Solution 4

1. Solution of the inhomogeneous wave equation

(i) Let \hat{f} denote the Fourier transform of f. Then the Fourier transform of the inhomogeneous wave equation reads

$$
\frac{1}{c^{2}} \partial_{t}^{2} \hat{u}(t, k)=-k^{2} \hat{u}(t, k)+\hat{f}(t, k)
$$

Define $\hat{v}(t, k)=\partial_{t} \hat{u}(t, k)$. Then

$$
\partial_{t} \hat{v}(t, k)=c^{2}\left(-k^{2} \hat{u}(t, k)+\hat{f}(t, k)\right),
$$

and hence

$$
\partial_{t}\binom{\hat{u}(t, k)}{\hat{v}(t, k)}=\underbrace{\left(\begin{array}{cc}
0 & 1 \tag{2}\\
-c^{2} k^{2} & 0
\end{array}\right)}_{=: A(k)}\binom{\hat{u}(t, k)}{\hat{v}(t, k)}+\binom{0}{c^{2} \hat{f}(t, k)} .
$$

By Duhamel's principle, the solution of (2) is

$$
\begin{equation*}
\binom{\hat{u}(t, k)}{\hat{v}(t, k)}=\exp (t A(k))\binom{\hat{u}(0, k)}{\hat{v}(0, k)}+\int_{0}^{t} \mathrm{~d} s \exp ((t-s) A(k))\binom{0}{c^{2} \hat{f}(s, k)}, \tag{3}
\end{equation*}
$$

with

$$
\exp (t A(k))=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} A(k)^{n}
$$

Noting that

$$
A(k)^{2 n}=(-1)^{n}(c|k|)^{2 n} \mathbb{1}, \quad A(k)^{2 n+1}=(-1)^{n}(c|k|)^{2 n+1}\left(\begin{array}{cc}
0 & 1 /(c|k|) \\
-c|k| & 0
\end{array}\right)
$$

we can write

$$
\begin{aligned}
\exp (t A(k)) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{(2 n)!}(c|k|)^{2 n} \mathbb{1}+\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n+1}}{(2 n+1)!}(c|k|)^{2 n+1}\left(\begin{array}{cc}
0 & 1 /(c|k|) \\
-c|k| & 0
\end{array}\right) \\
& =\cos (c|k| t) \mathbb{1}+\sin (c|k| t)\left(\begin{array}{cc}
0 & 1 /(c|k|) \\
-c|k| & 0
\end{array}\right)
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\hat{u}(t, k)=\cos (c|k| t) \hat{u}(0, k)+\frac{\sin (c|k| t)}{c|k|} \hat{v}(0, k)+\int_{0}^{t} \mathrm{~d} s \frac{\sin (c|k|(t-s))}{c|k|} c^{2} \hat{f}(s, k) \tag{4}
\end{equation*}
$$

Note that $\hat{v}(0, k)$ is the Fourier transform of $\partial_{t} u(0, x)$. Furthermore, for $t>0$

$$
\frac{\sin (c|k| t)}{c|k|}=\frac{1}{4 \pi c^{2} t} \int_{\partial B_{c t}(0)} \mathrm{d} y \mathrm{e}^{-\mathrm{i} k \cdot y}=\int_{\mathbb{R}^{3}} \mathrm{~d} y \frac{\delta(|y|-c t)}{4 \pi c^{2} t} \mathrm{e}^{-\mathrm{i} k \cdot y}=\int_{\mathbb{R}^{3}} \mathrm{~d} y \frac{\delta(|y|-c t)}{4 \pi c|y|} \mathrm{e}^{-\mathrm{i} k \cdot y}
$$

by (1), and hence $\sin (c|k| t) /(c|k|)$ is the Fourier transform of $\delta(|y|-c t) /(4 \pi c|y|)$. For $t<0$ we have $\sin (c|k| t)=-\sin (c|k|(-t))$ which leads to $-\delta(|y|+c t) /(4 \pi c|y|)$. Moreover, we have $\cos (c|k| t)=\partial_{t} \sin (c|k| t) /(c|k|)$, which implies that it is the Fourier transform of $\partial_{t} \delta(|y|-c t) /(4 \pi c|y|)$ and $-\partial_{t} \delta(|y|+c t) /(4 \pi c|y|)$ respectively. We therefore get

$$
\begin{align*}
u(t, x)= & \int_{\mathbb{R}^{3}} \mathrm{~d} y\left[\frac{1}{c} \partial_{t}\left(\frac{\delta(|y|-c t)}{4 \pi|y|}-\frac{\delta(|y|+c t)}{4 \pi|y|}\right) u(0, x-y)\right. \\
& +\left(\frac{\delta(|y|-c t)}{4 \pi|y|}-\frac{\delta(|y|+c t)}{4 \pi|y|}\right) \frac{1}{c} \partial_{t} u(0, x-y) \tag{5}\\
& \left.+\int_{0}^{t} \mathrm{~d} s\left(\frac{\delta(|y|-c(t-s))}{4 \pi|y|}-\frac{\delta(|y|+c(t-s))}{4 \pi|y|}\right) c f(s, x-y)\right] .
\end{align*}
$$

