Theoretical physics Spring Semester 2016

Solution 1

1. Vector identities

Remark: We use the following conventions below: z; denotes the i-th component of the
vector x, 0;; is the Kronecker delta, and repetition of an index variable implies summation
over all the values of the index, e.g. z;y; = ) . xy;.

(i) The first identity follows from a - (b X ¢) = €;5a;bj¢), and €;;, being invariant under
cyclic permutations of the indices. The second and third identity follow from

(CL X (b X C))z = EiijklmCijlCm = ((Sildjm — 6Z-m5ﬂ)ajblcm,
(a X b) . (C X d) = (5ijkajbk)(5ilmcldm) = (5jl5km — 5jm5k1)a]~bkcldm .
(ii) We write 9; = /92",
(V X (Vf))l = €ijk8j8kf =0.
V- (V X U) = aijk&-@jvk =0.
(V X (V X ’U))l = €ijk€klmajalvm = 8]&1)]- — 8]'8]'112' .
(i)
(V x (fv)i = €iju0;(fon) = iji(9; f)vr + feiju0juy, .

V- (U X U}) = gijk@(vjwk) = aijk(@-vj)wk — ajikvjaiwk .
For the fourth identity we first calculate

(v-Vw+v x (V xw); = (v;0;)w; + €505 (EkimOwnm,)
= (vjﬁj)wi + (5il5jm — 5im6jl)vj81wm = vj(“)iwj .

Exchanging v and w and adding the two expressions leads to the claimed result.
(iv)
V- P(f(x)) = &iP(f(x)) = Pi(f(2)0:f ().
(V % P(f(2)))i = €ijs0; Pi(f(x)) = eijuPe(f ()0 f (x)

(v) Let e®, (i = 1,2,3) be a fixed basis vector.
Gauss
Vg n 2 [ V(199 = [ (99-V5 4 5V V).
oD D D

/D(ng—gAf)Z/aD(ng—gi)-n—/D(Vg~Vf—Vf-Vg)~

/ Ve = fe n, (Vg =e? in the first identity) .
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2. Dipole densities

(i) The charge distribution corresponding to P(y)dy is —P(y) V.d(z — y)dy by (1.15),

thus using V, f(z —y) = =V, f(x — y) we get
pla) = [ Pl)- 9,80~ y)dy
«——/G%P@»&x—wdy

=—-V.P(z).
Alternative version: by (1.16) the potential is given by

1
go(x):—/P(y)-medy
1 [V-Py)
=_—— | Ty,

o=yl

which is the potential corresponding to charge density (4).
Here, analog to (5),

1
z)= [ P(y) V,——— - nd
o(@) = [ PV ndy
1 Yy—x
=—— | Ply)—— -ndy.
i Jg (y |?J—95|3 e
Furthermore ]
y_
-ndy Q. (dy),
Py —a ") = ()

since the scalar product projects n onto the direction of the line of sight from x to y.

Hence (1) follows.

Consider a small environment of o € S in S, inside which P(y) is constant up to a
small error. For x — x¢ & On, this environment has a solid angle F27 as seen from x.
For the other points in S, Q,(dy) — Q,,(dy) independent of +. Therefore

o(zo +0n) — p(xg — O0n) = P(x) .

Alternative considerations:

(a) The dipole layer consists of two surfaces which are separated from each other by
Dn, with areal charge density 4o, in the limit D — 0, 0 — o0, 6D — P. In
between the surfaces the field F = —on dominates to leading order, therefore the

difference of the potentials is —F - Dn — P.
(b) The potential (6) of the dipole layer,

1
——d
=3, [ P

and the electric field of a charge layer,

B() =~ [ o)y

Ox; Am|z — y| Y
exhibit a formal analogy. And like the latter has a jump E;|?

has one ¢|? = >0 | Pn? = P.

= on;, the former



3. Homogeneously charged and homogeneously polarized solid sphere

(i) The charge inside |z| < 7 is

, r>R

o =19 "=
Q(z), (r<R).

By Gauss’s law (1.7), and by taking into account the symmetry (E radial), we have
1Nz R
w7, (|2 <R).

Therefore the potential is ¢(r) = — [T |E|(r")dr’, (r = |z, |E|(r) = |E(z)|)

o(r) _Er ; % - 427« ’ (r > R)
= R gr r r
s(esmt prd’) =35 (G -3(5)7). (<R

(ii) By (5) the potential is

p(r)=—-P -V, —
wi<r 47| — 9|

The integral is recognized to be the potential of a solid sphere of charge density 1
(charge Q = 47 R3/3). Thus

= PE () — Rgs, (lz| > R)
A= P Bl {Pg”% (2| < R), )

where E, is the field (7) from part (a). For the electric field one finds

3>

R33(PI)—IP$, (|z| > R)
Ex)=4q ,



