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Solution 6

1. Applications of Lorentz transformations

For all subtasks we may (or should) assume that the coordinates of an event w.r.t. O′ are
given by those w.r.t. O after the application of a boost in 1-direction. The latter is given
by

Λ(ve1) =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 , (1)

where β = v/c (with |β| < 1) and γ = (1− β2)−1/2.

(i) Let (ctA, x) and (ctB, x) be the coordinates of the events A and B in O (note the
common position x = (x1, x2, x3)). Their time coordinates w.r.t. O′ are

ct′A = γctA − βγx1 , ct′B = γctB − βγx1 .

Thus the time difference between A and B in O′ is

∆t′ = t′B − t′A = γ(tB − tA) =
∆t√

1− (v/c)2
> ∆t .

(ii) In the rest frame O of the rod, its end points have the fixed spatial coordinates xA =
(xA, 0, 0) and xB = (xB, 0, 0) (rod in 1-direction). In the inertial system O′ moving
longitudinal w.r.t. the rod, denote the coordinates (measured at the same time w.r.t.
O′!) of its end points by (ct′, x′A, 0, 0) and (ct′, x′B, 0, 0). The coordinates of these
events in O follow by the application of the matrix Λ(−ve1). In particular, for the
1-coordinates we have

xA = βγct′ + γx′A , xB = βγct′ + γx′B .

If L′ denotes the length of the rod in the system O′, then

L = xB − xA = γ(x′B − x′A) = γL′ ,

and hence L′ =
√

1− (v/c)2L 6 L. (Note that it is not relevant that the two events
are not at the same time in O, since the rod is at rest w.r.t. this system.)

(iii) The relation between the coordinates (ct, x), (ct′, x′) of an event w.r.t. the two inertial
systems is

ct = γ(ct′ + βx′
1
) , x1 = γ(x′

1
+ βct′) , xk = x′

k
, (k = 2, 3) .

By definition, the measurement of the position of the end points of the rod w.r.t. O′

happens there at the same time: ∆t′ = 0. Therefore c∆t = γβ∆x′1 and ∆x′2 = ∆x2 =
w∆t. Hence

tan θ =
∆x′2

∆x′1
= γ

wv

c2
.



(iv) After a possible rotation of the spatial coordinates, and a possible translation of the
spatial and time coordinates, we may assume that the events x, y have the coordinates

x = (0, 0, 0, 0) , y = (y0, y1, 0, 0)

w.r.t. the system O. Then the squared Minkowski norm of ξ = x− y is

〈x− y, x− y〉 = (y0)2 − (y1)2 . (2)

We clearly have 〈ξ, ξ〉 > 0 (resp. < 0) if y1 = 0 (resp. y0 = 0), i.e. if the events take
place at the same position (resp. the same time).

The converse is also true: in a system O′, which emerges from O through (1), the
coordinates of the two events are

(x′)µ = (0, 0, 0, 0) , (y′)µ = (γ(y0 − βy1) , γ(y1 − βy0), 0, 0) . (3)

If x − y is spacelike, (2) implies |y0|/|y1| < 1 and we can choose β = y0/y1. By (3),
the two events then take place at the same time in the new system.

On the other hand, if x− y is timelike, then |y1|/|y0| < 1. By choosing β = y1/y0, the
two events now take place at the same position.

Remark : It is convenient to deduce relations between inertial systems from the Lorentz
transformation (1). However, it is often enough to consider the fundamental invariant
〈ξ, ξ〉 = (ξ0)2 − ξ2. E.g. for part (i): in O, the position of the clock follows an inertial
trajectory x = vt + b, with v ≡ 0 and hence b ≡ x. By exercise 2, the position of the
clock in O′ follows an inertial trajectory as well, i.e. x′ = v′t′ + b′, but now v′ 6= 0 in
general. Hence if ξ is the difference of the 4-vectors of the two events, we have

〈ξ, ξ〉 = c2(∆t′)2 − (∆x′)2 = c2(∆t)2 − (∆x)2 ,

which implies the statement, since |∆x| = 0 and |∆x′| = v′|∆t′|.
Another example is part (ii): the length L′ of the rod can as well be determined in
terms of the time difference T ′ between the events defined by the two ends passing a
fixed mark: L′ = vT ′. From this perspective we have ∆x′ = 0, ∆t′ = T ′. Since the
mark has the velocity v w.r.t. O, we have |∆x| = v|∆t|; and moreover |∆x| = L. Thus
by

c2(∆t)2 − (∆x)2 = c2(∆t′)2 − (∆x′)2 ,

we have ((c2/v2)− 1)L2 = c2T ′2 and L′2 = (1− v2/c2)L2, as before.

