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Solution 4

1. Solution of the inhomogeneous wave equation

(i) Let f̂ denote the Fourier transform of f . Then the Fourier transform of the inhomo-
geneous wave equation reads
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∂tv̂(t, k) = c2(−k2û(t, k) + f̂(t, k)) ,
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By Duhamel’s principle, the solution of (2) is(
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Noting that
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Thus we have
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Note that v̂(0, k) is the Fourier transform of ∂tu(0, x). Furthermore, for t > 0
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by (1), and hence sin(c|k|t)/(c|k|) is the Fourier transform of δ(|y| − ct)/(4πc|y|).
For t < 0 we have sin(c|k|t) = − sin(c|k|(−t)) which leads to −δ(|y| + ct)/(4πc|y|).
Moreover, we have cos(c|k|t) = ∂t sin(c|k|t)/(c|k|), which implies that it is the Fourier
transform of ∂tδ(|y|−ct)/(4πc|y|) and −∂tδ(|y|+ct)/(4πc|y|) respectively. We therefore
get
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Eq. (1) is verified as follows:
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(ii) For u(0, ·) = ∂tu(0, ·) = 0 and f(s, x) = 0 for s 6 0, (5) becomes
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where Θ denotes the Heaviside function. In the second step, the integral can be
extended to −∞ since f(s, x) = 0 for s 6 0, and the delta function is rescaled.

2. Solution of the wave equation in two dimensions

(i) The solution of the 3-dimensional wave equation 2u(t, x) = 0 with initial conditions
independent of x3,

u(0, x) = u(0, x) , ∂tu(0, x) = ∂tu(0, x) , (x = (x, x3)) ,



is itself independent of x3, u(t, x) = u(t, x), and solves the initial value problem in
dimension 2. The distributional solution D2(t, x) is the solution with initial conditions

D2(0, x) = 0,
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c
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It is therefore found via the 3-dimensional distributional solution D3(t, x):
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Here x3 is set to 0, which is valid since we noticed before that the expression is inde-
pendent of x3. For t ≥ 0 we have
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Together with a similar result for t ≤ 0 this implies
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)
(ii) The support of D2(t, x) is |x| 6 c|t| (instead of |x| = ct for D3(t, x)). Thus u(t, x)

depends on u(t̃, x̃) for |x − x̃| 6 c|t − t̃|. Interpretation: a wave which is localized
at x = 0 at time t = 0 is noticed for the first time at position x at time |x|/c, but
afterwards fades away only slowly.


