= −∇ · P (x) .

(4)

Alternative version: by (1.16) the potential is given by

ϕ(x) = −
∫
P (y) · ∇x

1

4π|x− y|
dy

= − 1

4π

∫
∇ · P (y)

|x− y|
dy ,

(5)

which is the potential corresponding to charge density (4).

(ii) Here, analog to (5),

ϕ(x) =

∫
S

P (y)∇y
1

4π|x− y|
· ndy

= − 1

4π

∫
S

P (y)
y − x
|y − x|3

· ndy .

(6)

Furthermore
1

|y − x|2
( y − x
|y − x|

· ndy
)

= Ωx(dy) ,

since the scalar product projects n onto the direction of the line of sight from x to y.
Hence (1) follows.

Consider a small environment of x0 ∈ S in S, inside which P (y) is constant up to a
small error. For x→ x0 ± 0n, this environment has a solid angle ∓2π as seen from x.
For the other points in S, Ωx(dy)→ Ωx0(dy) independent of ±. Therefore

ϕ(x0 + 0n)− ϕ(x0 − 0n) = P (x0) .

Alternative considerations:

(a) The dipole layer consists of two surfaces which are separated from each other by
Dn, with areal charge density ±σ, in the limit D → 0, σ → ∞, σD → P . In
between the surfaces the field E = −σn dominates to leading order, therefore the
difference of the potentials is −E ·Dn→ P .

(b) The potential (6) of the dipole layer,

ϕ(x) = −
3∑
i=1

∫
P (y)ni

∂

∂xi

1

4π|x− y|
dy ,

and the electric field of a charge layer,

Ei(x) = −
∫
σ(y)

∂

∂xi

1

4π|x− y|
dy ,

exhibit a formal analogy. And like the latter has a jump Ei|21 = σni, the former
has one ϕ|21 =

∑3
i=1 Pn

2
i = P .



3. Homogeneously charged and homogeneously polarized solid sphere

(i) The charge inside |x| 6 r is

Q(r) =

{
Q , (r > R)

Q( r
R

)3 , (r 6 R) .

By Gauss’s law (1.7), and by taking into account the symmetry (E radial), we have

E(x) =

{
1
4π
Q x
|x|3 , (|x| > R)

1
4π

Q
R3x , (|x| 6 R) .

(7)

Therefore the potential is ϕ(r) = −
∫ r
∞ |E|(r

′)dr′, (r = |x|, |E|(r) = |E(x)|)

ϕ(r) =

{
− Q

4π

∫ r
∞

dr′

r′2
= Q

4πr
, (r > R)

− Q
4π

( ∫ R
∞

dr′

r′2
+
∫ r
R
r′ dr′

)
= Q

4πR

(
3
2
− 1

2
( r
R

)2
)
, (r < R).

(ii) By (5) the potential is

ϕ(x) = −P · ∇x

∫
|y|6R

1

4π|x− y|
dy .

The integral is recognized to be the potential of a solid sphere of charge density 1
(charge Q = 4πR3/3). Thus

ϕ(x) = P · Ea(x) =

{
R3 P ·x

3|x|3 , (|x| > R)
P ·x
3
, (|x| 6 R) ,

(8)

where Ea is the field (7) from part (a). For the electric field one finds

E(x) =

{
R3 3(P ·x)x−Px2

3|x|5 , (|x| > R)

−P
3
, (|x| 6 R) .

(9)


