Solution 8

1. Calculating with commutators

(i) The equations follow by writing out the commutators.
(ii) By the linearity of the commutator, it is enough to show the first statement for monomials: $f(X)=X^{n}, f^{\prime}(X)=n X^{n-1}$. In this case the statement holds true for $n=1$ $((\mathrm{i} / \hbar)[P, X]=1)$. For $n>1$ we use induction: by (i), we have

$$
\frac{\mathrm{i}}{\hbar}\left[P, X^{n}\right]=\frac{\mathrm{i}}{\hbar}[P, X] X^{n-1}+X \frac{\mathrm{i}}{\hbar}\left[P, X^{n-1}\right]=X^{n-1}+X \cdot(n-1) X^{n-2}=n X^{n-1}
$$

The second statement is analogous.
(iii) We have $\left[X_{i}, X_{j}\right]=\left[P_{i}, P_{j}\right]=0,\left[X_{i}, P_{j}\right]=\mathrm{i} \hbar \delta_{i j}(i, j=1,2,3),[A, B]=-[B, A]$ and $[A, B C]=B[A, C]+[A, B] C$. Hence

$$
\begin{aligned}
{\left[L_{i+1}, L_{i+2}\right] } & =\left[X_{i+2} P_{i}-X_{i} P_{i+2}, X_{i} P_{i+1}-X_{i+1} P_{i}\right] \\
& =X_{i+2}\left[P_{i}, X_{i}\right] P_{i+1}+X_{i+1}\left[X_{i}, P_{i}\right] P_{i+2} \\
& =\mathrm{i} \hbar\left(X_{i+1} P_{i+2}-X_{i+2} P_{i+1}\right) \\
& =\mathrm{i} \hbar L_{i}, \quad(i=1,2,3 \quad \bmod 3) .
\end{aligned}
$$

Let $L_{3} \psi=m \psi$. Then

$$
\mathrm{i} \hbar\left\langle\psi, L_{1} \psi\right\rangle=\left\langle\psi, L_{2} L_{3}-L_{3} L_{2} \psi\right\rangle=(m-m)\left\langle\psi, L_{2} \psi\right\rangle=0
$$

and similarly $\left\langle\psi, L_{2} \psi\right\rangle=0$.

2. Moving on a line and tunnelling

The time-independent Schrödinger equation (1) in the three areas is

$$
\begin{align*}
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \psi & =0 \tag{I+III}\\
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \psi & =0 \tag{II}
\end{align*}
$$

There it is solved separately by

$$
\begin{aligned}
\psi_{\mathrm{I}}(x) & =A_{1} \mathrm{e}^{\mathrm{i} k x}+B_{1} \mathrm{e}^{-\mathrm{i} k x} \\
\psi_{\mathrm{II}}(x) & =A_{2} \mathrm{e}^{\mathrm{i} x x}+B_{2} \mathrm{e}^{\mathrm{i} l x} \\
\psi_{\text {III }}(x) & =A_{3} \mathrm{e}^{\mathrm{i} k x}
\end{aligned}
$$

with $k^{2}=2 m E / \hbar^{2}$ and $l^{2}=2 m\left(E-V_{0}\right) / \hbar^{2}$. (In case (a), l is purely imaginary). Furthermore, integrating the Schrödinger equation over $\left[x_{0}-\varepsilon, x_{0}+\varepsilon\right], \varepsilon \rightarrow 0$, yields

$$
\begin{equation*}
\frac{d \psi}{d x}\left(x_{0}+\right)-\frac{d \psi}{d x}\left(x_{0}-\right)=\lim _{\varepsilon \rightarrow 0} \int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon} \frac{d^{2} \psi}{d x^{2}}(x) d x=-\frac{2 m}{\hbar^{2}} \lim _{\varepsilon \rightarrow 0} \int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon}(E-V(x)) \psi(x) d x=0 . \tag{3}
\end{equation*}
$$

