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Solution 9

1. Particle in a box

The wave function ψ(x) of an eigenstate in the infinite potential well of width a satisfies the
time-independent Schrödinger equation

− ~2

2m

d2ψ

dx2
= Eψ , (ψ(0) = ψ(a) = 0) .

In order for the solutions

ψ(x) = A cos kx+B sin kx , (k2 =
2mE

~2
)

to satisfy the boundary conditions, we must have

A = 0 , ka = nπ , (n = 1, 2, . . . ) .

Moreover, since states are normalized we have

1 = 〈ψ, ψ〉 = |B|2
∫ a

0

sin2 nπ

a
xdx = |B|2 a

2
,

i.e. B =
√

2/a (up to a phase). The energy is E = (~k)2/2m = (~πn)2/2ma2; the ground
state thus corresponds to n = 1.

(i) Denote the wave function of the ground state in the well of width a/2 by ψ
a
2
1 (x), and the

ground and first excited state in the well of width a by ψa1(x) and ψa2(x) respectively.
We have

〈ψa2 , ψ
a
2
1 〉 =

√
2

a

√
2

a/2

∫ a/2

0

sin
2π

a
x · sin πx

a/2
dx =

2
√

2

a
· a

2
· 1

2
=

√
2

2
.

The corresponding probability is ∣∣∣〈ψa2 , ψ a
2
1 〉
∣∣∣2 =

1

2
. (9)

On the other hand,

〈ψa1 , ψ
a
2
1 〉 =

√
2

a

√
2

a/2

∫ a/2

0

sin
πx

a
sin

πx

a/2
dx

=
2
√

2

a

a

π

∫ π

0

2 sin2 y cos y dy =
4
√

2

3π
sin3 y

∣∣∣∣π
0

=
4
√

2

3π
.

The corresponding probability is thus∣∣∣〈ψa1 , ψ a
2
1 〉
∣∣∣2 =

32

9π2
.



(ii) The Hamiltonians (energy operators) before and after the shift are

Ha/2 = − ~2

2m

d2

dx2
on [0, a/2] ,

Ha = − ~2

2m

d2

dx2
on [0, a] .

Let now x ∈ [0, a] and denote by Θ(x) the Heaviside step function. For the wave
function

ψ(x) =
2√
a

sin
2π

a
x Θ(−x+

a

2
) =

{
ψ

a
2
1 (x) = 2√

a
sin 2π

a
x , (0 < x < a

2
)

0 , (a
2
< x < a)

we have
dψ

dx
=

{
4π
a
√
a

cos 2πx
a
, (0 < x < a

2
)

0 , (a
2
< x < a) .

This follows from

d

dx
Θ(−x+

a

2
) = −δ(−x+

a

2
) = −δ(x− a

2
) ,

and sin 2π
a
x vanishing at x = a/2. Similarly, we get

d2ψ

dx2
=

{
− 8π
a2
√
a

sin 2π
a
x , (0 < x < a

2
)

0 , (a
2
< x < a)

}
+

4π

a
√
a
δ
(
x− a

2

)
.

Hence

Haψ = Ha/2ψ −
~2

2m

4π

a
√
a
δ
(
x− a

2

)
and

〈ψ,Haψ〉 = 〈ψ,Ha/2ψ〉 −
~2

2m

4π

a
√
a
ψ̄
(a

2

)
= 〈ψ,Ha/2ψ〉 .

The expectation value of the energy is conserved in the present case. The variance is
〈ψ, (Ha − 〈ψ,Haψ〉)2ψ〉 = 〈ψ,H2

aψ〉 − 〈ψ,Haψ〉2; and we have

〈ψ,H2
aψ〉 = 〈(Haψ), (Haψ)〉 =∞ ;

i.e. the variance is divergent. This follows from the δ-function not being square-
integrable:∫ a

0

δ(x− a

2
)δ(x− a

2
) dx =

1

2π

∫ ∞
−∞

∫ a

0

eip(x−
a
2
)δ(x− a

2
) dx dp =

1

2π

∫ ∞
−∞

1 dp =∞ .