Eq. (1) is verified as follows:

$$
\begin{aligned}
\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(0)} \mathrm{d} y \mathrm{e}^{-\mathrm{i} k \cdot y} & =\frac{1}{4 \pi r^{2}} \int_{\mathbb{R}^{3}} \mathrm{~d} y \delta(|y|-r) \mathrm{e}^{-\mathrm{i} k \cdot y} \\
& =\frac{1}{2 r^{2}} \int_{0}^{\pi} \mathrm{d} \theta \sin (\theta) \int_{0}^{\infty} \mathrm{d} \tilde{r} \tilde{r}^{2} \delta(\tilde{r}-r) \mathrm{e}^{-\mathrm{i}|k| \tilde{r} \cos (\theta)} \\
& =\frac{1}{2} \int_{0}^{\pi} \mathrm{d} \theta \underbrace{\sin (\theta) \mathrm{e}^{\mathrm{-i}|k| r \cos (\theta)}}_{=\frac{1}{i r|k|} \partial_{\theta} \mathrm{e}^{-\mathrm{i}|k| r \cos (\theta)}} \\
& =\frac{1}{r|k|} \frac{1}{2 i}\left(\mathrm{e}^{\mathrm{i}|k| r}-\mathrm{e}^{-\mathrm{i}|k| r}\right) .
\end{aligned}
$$

(ii) For $u(0, \cdot)=\partial_{t} u(0, \cdot)=0$ and $f(s, x)=0$ for $s \leqslant 0$, (5) becomes

$$
\begin{aligned}
u(t, x) & =\int_{\mathbb{R}^{3}} \mathrm{~d} y \int_{0}^{t} \mathrm{~d} s \frac{\delta(|y|-c(t-s))}{4 \pi|y|} c f(s, x-y) \\
& =\int_{\mathbb{R}^{3}} \mathrm{~d} y \int_{-\infty}^{t} \mathrm{~d} s \frac{\delta\left(\frac{|y|}{c}-(t-s)\right)}{4 \pi|y|} f(s, x-y) \\
& =\int_{\mathbb{R}^{3}} \mathrm{~d} y \int_{-\infty}^{\infty} \mathrm{d} s \Theta(r-s) \frac{\delta\left(\frac{|y|}{c}-(t-s)\right)}{4 \pi|y|} f(s, x-y) \\
& =\int_{\mathbb{R}^{3}} \mathrm{~d} y \frac{f\left(t-\frac{|y|}{c}, x-y\right)}{4 \pi|y|}
\end{aligned}
$$

where Θ denotes the Heaviside function. In the second step, the integral can be extended to $-\infty$ since $f(s, x)=0$ for $s \leqslant 0$, and the delta function is rescaled.

2. Solution of the wave equation in two dimensions

(i) The solution of the 3-dimensional wave equation $\square u(t, x)=0$ with initial conditions independent of x_{3},

$$
u(0, x)=u(0, \underline{x}), \quad \partial_{t} u(0, x)=\partial_{t} u(0, \underline{x}), \quad\left(x=\left(\underline{x}, x_{3}\right)\right),
$$

is itself independent of $x_{3}, u(t, x)=u(t, \underline{x})$, and solves the initial value problem in dimension 2. The distributional solution $D_{2}(t, \underline{x})$ is the solution with initial conditions

$$
D_{2}(0, \underline{x})=0, \quad \underline{1} \partial_{t} D_{2}(0, \underline{x})=\delta^{(2)}(\underline{x}) .
$$

It is therefore found via the 3 -dimensional distributional solution $D_{3}(t, x)$:

$$
D_{2}(t, \underline{x})=\int \mathrm{d} y D_{3}(t, x-y) \delta^{(2)}(\underline{y})=\int \mathrm{d} y_{3} D_{3}\left(t, \underline{x},-y_{3}\right) .
$$

Here x_{3} is set to 0 , which is valid since we noticed before that the expression is independent of x_{3}. For $t \geq 0$ we have

$$
D_{2}(t, \underline{x})=\frac{1}{4 \pi} \int_{-\infty}^{\infty} \mathrm{d} y_{3} \frac{\delta\left(c t-\sqrt{\underline{x}^{2}+y_{3}^{2}}\right)}{\sqrt{\underline{x}^{2}+y_{3}^{2}}}=\frac{1}{2 \pi} \int_{|\underline{x}|}^{\infty} \mathrm{d} r \frac{\delta(c t-r)}{\sqrt{r^{2}-\underline{x}^{2}}}=\frac{1}{2 \pi} \frac{\theta(c t-|\underline{x}|)}{\sqrt{c^{2} t^{2}-\underline{x}^{2}}}
$$

with the substitution $r^{2}=\underline{x}^{2}+y_{3}^{2}$ (for $y_{3}>0$ and $y_{3}<0$), under which

$$
\frac{\mathrm{d} y_{3}}{r}=\frac{\mathrm{d} r}{y_{3}}=\frac{\mathrm{d} r}{\sqrt{r^{2}-\underline{x}^{2}}} .
$$

Together with a similar result for $t \leq 0$ this implies

$$
D_{2}(t, \underline{x})=\frac{1}{2 \pi \sqrt{c^{2} t^{2}-\left|\underline{x}^{2}\right|}}(\theta(c t-|\underline{x}|)-\theta(-c t-|\underline{x}|))
$$

(ii) The support of $D_{2}(t, \underline{x})$ is $|\underline{x}| \leqslant c|t|$ (instead of $|x|=c t$ for $D_{3}(t, x)$). Thus $u(t, \underline{x})$ depends on $u(\tilde{t}, \underline{\tilde{x}})$ for $|\underline{x}-\underline{\tilde{x}}| \leqslant c|t-\tilde{t}|$. Interpretation: a wave which is localized at $\underline{x}=0$ at time $t=0$ is noticed for the first time at position \underline{x} at time $|\underline{x}| / c$, but afterwards fades away only slowly.