Thus $d \psi / d x$, and therefore also ψ, are continuous at each position x_{0}. The last equation in (3) follows from the integrand being bounded in each point of the interval $\left[x_{0}-\varepsilon, x_{0}+\varepsilon\right]$. Hence for $x_{0}= \pm a / 2$, this yields

$$
\begin{aligned}
& A_{1} \mathrm{e}^{-\frac{\mathrm{i} k a}{2}}+B_{1} \mathrm{e}^{\mathrm{i} k a}=A_{2} \mathrm{e}^{-\frac{\mathrm{i} l a}{2}}+B_{2} \mathrm{e}^{\mathrm{i} l a}, \\
& \mathrm{i} k A_{1} \mathrm{e}^{\mathrm{i} \frac{\mathrm{i} k a}{2}}-\mathrm{i} k B_{1} \mathrm{e}^{\frac{\mathrm{i} k a}{2}}=\mathrm{i} l A_{2} \mathrm{e}^{-\mathrm{i} l a}-{ }^{2} l B_{2} \mathrm{e}^{\frac{\mathrm{i} l a}{2}}, \\
& A_{2} \mathrm{e}^{\frac{\mathrm{i}(a}{2}}+B_{2} \mathrm{e}^{-\frac{\mathrm{i} l a}{2}}=A_{3} \mathrm{e}^{\frac{\mathrm{i} k a}{2}}, \\
& \mathrm{i} l A_{2} \mathrm{e}^{\frac{\mathrm{i} l a}{2}}-\mathrm{i} l B_{2} \mathrm{e}^{-\frac{\mathrm{i} l a}{2}}=\mathrm{i} k A_{3} \mathrm{e}^{\frac{\mathrm{k} a}{2}} \text {. }
\end{aligned}
$$

From the last two equations we get

$$
A_{2}=\frac{k+l}{2 l} \mathrm{e}^{\mathrm{i}(k-l) \frac{a}{2}} A_{3}, \quad B_{2}=-\frac{k-l}{2 l} \mathrm{e}^{\mathrm{i}(k+l) \frac{a}{2}} A_{3},
$$

and hence the first two equations imply

$$
A_{1}=\left[(k+l)^{2} \mathrm{e}^{-\mathrm{i} l a}-(k-l)^{2} \mathrm{e}^{\mathrm{i} l a}\right] \frac{\mathrm{e}^{\mathrm{i} k a}}{4 k l} A_{3}, \quad B_{1}=\frac{k^{2}-l^{2}}{4 k l}\left(\mathrm{e}^{-\mathrm{i} l a}-\mathrm{e}^{\mathrm{i} l a}\right) A_{3}
$$

A wave $\psi(x)=A \mathrm{e}^{\mathrm{i} k x}$ has current density

$$
j(x)=\frac{\hbar}{m} \operatorname{Im} \overline{\psi(x)} \psi^{\prime}(x)=\frac{\hbar k}{m}|A|^{2},
$$

and therefore $T=\left|A_{3} / A_{1}\right|^{2}$ and $R=\left|B_{1} / A_{1}\right|^{2}$. Thus

$$
T=\frac{\left|16 k^{2} l^{2}\right|}{D}, \quad R=\frac{\left|k^{2}-l^{2}\right|^{2}\left|\mathrm{e}^{-\mathrm{i} l a}-\mathrm{e}^{\mathrm{i} l a}\right|^{2}}{D}
$$

with $D=\left|(k+l)^{2} \mathrm{e}^{-\mathrm{i} l a}-(k-l)^{2} \mathrm{e}^{\mathrm{i} l a}\right|^{2}$.
(a) $0<E<V_{0}$: We write $l=\mathrm{i} \lambda$ with $\lambda^{2}=2 m\left(V_{0}-E\right) / \hbar^{2}>0$. The denominator D is

$$
\begin{aligned}
D & =\left|(k+\mathrm{i} \lambda)^{2} \mathrm{e}^{\lambda a}-(k-\mathrm{i} \lambda)^{2} \mathrm{e}^{-\lambda a}\right|^{2} \\
& =\left(k^{2}-\lambda^{2}\right)\left(\mathrm{e}^{\lambda a}-\mathrm{e}^{-\lambda a}\right)^{2}+(2 k \lambda)^{2}\left(\mathrm{e}^{\lambda a}+\mathrm{e}^{-\lambda a}\right)^{2} \\
& =4\left[\left(k^{2}+\lambda^{2}\right)^{2} \sinh ^{2} \lambda a+4 k^{2} \lambda^{2}\right],
\end{aligned}
$$

