
Theoretical physics Spring Semester 2016

Solution 2

1. A grounded conducting sphere in a homogeneous external electric field

Let R be the radius of the sphere. The potential satisfies

ϕ(x) = 0, (|x| 6 R),

∆ϕ(x) = 0, (|x| > R),

ϕ(x) = −E∞ · x+O(1), (|x| → ∞) .

Subtracting the contribution of the homogeneous field, ϕ̃(x) = ϕ(x) + E∞ · x, we get

ϕ̃(x) = E∞ · x, (|x| 6 R),

∆ϕ̃(x) = 0, (|x| > R),

ϕ̃(x) = O(1), (|x| → ∞) .

A solution (and indeed the only one) thereof is eq. (8) in the solution of problem set 1, with
P = 3E∞. Thus, by the subsequent equation (9), we have

E(x) =

{
R3 3(E∞·x)x−E∞x 2

|x|5 + E∞ , (|x| > R)

0 , (|x| 6 R) .

2. The Cavendish experiment

(i) Let S1 and S2 be the inner and the outer surface respectively. The potential ϕ is
constant across both surfaces, since they are connected. Moreover, as S2 is closed, ϕ
is constant everywhere inside S2, since this is the solution of ∆ϕ = 0 for the boundary
conditions given. The charge density on S1 is the jump −∇ϕ ·n and therefore vanishes.
(S2 is a Faraday cage.)

(ii) U(s) is the potential of a point charge with charge 1 at 0. The distance s from x to some
point on the sphere with angle θ with respect to x is given by s2 = r2 + a2− 2ar cos θ.
Such points have a surface charge 2π sin θdθ/4π. Therefore

V (r) =
1

2

∫ π

0

dθ sin θ U
(√

r2 + a2 − 2ar cos θ
)
.

The substitution θ → s yields sds = ar sin θdθ and

V (r; a) =
1

2ar

∫ a+r

|a−r|
dsU(s)s =

1

2ar
(f(a+ r)− f(|a− r|)) . (3)

Under U(r) → U(r) + C, (C = const) we have f(r) → f(r) + Cr2/2 and V (r) →
V (r) + C. In the case of Coulomb’s law, F (r) ∝ r−2, we have U(r) ∝ r−1 and
f(r) ∝ r.



(iii) In equilibrium, the potentials on both spheres is the same:

Q1V (R1;R1) +Q2V (R1;R2) = Q1V (R2;R1) +Q2V (R2;R2) , (4)

and hence
Q1

Q2

=
V (R2;R2)− V (R1;R2)

V (R1;R1)− V (R2;R1)
.

Plugging in (3) we obtain (1) on the exercise sheet.

Eq. (4) alternatively follows by minimisation of the energy

1

2

(
Q2

1V (R1;R1) + 2Q1Q2V (R1;R2) +Q2
2V (R2;R2)

)
subject to the constraint Q1 +Q2 = const.

Q1 = 0 implies

f(2R2)R1 − (f(R2 +R1)− f(R2 −R1))R2 = 0 .

Differentiation with respect to R1, (0 6 R1 6 R2) gives

f(2R2)− (f ′(R2 +R1) + f ′(R2 −R1))R2 = 0

and in particular
f(2R2) = 2f ′(R2)R2 . (5)

On the other hand, renewed differentiation yields

f ′′(R2 +R1)− f ′′(R2 −R1) = 0 . (6)

Equation (6) states that f
′′

is constant, i.e. f(r) = C1r
2 + C2r + C3, where C3 = 0

because of (5). This precisely corresponds to the case of Coulomb’s law.

Remark. From quantum field theory it follows that Coulomb’s law is based on the exchange
of virtual photons. If they had a mass m > 0, U(r) ∝ r−1 would have to be replaced
by U(r) ∝ r−1 exp−(mc/~)r. The negative results of Cavendish imply m < 10−40g (today
m < 10−47g with related experiments).

3. Thomson’s theorem

Consider charge distributions ρ with supp ρ ⊂
⋃
i Li and given fixed chargesQi :=

∫
Li ρ(x) dx.

The electrostatic energy which should be minimised is

E[ρ] =
1

8π

∫
ρ(x)ρ(y)

|x− y|
dx dy .

Let ρ, ρ+ δρ be two such distributions; i.e.∫
Li
δρ(x) dx =

∫
Li
δρ(x) · 1 dx = 0 . (7)

Then

E[ρ+ δρ]− E[ρ] = E[δρ] +

∫
δρ(x)ϕ(x) dx , (8)



where

ϕ(x) =
1

4π

∫
ρ(y)

|x− y|
dy

is the electrostatic potential of ρ. Here E[δρ] > 0, cf. (1.20). If we have ϕ(x) = Vi on Li,
then

∫
δρ(x)ϕ(x) dx =

∑N
i=1 Vi

∫
Li δρ(x) dx = 0 and hence E[ρ + δρ] > E[ρ]. On the other

hand, if ρ is a minimiser of E[·], (8) and (d/dλ)E[ρ+ λδρ]
∣∣
λ=0

= 0 imply

0 =
∑
i

∫
Li
δρ(x)ϕ(x) dx

for all valid δρ. Since δρ can be chosen independently on each body, each term vanishes
separately. Equation (7) now implies

ϕ(x) = const 1 on Li

in the following way: ϕ is perpendicular to δρ with respect to the scalar product (u, v) =∫
Li u(x)v(x) dx, and the latter are themselves perpendicular to 1 w.r.t. the same scalar

product.

4. Electrostatic energy in an external field

The electrostatic energy W of the charge distribution ρ(x) in the external potential ϕ(x) is

W =

∫
ρ(x)ϕ(x)dx . (9)

For a nearly constant ϕ we use the Taylor expansion

ϕ(x) = ϕ(0) +
3∑
i=1

xi∂iϕ(0) +
1

2

3∑
i,j=1

xixj∂i∂jϕ(0) + . . .

= ϕ(0)−
3∑
i=1

xiEi(0)− 1

2

3∑
i,j=1

xixj∂iEj(0) + . . . .

Then (9) becomes

W = eϕ(0)− p · E(0)− 1

6

3∑
i,j=1

Tij
∂Ej
∂xi

(0) + . . . ,

where Tij = 3
∫
xixjρ(x) dx . Since the external field satisfies

∑3
i,j=1 δij(∂Ej/∂xi)(0) =

∇ · E(0) = 0, Tij can be replaced by Tij − (TrT )δij/3 = Qij.


