
Theoretical physics Spring Semester 2016

Solution 3

1. Helmholtz coil

(i) Let the origin be located at the center of the circle. The magnetic field is given by the
Biot-Savart law:

B(x) =
I

4πc

∫

γ

s× (x− y)

|x− y|3 dy .

Hence

B(−x) = − I

4πc

∫

γ

s× (x+ y)

|x+ y|3 dy =
I

4πc

∫

γ

s× (x− y)

|x− y|3 dy = B(x)

by substituting y → −y, where γ → γ. Similarly, a rotation R around the axis yields

B(Rx) = RB(x)

by y → Ry and Ra × Rb = R(a × b). For x = (0, 0, x3) we therefore have B =
(0, 0, B3(x3)) with

B3(x3) = e3 ·B =
I

4πc
2πR

1

R2 + x2
3

R
√

R2 + x2
3

=
I

2c

R2

(R2 + x2
3)

3/2
. (7)

Eq. (7) follows from s and x − y being perpendicular to one another, and the cosine

of the angle between its vector product and e3 being R/
√

R2 + x2
3.

(ii) Let B0 be the field in part (i). The field here is

B(x) = B0(x− a

2
e3) +B0(x+

a

2
e3) , (8)

where the origin is now located at the center of the two coils. By (i), we have the
symmetries

B(−x) = B(x) , (9)

B(Rx) = RB(x) . (10)

Eq. (9) implies that the Taylor expansion contains only terms of even order. Hence it
is enough to check the terms of order two. Eq. (10) implies that B3 is depending on

x1, x2 only through
√

x2
1 + x2

2. On the symmetry axis we thus have

∂2B3

∂x1∂x2
= 0 ,

∂2B3

∂x2
1

=
∂2B3

∂x2
2

. (11)



By ∂B3/∂xi = ∂Bi/∂x3, (i = 1, 2) we have there also

∂2B1

∂x2∂x3

=
∂2B2

∂x1∂x3

= 0 ,

∂2B1

∂x1∂x3
=

∂2B2

∂x2∂x3
. (12)

On the plane in the middle, x = (x1, x2, 0), (9, 10) imply for a rotation by π, i.e.
Rx = −x, B(x) = RB(x), which implies B1 = B2 = 0. Hence we have there

(

∂2Bk

∂xi∂xj

)2

i,j=1

= 0 , (k = 1, 2).

By the field equation already used and ∇ · B = 0 we have

∂2B1

∂x2
3

=
∂2B3

∂x1∂x3
= − ∂

∂x1

(

∂B1

∂x1
+

∂B2

∂x2

)

= 0 ,

and similarly for 1 ↔ 2. Only (11, 12) and ∂2B3/∂x
2
3 are not necessarily vanishing at

the origin. But we have

∂2B3

∂x2
1

+
∂2B3

∂x2
2

=
∂2B1

∂x1∂x3
+

∂2B2

∂x2∂x3
= −∂2B3

∂x2
3

,

and hence we only need (1) in order for them to vanish.

(iii) By (7, 8), we have to solve
f ′′(x3 = 0) = 0

w.r.t. a, with

f(x3) = f0(x3 −
a

2
) + f0(x3 +

a

2
) , f0(x3) = (R2 + x2

3)
−3/2 .

Since f0 is even, we have to solve f ′′

0 (a/2) = 0. By

f ′

0(x3) = −3
x3

(R2 + x2
3)

5/2
,

f ′′

0 (x3) = −3
1

(R2 + x2
3)

5/2
+ 15

x2
3

(R2 + x2
3)

7/2
= 3

4x2
3 −R2

(R2 + x2
3)

7/2

it follows a = R.

2. Energy flow due to the discharge of a capacitor

If the discharge is slow, the E-field is in every moment approximately given by the one which
corresponds to the charges left on the plates being constant.

Q



The B-field is generated by the current and the displacement current:

∇× B =
1

c

(

ı +
∂E

∂t

)

.

