Theoretical physics Spring Semester 2016

Solution 10

1. Time-dependent Hamilton operators

(i)

In the Schrodinger picture, let 1(s) denote an arbitrary state at time s. Then the
state evolved to time t is given by 1 (t) = U(t, s)¢(s), since U(t, s)1(s) is the unique
solution of (1) with initial condition v (s) at ¢t = s. For the Heisenberg picture, let A(s)
be a (possibly time-dependent) operator in the Schrodinger picture. We have

(0(t), A(s)P(1)) =(U (L, )i (s), A(s)U (L, 5)ib(s))
=(1(s), UL, s)" A(s)U (1, ) (s)) ,

hence the operator in the Heisenberg picture is A(t) = U(t,s)*A(s)U(t, s).

We make the following preliminary observations:

0 =i0s(t) = 10s(U (L, 5)3p(s)) =(10:U (¢, 5))1b(s) + U (L, 5)ids9)(s)
=(10:U(t, 5))ip(s) + U(t, s)H(s)4(s) ;
and thus 10,U(t,s) = —U(t, s)H(s). Moreover, the dual of equation (2) is
—i0U(t,s)" =U(t,s)"H(t).

Hence U(s,t) and U(t, s)* satisfy the same differential equation, and also the initial
condition at time t = s, U(s,s) = U(s, s)* = 1. Thus U(t,s)* = U(s, ).

For the first part, consider now two elements of the Hilbert space at time s, 1(s) and

¢(s). We have

S, U ) U 5)0(5) == (U1 500(5), Ut 5)0(5))
—(HU (1, $90(s), Ut 9)6(5)
(U 5)0(5), — HOU(E9)5(5)
(Ut 9)o(s), HOU(t, 5)0(5))
U 9)(s), HOU( 9)6(5)) =

—i) s)o
Furthermore, (¢(s), U(t,s)*U(t,s)p(s)) = (¥(s),U(s,t)U(s,t)*¢(s)) by our prelimi-
nary observations. Hence the operators U(t, s)*U(t, s), U(t, ) (t,s)* and 1 all satisfy
the same differential equation with common initial value at ¢ = s and therefore coin-
cide, which implies the unitarity of U(t, s).

For the second part, we get

10,U(t, s)U(s,r) =(10;U(t,s))U(s,r) + Ul(t, s)idsU(s,r)
=—U(t,s)H(s)U(s,r) +U(t,s)H(s)U(s,r) =0,

and the same argument as above yields the desired equality.



(iii)

In the j-th component, Newton’s equation of motion is mZ; = Fj, with F} the j-th
component of the Lorentz force,

1
F=elE+-ixB)=—eVp— “0A+ i x (Vx A).
C C &

Hamilton’s equations of motion on the other hand imply

dp; _ _ Z
E = d_[E] == : A )@AZ eanO, (4)
dz; dH 1

Thus p; = ma; + (e/c)A; by (5), and plugging this into (4) yields

mi; + atA + - Zxkﬁk/l = me@A edjp,

=1

where the last term on the left-hand side appears due to the time-dependence of the
x;’s. The statement follows now by comparison.

Let H(t) be given by replacing A, ¢ by A, ¢ in H(t). We are looking for v(t) such that
00(t) = () 0
1 < e e e
—_— _. C — — C — — . 2 ys 7 —_— 7
=5 ;< 10, — = A = =000 (1) + epi(t) — =00

We have H(t) = H(t) + H'(t) with

S (0007 + 21 @000, + 0 + 25 A000) — o

=
T

[\

S

-

hence comparing (1) and (6) leads to the conclusion that ¢ has to have the form
1 = f1 for some function f = f(¢,z). The Lh.s. of (6) therefore is

fi0pb(t) +1(0:f)¥ (1) , (7)
whereas the r.h.s. is

FH(E00 + Y (2 AdDf) — (G2 = 20 ))ow) + H' (1) ] ®)

The fist terms of (7) and (8) coincide. Furthermore, comparing the coefficients of 0;1
in the left over parts, we get

o.f =i< ( iX).f

and hence f = ecX (up to a multiplicative constant which is chosen to be 1 in order
for the wave function to be normalized). This is verified by plugging in f into the
remaining terms of (7) and (8).



2. Self-adjointness of Schrodinger operators with Coulomb potential

(i) We have
ZW,AZ‘AM :ZW” (iai - ia’j|l2> (i&- + ic“|;l2> ¢>
i=1 i=1
n i\ 2 7
=3 () + 20, ) — a0 )0)

(6, — M) + 020, @w -Yat, (ﬁ - %) ¥)

—(), —A) + (0% — a(n — 2))(y, @w |

Note that this expression is positive (as indicated on the exercise sheet), since (1), A7 A;9)) =

(A, A) = ||Aq|]?. Tt attains a minimum for o = (n —2)/2, where o — a(n —2) =
—(n —2)%/4.

(ii) Set h = 1. We have
lw(@)y|* =d*(|l=| ™", 2 ~'4)
=d* (), |z| 7))
=4d* (0, [p*).

where the inequality follows from the Hardy inequality and we used Fourier transform
for the last step. By Young’s inequality we have |p|> < ¢|[p|* +1/c for some (arbitrary)
positive constant c¢. Thus

4d? . -

. 442 .
<A [pb P + = 9

lw(a)y||* <dd®e(s), [pl*)

4d?
=4d’c|| — Ay|* + TW”Q‘

In order to satisfy the conditions for the Kato-Rellich theorem, we must have
[w(@)P| < all = Ag[l + bfl¢],
for some a,b >0, a < 1, i.e.
lw(@)vll* <a®|| — A||* + b || + 2ab]| — Av|l[|]].
By the above computation, we actually have
lw(z)y[|* <a|] = Ag|* + b*[[¢]|*

for a = 2|d|\/c and b = 2|d|/\/c. Moreover, we can choose the constant ¢ > 0 such
that \/c < 1/2|d|, whence a < 1 and the conditions of the theorem are satisfied.



