Theoretical physics Spring Semester 2016

Solution 4

1. Solution of the inhomogeneous wave equation

(i) Let f denote the Fourier transform of f. Then the Fourier transform of the inhomo-
geneous wave equation reads
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Define v(t, k) = dyu(t, k). Then
O,0(t, k) = A (—k*u(t, k) + f(t k)),
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Thus we have
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Note that 0(0, k) is the Fourier transform of d;u(0, z). Furthermore, for ¢t > 0
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by (1), and hence sin(c|k|t)/(c|k|) is the Fourier transform of o(|y| — ct)/(4mcly|).
For t < 0 we have sin(c|k|t) = —sin(c|k|(—t)) which leads to —d(|y| + ct)/(4mc|y]).
Moreover, we have cos(c|k|t) = O, sin(c|k|t)/(c|k|), which implies that it is the Fourier
transform of 0, (|y|—ct)/(4mc|y|) and —0:6(|y|+ct)/(4mcly|) respectively. We therefore
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Eq. (1) is verified as follows:
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(ii) For u(0,-) = dyu(0,-) =0 and f(s,z) =0 for s <0, (5) becomes
u(t, x) :/R3 dy /0 ds a ;770|§f|_ s)) cf(s,x —y)

where © denotes the Heaviside function. In the second step, the integral can be
extended to —oo since f(s,z) =0 for s < 0, and the delta function is rescaled.

2. Solution of the wave equation in two dimensions

(i) The solution of the 3-dimensional wave equation Ou(t,z) = 0 with initial conditions
independent of x3,

u(0,z) = u(0,z), Oyu(0, x) = du(0, ), (x = (z,x3)),



(i)

is itself independent of x3, u(t,x) = u(t,z), and solves the initial value problem in
dimension 2. The distributional solution Ds(t, z) is the solution with initial conditions

1
D2(0,2) =0, —80:Dx(0,2) = 5@ ().

It is therefore found via the 3-dimensional distributional solution Dj(t, z):

Dy(t,z) = /dy Dy(t,x — 9)5(2)(@ = /dy3 Ds(t,z, —ys) .

Here x5 is set to 0, which is valid since we noticed before that the expression is inde-
pendent of x3. For t > 0 we have
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with the substitution 7? = z? + y2 (for y3 > 0 and y3 < 0), under which
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Together with a similar result for £ < 0 this implies
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The support of Do(t,z) is |z| < c|t| (instead of |z| = ct for Ds(t,z)). Thus u(t,z)
depends on u(t, ) for |z — Z| < c|t — t|. Interpretation: a wave which is localized
at z = 0 at time ¢ = 0 is noticed for the first time at position z at time |z|/c, but
afterwards fades away only slowly.
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