and we have $T=16 k^{2} \lambda^{2} / D$ and $R=4\left(k^{2}+\lambda^{2}\right)^{2}\left(\sinh ^{2} \lambda a\right) / D$; thus $T+R=1$. It is therefore enough to discuss T :

$$
T(E)=\frac{4 E\left(V_{0}-E\right)}{4 E\left(V_{0}-E\right)+V_{0}^{2} \sinh ^{2}\left(\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} a\right)},
$$

and in particular

$$
\lim _{E \searrow 0} T(E)=0, \quad \lim _{E \nearrow V_{0}} T(E)=\lim _{E \nearrow V_{0}} \frac{4 E}{4 E+\frac{2 m a^{2}}{\hbar^{2}} V_{0}^{2}}=\frac{1}{1+\frac{m a^{2} V_{0}}{2 \hbar^{2}}} .
$$

(b) $0<V_{0}<E$:

$$
\begin{aligned}
D & =\left[(k+l)^{2}-(k-l)^{2}\right]^{2} \cos ^{2} l a+\left[(k+l)^{2}+(k-l)^{2}\right]^{2} \sin ^{2} l a \\
& =4\left[4 k^{2} l^{2}+\left(k^{2}-l^{2}\right)^{2} \sin ^{2} l a\right],
\end{aligned}
$$

and $T=16 k^{2} l^{2} / D, R=4\left(k^{2}-l^{2}\right)^{2}\left(\sin ^{2} l a\right) / D$; thus $T+R=1$.

$$
T(E)=\frac{4 E\left(E-V_{0}\right)}{4 E\left(E-V_{0}\right)+V_{0}^{2} \sin ^{2}\left(\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}} a\right)}
$$

Moreover, $T(E)=1$ for $\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}} a=n \pi$, i.e. $E=V_{0}+\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2},(n=1,2, \ldots)$.
For $\hbar \rightarrow 0$ the tunnelling vanishes: $T(E) \rightarrow 0\left(0<E<V_{0}\right)$. However, for $E>V_{0}$ we do not get $T(E) \rightarrow 1$ in that limit; $T(E)$ rather oscillates faster and faster between 1 and

$$
\frac{4 E\left(E-V_{0}\right)}{4 E\left(E-V_{0}\right)+V_{0}^{2}}=\frac{4 E\left(E-V_{0}\right)}{\left(2 E-V_{0}\right)^{2}}
$$

in that case. The discrepancy between this result and the classical one is explained by the following consideration: if the wave length $\lambda=2 \pi / k$ is much smaller compared to the other relevant length scales of the problem, wave optics passes into ray optics and the problem becomes a classical one. However in the present problem, even though $\lambda \rightarrow 0,(\hbar \rightarrow 0)$, there is a length scale w.r.t. which λ is not small, namely the length in which the potential changes by a significant amount; the latter is zero because of the incontinuity of $V(x)$.

3. Current and momentum

We have $\psi^{\prime}(x)=\mathrm{i}\left(k_{1} a_{1} \mathrm{e}^{\mathrm{i} k_{1} x}+k_{2} a_{2} \mathrm{e}^{\mathrm{i} k_{2} x}\right)$, and hence

$$
\begin{aligned}
& \overline{\psi(0)} \psi^{\prime}(0)=\sum_{i, j=1}^{2} \mathrm{i} \bar{a}_{i} k_{j} a_{j}, \\
& j(0)=\sum_{i, j=1}^{2}\left(k_{i}+k_{j}\right) \bar{a}_{i} a_{j} .
\end{aligned}
$$

This is a quadratic form in a_{1}, a_{2} which is not positive semidefinite, since its determinant is

$$
\left|\begin{array}{cc}
2 k_{1} & k_{1}+k_{2} \\
k_{1}+k_{2} & 2 k_{2}
\end{array}\right|=4 k_{1} k_{2}-\left(k_{1}+k_{2}\right)^{2}=-\left(k_{1}-k_{2}\right)^{2}<0 .
$$

