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Solution 5

1. Hertzian dipole

(i)
∂ρ

∂t
= −ṗ(t) · ∇δ(x) = −∇ · ı .

(ii) We have
∫
∇δ(x) · f(x) dx = −(∇ · f)(0) for a vector-valued function f , and hence
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)
, (r = |x|) .

We used the product and chain rule in the last step, where p and ṗ have to be taken
at the retarded time t− r/c. Furthermore we have

A(x, t) =
1

4πc

∫
dy

ı
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)
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4πcr
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c
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The same rules then imply

4πB = e ∧
(
− 1

c2r
p̈− 1

cr2
ṗ
)
,

4πE =
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(
(p̈ · e)e− p̈

)
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(
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)
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r3
(
3(p · e)e− p
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,

where e = x/r.

(iii) In this case B is perpendicular to e and p, whereas E is a linear combination of e and
p and therefore lies in the plane spanned by them.

(iv) In the time-harmonic case we have ρ, ı ∼ eiωt, λ = 2πc/ω, i.e. p(t) = p0e
iωt for some

time-independent vector p0. Thus the terms of B and E are of the order of magnitude

1

rλ2
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r2λ
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rλ2
,

1

r2λ
,
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respectively. For r � λ the last terms dominate (for E this is the (retarded) elec-
trostatic field); for r � λ the first terms dominate. In the first case we have B ∝ ṗ
and E ∝ p, i.e. the fields have a relative phase of 90◦ (−i = e−i

π
2 ); in the second case

(B,E ∝ p̈) they have the same phase.

(v) The above A-field is the one of the electric dipole radiation; and in particular this is
not an approximation, since the extent of the source is d = 0. The same holds for the
Poynting vector and the power.



2. Thomson scattering

The motion of the particle is due to the Lorentz force exerted by the electric and magnetic
components of the incident wave. Since the latter is periodic in time, so is the motion of
the particle. The equation of motion for the particle is

mẍ = e(E +
ẋ

c
×B) . (1)

Neglecting the field of the particle itself we have

E(x, t) = Re(E0e
i(k·x−ωt)), B = ê× E ,

where k = (ω/c)ê is the wave vector. The intensity

I0 =
c

2
(E0, E0)

is assumed to be small, which implies that the amplitude of the wave |E0| is small.

The particle is assumed to be initially at rest at x = 0 and then to start small oscillations
around x = 0 due to the incident wave. Hence we have |x| and |ẋ|/c of the order of |E0|.
Thus the part of the magnetic field in (1) is of order two in |E0| and therefore neglected.
Moreover, if |x| � λ we have k · x = (ω|x|/c) cos^(k, x) = (2π|x|/λ) cos^(k, x) � 1, and
we can set x = 0 in the exponent. Thus in this case, (1) to first order in |E0| simplifies to

mẍ = eRe(E0e
−iωt) ,

which admits the solution
x = − e

mω2
Re(E0e

−iωt) .

The assumption therefore requires e|E0| � mω2λ = 2πmωc.

For |x| � λ the electric dipole radiation is dominant, with p(t) =
∫
y e δ(y−x) dy = ex and

hence p̈ = eẍ = (e2/m)Re(E0e
−iωt). The radiated power averaged over time is thus

P =
1

6πc3
e4

m2

1

2
(E0, E0) ,

and we get

σ =
e4

6πc4m2
.

Remark: The particle absorbs energy from the incident wave and re-emits it as electromag-
netic radiation. Such a process is equivalent to the scattering of the electromagnetic wave
by the particle. More precisely, intensity of the scattered radiation is such as if the incident
wave, flowing through a section of area σ, would be scattered.

3. The Michelson-Morley experiment

(i) Elapsed time SS2S: In the laboratory system, the velocities for the way to S2 and
back are c− v and c+ v respectively, hence

t2 = d2
( 1

c− v
+

1

c+ v

)
=

2d2
c

1

1− v2/c2
.



Elapsed time SS1S: In the reference system of the aether, S is shifted by vt1 and the
light has travelled the distance 2

√
d21 + (vt1/2)2 (Pythagoras). Hence 4d21+v21t

2
1 = c2t21,

i.e.

t1 =
2d1
c

1√
1− v2/c2

.

Consequently

∆t = t2 − t1 =
2

c

( d2
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− d1√
1− v2/c2

)
=

2

c

(
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c2
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2

) +O((
v

c
)4)
)
.

For the rotated apparatus we have

t′2 =
2d2
c

1√
1− v2/c2

, t′1 =
2d1
c

1

1− v2/c2

∆t′ = t′2 − t′1 =
2

c

(
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(
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2
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)
.

We conclude

∆t′ −∆t = −2

c

v2

c2
(d2

2
+
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2

)
= −d1 + d2

c

(v
c

)2
.

One wave is shifted w.r.t. the other by

c|∆t′ −∆t|
λ

=
d1 + d2
λ

(v
c

)2
(2)

in units of the wavelength. The interference pattern is shifted by the same fraction of
the distance between the stripes.

(ii) With c ≈ 3 · 108m/s we have v/c ≈ 10−4, and (2) is ≈ 10−1 = 10%.


