Solution 3

1. Helmholtz coil

(i) Let the origin be located at the center of the circle. The magnetic field is given by the Biot-Savart law:

$$
B(x)=\frac{I}{4 \pi c} \int_{\gamma} \frac{s \times(x-y)}{|x-y|^{3}} \mathrm{~d} y
$$

Hence

$$
B(-x)=-\frac{I}{4 \pi c} \int_{\gamma} \frac{s \times(x+y)}{|x+y|^{3}} \mathrm{~d} y=\frac{I}{4 \pi c} \int_{\gamma} \frac{s \times(x-y)}{|x-y|^{3}} \mathrm{~d} y=B(x)
$$

by substituting $y \rightarrow-y$, where $\gamma \rightarrow \gamma$. Similarly, a rotation R around the axis yields

$$
B(\mathrm{R} x)=\mathrm{R} B(x)
$$

by $y \rightarrow \mathrm{R} y$ and $\mathrm{R} a \times \mathrm{R} b=\mathrm{R}(a \times b)$. For $x=\left(0,0, x_{3}\right)$ we therefore have $B=$ $\left(0,0, B_{3}\left(x_{3}\right)\right)$ with

$$
\begin{equation*}
B_{3}\left(x_{3}\right)=e_{3} \cdot B=\frac{I}{4 \pi c} 2 \pi R \frac{1}{R^{2}+x_{3}^{2}} \frac{R}{\sqrt{R^{2}+x_{3}^{2}}}=\frac{I}{2 c} \frac{R^{2}}{\left(R^{2}+x_{3}^{2}\right)^{3 / 2}} \tag{7}
\end{equation*}
$$

Eq. (7) follows from s and $x-y$ being perpendicular to one another, and the cosine of the angle between its vector product and e_{3} being $R / \sqrt{R^{2}+x_{3}^{2}}$.
(ii) Let B_{0} be the field in part (i). The field here is

$$
\begin{equation*}
B(x)=B_{0}\left(x-\frac{a}{2} e_{3}\right)+B_{0}\left(x+\frac{a}{2} e_{3}\right), \tag{8}
\end{equation*}
$$

where the origin is now located at the center of the two coils. By (i), we have the symmetries

$$
\begin{align*}
& B(-x)=B(x), \tag{9}\\
& B(\mathrm{R} x)=\mathrm{R} B(x) . \tag{10}
\end{align*}
$$

Eq. (9) implies that the Taylor expansion contains only terms of even order. Hence it is enough to check the terms of order two. Eq. (10) implies that B_{3} is depending on x_{1}, x_{2} only through $\sqrt{x_{1}^{2}+x_{2}^{2}}$. On the symmetry axis we thus have

$$
\begin{align*}
\frac{\partial^{2} B_{3}}{\partial x_{1} \partial x_{2}} & =0, \\
\frac{\partial^{2} B_{3}}{\partial x_{1}^{2}} & =\frac{\partial^{2} B_{3}}{\partial x_{2}^{2}} . \tag{11}
\end{align*}
$$

By $\partial B_{3} / \partial x_{i}=\partial B_{i} / \partial x_{3},(i=1,2)$ we have there also

$$
\begin{align*}
& \frac{\partial^{2} B_{1}}{\partial x_{2} \partial x_{3}}=\frac{\partial^{2} B_{2}}{\partial x_{1} \partial x_{3}}=0, \\
& \frac{\partial^{2} B_{1}}{\partial x_{1} \partial x_{3}}=\frac{\partial^{2} B_{2}}{\partial x_{2} \partial x_{3}} . \tag{12}
\end{align*}
$$

On the plane in the middle, $x=\left(x_{1}, x_{2}, 0\right),(9,10)$ imply for a rotation by π, i.e. $\mathrm{R} x=-x, B(x)=\mathrm{R} B(x)$, which implies $B_{1}=B_{2}=0$. Hence we have there

$$
\left(\frac{\partial^{2} B_{k}}{\partial x_{i} \partial x_{j}}\right)_{i, j=1}^{2}=0, \quad(k=1,2)
$$