I

The Poynting vector S = c(E ×B) therefore is:

Hence the energy flow from the capacitor to the resistor is located in space and not inside
the conductors, although increasingly near them. The conductors guide the field.

3. Completely and partially polarized light

(i) The 2× 2 matrices S = S∗ are of the general form

S =

(

a b+ ic
b− ic d

)

,

with a, b, c, d ∈ R. The real vector space V built by them ((λS)∗ = λS for λ ∈ R!),
therefore has dimension 4. The three Pauli matrices, together with σ0 = 12, are linearly
independent in V and hence {σi}3i=0 is a basis; whence (5).

(ii) This basis is orthonormal w.r.t. the scalar product mentioned in the hint (check: it
actually is a scalar product), since

(σi, σj) =
1

2
Tr(σiσj) = δij , (i, j = 0, . . . , 3)

by Tr σ0 = 2, Trσi = 0, (i = 1, 2, 3), cf. also the second part of the hint. Thus we have

si = (σi, S) =
1

2
Tr(σiS) , (i = 0, . . . , 3) (13)



in (5), and in detail

s0 =
1

2
〈|E1|2 + |E2|2〉 =

1

2
〈|E|2〉 ,

s1 =
1

2
〈E2E1 + E1E2〉 = 〈ReE2E1〉 ,

s2 = − ı

2
〈E2E1 − E1E2〉 = 〈ImE2E1〉 ,

s3 =
1

2
〈|E1|2 − |E2|2〉 . (14)

(iii) By S = E E∗ we have

S2 = E(E∗E)E∗ = |E|2S = 2s0S .

By

1

2
TrS2 = (S, S) =

3
∑

i=0

s2i = s20 + s2 ,
1

2
TrS = s0

it follows s20 + s2 = 2s20, i.e. (6).

(iv) By (4, 13) we have

s =
1

2
Tr(σ〈E E∗〉) = 1

2
〈Tr(σE E∗)〉 .

Since |〈v〉| 6 〈|v|〉, it follows

|s| 6 1

2
〈|Tr(σE E∗)|〉 = 1

2
〈TrE E∗〉 = s0 ,

where the first equality is (6). Alternatively: for every u ∈ C2

u∗Su = u∗〈E E∗〉u = 〈(u∗ · E)(u∗ · E)〉 > 0 ,

i.e. S > 0 as a matrix. The eigenvalues of

S =

(

s0 + s3 s1 + is2
s1 − is2 s0 − s3

)

are given by

0 = det(S − λ12) = λ2 − 2s0λ + (s20 − s2) = (λ− (s0 + |s|))(λ− (s0 − |s|)) ,

i.e. λ± = s0 ± |s|. They are > 0 since S > 0.

(v) The eigenvalues of σi are ±1, since σ2 = 1,Trσi = 0. The normed eigenvectors,

σie
(i)
± = ±e

(i)
± , are

e
(1)
± =

1√
2
(e1 ± e2) (±45◦- polarization)

e
(2)
± =

1√
2
(e1 ± ie2) (right-, left-circular) (15)

e
(3)
+ = e1 , e

(3)
− = e2 (horizontal, vertical) .



The matrix σi is described by ( 1 0
0 −1 ) w.r.t. the eigenbasis {e (i)

+ , e
(i)
− }, and S by

〈αkαj〉k,j=±. Since the trace is independent of the basis, it follows, as in (14),

si =
1

2
〈|α(i)

+ |2 − |α(i)
− |2〉 ,

s0 =
1

2
〈|α(i)

+ |2 + |α(i)
− |2〉 .

Thus c ·s0 is the intensity, and −1 6 si/s0 6 1, (i = 1, 2, 3) describes the relative share
of (+/−)-polarizations in the intensity w.r.t. the three bases (15). A wave with s = 0
is unpolarized w.r.t. all of them (example: direct sunlight, in a good approximation).


