Solution 1

1. Vector identities

Remark: We use the following conventions below: x_{i} denotes the i-th component of the vector $x, \delta_{i j}$ is the Kronecker delta, and repetition of an index variable implies summation over all the values of the index, e.g. $x_{i} y_{i} \equiv \sum_{i} x_{i} y_{i}$.
(i) The first identity follows from $a \cdot(b \times c)=\varepsilon_{i j k} a_{i} b_{j} c_{k}$ and $\varepsilon_{i j k}$ being invariant under cyclic permutations of the indices. The second and third identity follow from

$$
\begin{aligned}
(a \times(b \times c))_{i} & =\varepsilon_{i j k} \varepsilon_{k l m} a_{j} b_{l} c_{m}=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) a_{j} b_{l} c_{m}, \\
(a \times b) \cdot(c \times d) & =\left(\varepsilon_{i j k} a_{j} b_{k}\right)\left(\varepsilon_{i l m} c_{l} d_{m}\right)=\left(\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}\right) a_{j} b_{k} c_{l} d_{m} .
\end{aligned}
$$

(ii) We write $\partial_{i}=\partial / \partial x^{i}$,

$$
\begin{aligned}
& (\nabla \times(\nabla f))_{i}=\varepsilon_{i j k} \partial_{j} \partial_{k} f=0 . \\
& \nabla \cdot(\nabla \times v)=\varepsilon_{i j k} \partial_{i} \partial_{j} v_{k}=0 \\
& (\nabla \times(\nabla \times v))_{i}=\varepsilon_{i j k} \varepsilon_{k l m} \partial_{j} \partial_{l} v_{m}=\partial_{j} \partial_{i} v_{j}-\partial_{j} \partial_{j} v_{i}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \nabla \cdot(f v)=\partial_{i}\left(f v_{i}\right)=\left(\partial_{i} f\right) v_{i}+f \partial_{i} v_{i} \\
& (\nabla \times(f v))_{i}=\varepsilon_{i j k} \partial_{j}\left(f v_{k}\right)=\varepsilon_{i j k}\left(\partial_{j} f\right) v_{k}+f \varepsilon_{i j k} \partial_{j} v_{k} \\
& \nabla \cdot(v \times w)=\varepsilon_{i j k} \partial_{i}\left(v_{j} w_{k}\right)=\varepsilon_{i j k}\left(\partial_{i} v_{j}\right) w_{k}-\varepsilon_{j i k} v_{j} \partial_{i} w_{k}
\end{aligned}
$$

For the fourth identity we first calculate

$$
\begin{aligned}
\left((v \cdot \nabla) w+v \times(\nabla \times w)_{i}\right. & =\left(v_{j} \partial_{j}\right) w_{i}+\varepsilon_{i j k} v_{j}\left(\varepsilon_{k l m} \partial_{l} w_{m}\right) \\
& =\left(v_{j} \partial_{j}\right) w_{i}+\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) v_{j} \partial_{l} w_{m}=v_{j} \partial_{i} w_{j} .
\end{aligned}
$$

Exchanging v and w and adding the two expressions leads to the claimed result.
(iv)

$$
\begin{aligned}
& \nabla \cdot P(f(x))=\partial_{i} P_{i}(f(x))=\dot{P}_{i}(f(x)) \partial_{i} f(x) \\
& (\nabla \times P(f(x)))_{i}=\varepsilon_{i j k} \partial_{j} P_{k}(f(x))=\varepsilon_{i j k} \dot{P}_{k}(f(x)) \partial_{j} f(x)
\end{aligned}
$$

(v) Let $e^{(i)},(i=1,2,3)$ be a fixed basis vector.

$$
\begin{aligned}
& \int_{\partial D} f \nabla g \cdot n \stackrel{\text { Gauss }}{=} \int_{D} \nabla \cdot(f \nabla g)=\int_{D}(\nabla g \cdot \nabla f+f(\nabla \cdot \nabla g)) . \\
& \int_{D}(f \Delta g-g \Delta f)=\int_{\partial D}(f \nabla g-g \nabla f) \cdot n-\int_{D}(\nabla g \cdot \nabla f-\nabla f \cdot \nabla g) . \\
& \int_{D} \nabla f \cdot e^{(i)}=\int_{\partial D} f e^{(i)} \cdot n, \quad\left(\nabla g=e^{(i)} \text { in the first identity }\right) . \\
& \int_{\partial S} f e^{(i)} \cdot s \stackrel{\text { Stokes }}{=} \int_{S} \nabla \times f e^{(i)} \cdot n=\int_{S}\left(\nabla f \times e^{(i)}+f\left(\nabla \times e^{(i)}\right)\right) \cdot n .
\end{aligned}
$$

2. Dipole densities

(i) The charge distribution corresponding to $P(y) \mathrm{d} y$ is $-P(y) \nabla_{x} \delta(x-y) \mathrm{d} y$ by (1.15), thus using $\nabla_{x} f(x-y)=-\nabla_{y} f(x-y)$ we get

$$
\begin{align*}
\rho(x) & =\int P(y) \cdot \nabla_{y} \delta(x-y) \mathrm{d} y \\
& =-\int(\nabla \cdot P(y)) \delta(x-y) \mathrm{d} y \tag{4}\\
& =-\nabla \cdot P(x) .
\end{align*}
$$