By the field equation already used and $\nabla \cdot B=0$ we have

$$
\frac{\partial^{2} B_{1}}{\partial x_{3}^{2}}=\frac{\partial^{2} B_{3}}{\partial x_{1} \partial x_{3}}=-\frac{\partial}{\partial x_{1}}\left(\frac{\partial B_{1}}{\partial x_{1}}+\frac{\partial B_{2}}{\partial x_{2}}\right)=0
$$

and similarly for $1 \leftrightarrow 2$. Only $(11,12)$ and $\partial^{2} B_{3} / \partial x_{3}^{2}$ are not necessarily vanishing at the origin. But we have

$$
\frac{\partial^{2} B_{3}}{\partial x_{1}^{2}}+\frac{\partial^{2} B_{3}}{\partial x_{2}^{2}}=\frac{\partial^{2} B_{1}}{\partial x_{1} \partial x_{3}}+\frac{\partial^{2} B_{2}}{\partial x_{2} \partial x_{3}}=-\frac{\partial^{2} B_{3}}{\partial x_{3}^{2}},
$$

and hence we only need (1) in order for them to vanish.
(iii) By $(7,8)$, we have to solve

$$
f^{\prime \prime}\left(x_{3}=0\right)=0
$$

w.r.t. a, with

$$
f\left(x_{3}\right)=f_{0}\left(x_{3}-\frac{a}{2}\right)+f_{0}\left(x_{3}+\frac{a}{2}\right), \quad f_{0}\left(x_{3}\right)=\left(R^{2}+x_{3}^{2}\right)^{-3 / 2}
$$

Since f_{0} is even, we have to solve $f_{0}^{\prime \prime}(a / 2)=0$. By

$$
\begin{aligned}
& f_{0}^{\prime}\left(x_{3}\right)=-3 \frac{x_{3}}{\left(R^{2}+x_{3}^{2}\right)^{5 / 2}} \\
& f_{0}^{\prime \prime}\left(x_{3}\right)=-3 \frac{1}{\left(R^{2}+x_{3}^{2}\right)^{5 / 2}}+15 \frac{x_{3}^{2}}{\left(R^{2}+x_{3}^{2}\right)^{7 / 2}}=3 \frac{4 x_{3}^{2}-R^{2}}{\left(R^{2}+x_{3}^{2}\right)^{7 / 2}}
\end{aligned}
$$

it follows $a=R$.

2. Energy flow due to the discharge of a capacitor

If the discharge is slow, the E-field is in every moment approximately given by the one which corresponds to the charges left on the plates being constant.

The B-field is generated by the current and the displacement current:

$$
\nabla \times B=\frac{1}{c}\left(\imath+\frac{\partial E}{\partial t}\right) .
$$

The Poynting vector $S=c(E \times B)$ therefore is:

Hence the energy flow from the capacitor to the resistor is located in space and not inside the conductors, although increasingly near them. The conductors guide the field.

3. Completely and partially polarized light

(i) The 2×2 matrices $S=S^{*}$ are of the general form

$$
S=\left(\begin{array}{cc}
a & b+i c \\
b-i c & d
\end{array}\right)
$$

with $a, b, c, d \in \mathbb{R}$. The real vector space V built by them $\left((\lambda S)^{*}=\lambda S\right.$ for $\left.\lambda \in \mathbb{R}!\right)$, therefore has dimension 4. The three Pauli matrices, together with $\sigma_{0}=1_{2}$, are linearly independent in V and hence $\left\{\sigma_{i}\right\}_{i=0}^{3}$ is a basis; whence (5).
(ii) This basis is orthonormal w.r.t. the scalar product mentioned in the hint (check: it actually is a scalar product), since

$$
\left(\sigma_{i}, \sigma_{j}\right)=\frac{1}{2} \operatorname{Tr}\left(\sigma_{i} \sigma_{j}\right)=\delta_{i j}, \quad(i, j=0, \ldots, 3)
$$

by $\operatorname{Tr} \sigma_{0}=2, \operatorname{Tr} \sigma_{i}=0,(i=1,2,3)$, cf. also the second part of the hint. Thus we have

$$
\begin{equation*}
s_{i}=\left(\sigma_{i}, S\right)=\frac{1}{2} \operatorname{Tr}\left(\sigma_{i} S\right), \quad(i=0, \ldots, 3) \tag{13}
\end{equation*}
$$

in (5), and in detail

$$
\begin{align*}
& \left.\left.s_{0}=\left.\frac{1}{2}\langle | E_{1}\right|^{2}+\left|E_{2}\right|^{2}\right\rangle=\left.\frac{1}{2}\langle | \underline{E}\right|^{2}\right\rangle, \\
& s_{1}=\frac{1}{2}\left\langle E_{2} \bar{E}_{1}+E_{1} \bar{E}_{2}\right\rangle=\left\langle\operatorname{Re} E_{2} \bar{E}_{1}\right\rangle, \\
& s_{2}=-\frac{1}{2}\left\langle E_{2} \bar{E}_{1}-E_{1} \bar{E}_{2}\right\rangle=\left\langle\operatorname{Im} E_{2} \bar{E}_{1}\right\rangle, \\
& \left.s_{3}=\left.\frac{1}{2}\langle | E_{1}\right|^{2}-\left|E_{2}\right|^{2}\right\rangle . \tag{14}
\end{align*}
$$