2. Transfer matrix and scattering matrix

(i) We can write equation (2) as

(ψ′ − iA(x)ψ)′ = iAψ′ + A2ψ + (V − E)ψ .

Hence

j′ = 2Im
(
ψ̄′(ψ′ − iAψ) + ψ̄(ψ′ − iAψ)′

)
= 2Im(ψ̄′ψ′ − iψ̄′Aψ + iψ̄Aψ′ + ψ̄A2ψ + ψ̄(V − E)ψ) = 0 ,

since the second and third term are complex conjugated w.r.t. each other, and the rest
is real.



(ii) There are two linearly independent solutions of the second order differential equation
(2) on R since for each x0, the values ψ(x0), ψ

′(x0) determine the solution. The set
of solutions is thus two-dimensional, and on the considered domains, the functions
{e±ikx}x≤a and {e±ikx}x≥b constitute bases respectively. By (i), we have j(a) = j(b).

Using ψ′ = ik(a+eikx− a−e−ikx), we get j(x) = 2k(|a+|2− |a−|2), (x ≤ a) and similarly
for x ≥ b, thus

|a+|2 − |a−|2 =
∣∣a′+∣∣2 − ∣∣a′−∣∣2 . (10)

This equality of quadratic forms in (a′+, a
′
−) corresponds to the equality of the associ-

ated hermitian matrices (4).

(iii) By (5, 6),

T

(
t
0

)
=

(
1
r

)
, T

(
r′

1

)
=

(
0
t′

)
.

With this, one can form the 2× 2 = 4 matrix elements of equation (4):

1− |r|2 = |t|2 , −r̄t′ = t̄r′ ,

−t̄′r = r̄′t , − |t′|2 = |r′|2 − 1 .

(The diagonal elements follow as well from (10); the off-diagonal elements are complex
conjugated w.r.t. each other.)

(iv) In (5) we have (
a−
a′+

)
=

(
r
t

)
,

(
a+
a′−

)
=

(
1
0

)
;

in (6) (
a−
a′+

)
=

(
t′

r′

)
,

(
a+
a′−

)
=

(
0
1

)
.

In these cases, equation (8) is satisfied. Hence (8) generally holds true, since every
solution can be written as a linear combination of (5) and (6), which amounts to linear
combinations of the coefficients. Solving for a−, a

′
+ in (3), we get

r =
T−+
T++

, t′ =
detT

T++

,

t =
1

T++

, r′ = −T+−
T++

.

(11)

On the other hand, this also implies

T++ =
1

t
, T+− = −r

′

t
,

T−+ =
r

t
, T−− =

ξ

t

where ξ = tt′ − rr′. In particular, we have detT = T++t
′ = t′/t.

(v) The transfer matrix clearly is multiplicative:

T = T1T2 =
1

t1t2

(
1− r′1r2 −r′2 − r′1ξ2
r1 + r2ξ1 ∗

)
.



In particular, detT = t′1t
′
2/t1t2. By (11), we have for the (non-multiplicative) scattering

matrix

r = r1 +
r2t1t

′
1

1− r′1r2
, t′ =

t′1t
′
2

1− r′1r2
,

t =
t1t2

1− r′1r2
, r′ = r′2 +

r′1t2t
′
2

1− r′1r2
.

These results can also be found without the use of the transfer matrix, e.g. for t we
have

t = t1

∞∑
n=0

(r2r
′
1)
nt2 ,

because the particle can be transmitted immediately from the left to the right (n = 0),
or only after n = 1, 2, . . . times traveling the way forward and backwards between the
scatterers. The sum is a geometric series, thus (1− r2r′1)−1.

(vi) For A(x) ≡ 0, (2) has real coefficients, which implies the hint. Hence with (5), also

ψ1(x) =

{
r̄eikx + e−ikx , (x 6 a)

t̄e−ikx , (x > b)

is a solution:

S

(
r̄
t̄

)
=

(
1
0

)
,

i.e. rr̄+ t̄t′ = 1, tr̄+r′t̄ = 0. Comparing with (7), one finds t = t′. S then is symmetric,
and detT = 1.