Alternative version: by (1.16) the potential is given by

$$
\begin{align*}
\varphi(x) & =-\int P(y) \cdot \nabla_{x} \frac{1}{4 \pi|x-y|} \mathrm{d} y \\
& =-\frac{1}{4 \pi} \int \frac{\nabla \cdot P(y)}{|x-y|} \mathrm{d} y \tag{5}
\end{align*}
$$

which is the potential corresponding to charge density (4).
(ii) Here, analog to (5),

$$
\begin{align*}
\varphi(x) & =\int_{S} P(y) \nabla_{y} \frac{1}{4 \pi|x-y|} \cdot n \mathrm{~d} y \tag{6}\\
& =-\frac{1}{4 \pi} \int_{S} P(y) \frac{y-x}{|y-x|^{3}} \cdot n \mathrm{~d} y
\end{align*}
$$

Furthermore

$$
\frac{1}{|y-x|^{2}}\left(\frac{y-x}{|y-x|} \cdot n \mathrm{~d} y\right)=\Omega_{x}(\mathrm{~d} y)
$$

since the scalar product projects n onto the direction of the line of sight from x to y. Hence (1) follows.
Consider a small environment of $x_{0} \in S$ in S, inside which $P(y)$ is constant up to a small error. For $x \rightarrow x_{0} \pm 0 n$, this environment has a solid angle $\mp 2 \pi$ as seen from x. For the other points in $S, \Omega_{x}(\mathrm{~d} y) \rightarrow \Omega_{x_{0}}(\mathrm{~d} y)$ independent of \pm. Therefore

$$
\varphi\left(x_{0}+0 n\right)-\varphi\left(x_{0}-0 n\right)=P\left(x_{0}\right) .
$$

Alternative considerations:
(a) The dipole layer consists of two surfaces which are separated from each other by $D n$, with areal charge density $\pm \sigma$, in the limit $D \rightarrow 0, \sigma \rightarrow \infty, \sigma D \rightarrow P$. In between the surfaces the field $E=-\sigma n$ dominates to leading order, therefore the difference of the potentials is $-E \cdot D n \rightarrow P$.
(b) The potential (6) of the dipole layer,

$$
\varphi(x)=-\sum_{i=1}^{3} \int P(y) n_{i} \frac{\partial}{\partial x_{i}} \frac{1}{4 \pi|x-y|} \mathrm{d} y
$$

and the electric field of a charge layer,

$$
E_{i}(x)=-\int \sigma(y) \frac{\partial}{\partial x_{i}} \frac{1}{4 \pi|x-y|} \mathrm{d} y
$$

exhibit a formal analogy. And like the latter has a jump $\left.E_{i}\right|_{1} ^{2}=\sigma n_{i}$, the former has one $\left.\varphi\right|_{1} ^{2}=\sum_{i=1}^{3} P n_{i}^{2}=P$.

3. Homogeneously charged and homogeneously polarized solid sphere

(i) The charge inside $|x| \leqslant r$ is

$$
Q(r)= \begin{cases}Q, & (r \geqslant R) \\ Q\left(\frac{r}{R}\right)^{3}, & (r \leqslant R) .\end{cases}
$$

By Gauss's law (1.7), and by taking into account the symmetry (E radial), we have

$$
E(x)= \begin{cases}\frac{1}{4 \pi} Q \frac{x}{|x|^{3}}, & (|x|>R) \tag{7}\\ \frac{1}{4 \pi} \frac{Q}{R^{3}} x, & (|x| \leqslant R) .\end{cases}
$$

Therefore the potential is $\varphi(r)=-\int_{\infty}^{r}|E|\left(r^{\prime}\right) \mathrm{d} r^{\prime},(r=|x|,|E|(r)=|E(x)|)$

$$
\varphi(r)= \begin{cases}-\frac{Q}{4 \pi} \int_{\infty}^{r} \frac{\mathrm{~d} r^{\prime}}{r^{\prime 2}}=\frac{Q}{4 \pi r}, & (r \geqslant R) \\ -\frac{Q}{4 \pi}\left(\int_{\infty}^{R} \frac{r^{\prime} r^{\prime}}{r^{\prime 2}}+\int_{R}^{r} r^{\prime} \mathrm{d} r^{\prime}\right)=\frac{Q}{4 \pi R}\left(\frac{3}{2}-\frac{1}{2}\left(\frac{r}{R}\right)^{2}\right), & (r<R)\end{cases}
$$

(ii) By (5) the potential is

$$
\varphi(x)=-P \cdot \nabla_{x} \int_{|y| \leqslant R} \frac{1}{4 \pi|x-y|} \mathrm{d} y .
$$

The integral is recognized to be the potential of a solid sphere of charge density 1 (charge $Q=4 \pi R^{3} / 3$). Thus

$$
\varphi(x)=P \cdot E_{a}(x)= \begin{cases}R^{3} \frac{P \cdot x}{3|x|^{3}}, & (|x|>R) \tag{8}\\ \frac{P \cdot x}{3}, & (|x| \leqslant R),\end{cases}
$$

where E_{a} is the field (7) from part (a). For the electric field one finds

$$
E(x)= \begin{cases}R^{3} \frac{3(P \cdot x) x-P x^{2}}{3|x|^{5}}, & (|x|>R) \tag{9}\\ -\frac{P}{3}, & (|x| \leqslant R) .\end{cases}
$$

