Theoretical physics Spring Semester 2016

Solution 8

1. Calculating with commutators

(i) The equations follow by writing out the commutators.

(ii) By the linearity of the commutator, it is enough to show the first statement for mono-
mials: f(X) = X" f/(X)=nX""1 In this case the statement holds true for n = 1
((i/R)[P,X] =1). For n > 1 we use induction: by (i), we have

1 1

[P, X" = ~[P, X]X" ™ + X~ [P, X" = X"+ X - (n—1)X"2=nx"".

h h h
The second statement is analogous.

[A, BC] = B[A,C] + [A, B]C. Hence

[Lit1, Liyo) = [Xivo Py — XiPio, Xi Py — Xiy 1 P)]
= Xigo| Py, Xi] Pip1 + X1 [ X, B Pigo
= iW(Xit1 P2 — XiroPia)

—ihL, (i=1,2,3 mod3).

Let L3y = ma). Then
ih(¢, Lip) = (¢, LaLs — LyLatp) = (m — m) (¢, Latp) =0
and similarly (¢, Lop) = 0.

2. Moving on a line and tunnelling

The time-independent Schrodinger equation (1) in the three areas is

d2_1/1 2mE

T+ =0, (I +111)
&y | 2m(E —Vp)
T ) =0, (1)

There it is solved separately by

Di(x) = Are™® 4 Bie e
b (@) = Agel® + Bye o
Ym(z) = Age™
with k% = 2mFE/h* and I? = 2m(E — Vp)/h?. (In case (a), [ is purely imaginary). Further-

more, integrating the Schrodinger equation over [xg — &, ¢ + €], € — 0, yields

%(wo—i-) - %(wo—) = lim oy (x)dz = _2m lim x0+€(E— V(x))(x)dzr =0. (3)

2 2
e=0 [, dx h2 =0 .

—€



Thus dv/dz, and therefore also 1, are continuous at each position xy. The last equation in
(3) follows from the integrand being bounded in each point of the interval [zg — &, x¢ + €].
Hence for xy = +a/2, this yields
_ika ika _ila il
A1€ 2 —|—Ble 2 :Age 2 —|—8262 s
ik:Ale_ikTa — ikBleikTa = ilAQe_iZTG — 1lBgeil7a ,
_ila ika

ila ika
A2€2 —|—82€ 2 :A362 ,

ilAge% — ilBge_iZTG = lkagelkTa .
From the last two equations we get
k +l (k=12 k _l i a
A2:2—le(k l)2A37 B2:_2—le(k+l)2A3,
and hence the first two equations imply
) ) eilm /{Z2 o l2 ) )
Al — [(k? + l)26—1la o (k) o Z)Qella] Ag, By = (e—da o e1la)A3.

4kl 4kl

A wave 9(z) = Ae'*® has current density

h hk
] = —I / = — A 2
o) = (e () = Mpap,
and therefore T' = |A3/A|? and R = |B;/A;|?. Thus

16421
T — Uﬁ‘ y R —

|k:2 - l2|2‘efila _ eila)2

D )

with D = |(k +1)%e7@ — (k — )%l

(a) 0 < E < Vy: We write [ = i\ with A = 2m/(Vy — E)/h? > 0. The denominator D is
D = |(k +iX)%e M — (k —i\)%e )2
— <k2 o )\2)(6)@ o ean)Q + (2]€)\)2(€)‘a + ean)Q
= 4[(k* + A\?)? sinh® Aa + 4k*\?]
and we have T' = 16k?X?/D and R = 4(k* + X\?)?(sinh® \a)/D; thus T+ R = 1. It is

therefore enough to discuss 7"

A4E(Vo — E
() = Vo= b) ,
AB(Vy — E) + V@ sinh? (/2052 )
and in particular
4F 1
lim T(E) =0, lim T(E) = lim Sy = -
ENO E/Vy E/Vo AE + 2 VE 1 4 Bk

(b) 0 <V < E:

D=[k+1)?—(k—10%cos*la+ [(k+1)*+ (k—1)??sin?la
= 4[4k*1* + (K* — [*)?sin® la] |
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and T = 16k2%1?/D, R = 4(k? — I?)*(sin*la)/D; thus T + R = 1.
AE(E - Vo)
AE(E — Vi) + V2 sinQ( 72’”@%%1)

hQ

T(E) =

Moreover, T(E) = 1 for QW(Q;V% =nm, ie E=V,+ %nQ ,(n=1,2,...).

For i — 0 the tunnelling vanishes: T'(E) — 0 (0 < E < V;). However, for £ > V; we do
not get T'(E) — 1 in that limit; T'(E) rather oscillates faster and faster between 1 and

AE(E —Vy)  4E(E —Vp)
AB(E - Vo) + Vi (2E — Vp)?

in that case. The discrepancy between this result and the classical one is explained by the
following consideration: if the wave length A = 27/k is much smaller compared to the other
relevant length scales of the problem, wave optics passes into ray optics and the problem
becomes a classical one. However in the present problem, even though A\ — 0, (A — 0),
there is a length scale w.r.t. which A is not small, namely the length in which the potential
changes by a significant amount; the latter is zero because of the incontinuity of V(x).

3. Current and momentum

We have ¢/(z) = i(kya;e™® + kyaqel®>®), and hence

$(0)4'(0) = iasksa;,
§(0) =) (ki + ky)asa,

ij=1
This is a quadratic form in aq, a; which is not positive semidefinite, since its determinant is

2k ki + ko

itk 2k | Ahrky — (ky + k2)* = (k1 — k2)* < 0.