2. Lorentz transformations on the celestial sphere

First note that it is enough to show that the map S is a Möbius transformation for every
Λ ∈ L↑+ in order to deduce the stated isomorphism, since the two groups have the same

dimension (namely 6). Furthermore, note that Lorentz transformations in L↑+ preserve the
spatial orientation, and hence S preserves the orientation as well. We are thus left to show
that S maps circles on S2 to circles on S2.

The condition that the points v1, v2, v3 lie on a line is equivalent to the following condition:
inertial trajectories which emerge from a common event through these velocities lie on the
same plane in the spacetime R4. Indeed, if (t0, b) is the common event, the trajectories



xi(t) = b+ vi(t− t0) read t 7→ (t, xi(t)), (c = 1), when conceived in R4, and have (constant)
tangential vectors

(
1
vi

)
. We have

rank

(
1 1 1
v1 v2 v3

)
= rank

(
0 0 1

v1 − v3 v2 − v3 v3

)
= rank

(
0 0 1

v1 − v3 v2 − v3 0

)
= 1 + rank

(
v1 − v3 v2 − v3

)
.

The two conditions are now seen to be equivalent, since they correspond to the case where
one of the ends of the equation is equal to 2.

By (i), we have Λ(1, vi) = (t′, b + v′it
′). Moreover, Lorentz transformations are affine and

therefore map planes to planes, which implies that the transformed vectors lie on a plane
as well. Since b and t′ are the same for all three vectors, we deduce that the second form of
the condition is invariant under Lorentz transformations. Hence S maps lines to lines and
therefore also planes to planes.

By (ii), S leaves the ball S2 invariant. Circles on it are intersections with a plane in R3, and
hence are mapped circles: S is a Möbius transformation.

3. Doppler shift and aberration

(i) Let x = (ct, x) and k = (ω/c, k). Then ϕ(x) = e−i〈k,x〉, where 〈·, ·〉 denotes the
Minkowski scalar product. The transformed field is thus

ϕ′(x′) = ϕ(Λ−1x′) = e−i〈k,Λ
−1x′〉 = e−i〈Λk,x

′〉 = e−i〈k
′,x′〉 ,

with k′ = Λk, and the third equality following from the invariance of the scalar product
under Lorentz transformations. Hence k = (ω/c, k) transforms like a 4-vector under
Lorentz transformations.

(ii) The 4-wavevector of the light has components k = (ω/c, ω/c, 0, 0) w.r.t. O, since
|k| = ω/c. Its components w.r.t. O′ are computed by applying matrix (1),

k′ = Λ(ve1)k = ((γω − βγω)/c, (−βγω + γω)/c, 0, 0) ;

and we deduce

ω′ = ωγ(1− β) = ω

√
1− v/c
1 + v/c

.

Remark: To first order in v/c we have ω′ = ω(1 − v/c), which is the non-relativistic
result.

(iii) We apply now (1) to the 4-vector k = (ω/c, 0, ω/c, 0) and find

k′ = (γω/c,−βγω/c, ω/c, 0)

w.r.t. O′. Thus

tanα(v) = k′
1
/k′

2
= −βγ = − v/c√

1− (v/c)2
.



4. Transformation of velocities

The 4-velocity of the particle is u = γ(w)(c, w), where γ(w) = 1/
√

1− w2/c2. Since u is a
4-vector, its components transform as

u′ 0 = γ(u0 − βu1) , u′ 1 = γ(u1 − βu0) , u′ k = uk , (k = 2, 3)

under the boost (1). Hence

u′ = γ(w′)(c, w′) = (γ(u0 − βu1), γ(u1 − βu0), u2, u3) ,

and thus

w′1 = u′ 1
c

u′ 0
= c

u1 − βu0

u0 − βu1
=

w1 − v
1− vw1/c2

, w′k = u′ k
c

u′ 0
= c

uk

γ(u0 − βu1)
=

wk
γ(1− vw1/c2)

,

(k = 2, 3).