(iii) By $S=\underline{E} \underline{E}^{*}$ we have

$$
S^{2}=\underline{E}\left(\underline{E}^{*} \underline{E}\right) \underline{E}^{*}=|E|^{2} S=2 s_{0} S .
$$

By

$$
\frac{1}{2} \operatorname{Tr} S^{2}=(S, S)=\sum_{i=0}^{3} s_{i}^{2}=s_{0}^{2}+s^{2}, \quad \frac{1}{2} \operatorname{Tr} S=s_{0}
$$

it follows $s_{0}^{2}+s^{2}=2 s_{0}^{2}$, i.e. (6).
(iv) $\mathrm{By}(4,13)$ we have

$$
s=\frac{1}{2} \operatorname{Tr}\left(\sigma\left\langle\underline{E} \underline{E}^{*}\right\rangle\right)=\frac{1}{2}\left\langle\operatorname{Tr}\left(\sigma \underline{E} \underline{E}^{*}\right)\right\rangle .
$$

Since $|\langle v\rangle| \leqslant\langle | v| \rangle$, it follows

$$
|s| \leqslant \frac{1}{2}\langle | \operatorname{Tr}\left(\sigma \underline{E} \underline{E}^{*}\right)| \rangle=\frac{1}{2}\left\langle\operatorname{Tr} \underline{E} \underline{E}^{*}\right\rangle=s_{0}
$$

where the first equality is (6). Alternatively: for every $\underline{u} \in \mathbb{C}^{2}$

$$
\underline{u}^{*} S \underline{u}=\underline{u}^{*}\left\langle\underline{E} \underline{E}^{*}\right\rangle \underline{u}=\left\langle\left(\underline{u}^{*} \cdot \underline{E}\right) \overline{\left(\underline{u}^{*} \cdot \underline{E}\right)}\right\rangle \geqslant 0,
$$

i.e. $S \geqslant 0$ as a matrix. The eigenvalues of

$$
S=\left(\begin{array}{cc}
s_{0}+s_{3} & s_{1}+i s_{2} \\
s_{1}-i s_{2} & s_{0}-s_{3}
\end{array}\right)
$$

are given by

$$
0=\operatorname{det}\left(S-\lambda 1_{2}\right)=\lambda^{2}-2 s_{0} \lambda+\left(s_{0}^{2}-s^{2}\right)=\left(\lambda-\left(s_{0}+|s|\right)\right)\left(\lambda-\left(s_{0}-|s|\right)\right)
$$

i.e. $\lambda_{ \pm}=s_{0} \pm|s|$. They are $\geqslant 0$ since $S \geqslant 0$.
(v) The eigenvalues of σ_{i} are ± 1, since $\sigma^{2}=1, \operatorname{Tr} \sigma_{i}=0$. The normed eigenvectors, $\sigma_{i} e_{ \pm}^{(i)}= \pm e_{ \pm}^{(i)}$, are

$$
\begin{array}{rlrl}
e_{ \pm}^{(1)} & =\frac{1}{\sqrt{2}}\left(e_{1} \pm e_{2}\right) & \left(\pm 45^{\circ}-\right.\text { polarization) } \\
e_{ \pm}^{(2)} & =\frac{1}{\sqrt{2}}\left(e_{1} \pm i e_{2}\right) & & \text { (right-, left-circular) } \tag{15}\\
e_{+}^{(3)} & =e_{1}, \quad e_{-}^{(3)}=e_{2} & & \text { (horizontal, vertical) } .
\end{array}
$$

The matrix σ_{i} is described by $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ w.r.t. the eigenbasis $\left\{e_{+}^{(i)}, e_{-}^{(i)}\right\}$, and S by $\left\langle\alpha_{k} \bar{\alpha}_{j}\right\rangle_{k, j= \pm}$. Since the trace is independent of the basis, it follows, as in (14),

$$
\begin{aligned}
& \left.s_{i}=\left.\frac{1}{2}\langle | \alpha_{+}^{(i)}\right|^{2}-\left|\alpha_{-}^{(i)}\right|^{2}\right\rangle, \\
& \left.s_{0}=\left.\frac{1}{2}\langle | \alpha_{+}^{(i)}\right|^{2}+\left|\alpha_{-}^{(i)}\right|^{2}\right\rangle .
\end{aligned}
$$

Thus $c \cdot s_{0}$ is the intensity, and $-1 \leqslant s_{i} / s_{0} \leqslant 1,(i=1,2,3)$ describes the relative share of $(+/-)$-polarizations in the intensity w.r.t. the three bases (15). A wave with $s=0$ is unpolarized w.r.t. all of them (example: direct sunlight, in a good approximation).

