Solution 10

1. Time-dependent Hamilton operators

(i) In the Schrödinger picture, let $\psi(s)$ denote an arbitrary state at time s. Then the state evolved to time t is given by $\psi(t):=U(t, s) \psi(s)$, since $U(t, s) \psi(s)$ is the unique solution of (1) with initial condition $\psi(s)$ at $t=s$. For the Heisenberg picture, let $A(s)$ be a (possibly time-dependent) operator in the Schrödinger picture. We have

$$
\begin{aligned}
\langle\psi(t), A(s) \psi(t)\rangle & =\langle U(t, s) \psi(s), A(s) U(t, s) \psi(s)\rangle \\
& =\left\langle\psi(s), U(t, s)^{*} A(s) U(t, s) \psi(s)\right\rangle
\end{aligned}
$$

hence the operator in the Heisenberg picture is $A(t)=U(t, s)^{*} A(s) U(t, s)$.
(ii) We make the following preliminary observations:

$$
\begin{aligned}
0=\mathrm{i} \partial_{s} \psi(t)=\mathrm{i} \partial_{s}(U(t, s) \psi(s)) & =\left(\mathrm{i} \partial_{s} U(t, s)\right) \psi(s)+U(t, s) \mathrm{i}_{s} \psi(s) \\
& =\left(\mathrm{i} \partial_{s} U(t, s)\right) \psi(s)+U(t, s) H(s) \psi(s)
\end{aligned}
$$

and thus $\mathrm{i}_{s} U(t, s)=-U(t, s) H(s)$. Moreover, the dual of equation (2) is

$$
-\mathrm{i} \partial_{t} U(t, s)^{*}=U(t, s)^{*} H(t)
$$

Hence $U(s, t)$ and $U(t, s)^{*}$ satisfy the same differential equation, and also the initial condition at time $t=s, U(s, s)=U(s, s)^{*}=\mathbb{1}$. Thus $U(t, s)^{*} \equiv U(s, t)$.
For the first part, consider now two elements of the Hilbert space at time $s, \psi(s)$ and $\phi(s)$. We have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\psi(s), U(t, s)^{*} U(t, s) \phi(s)\right\rangle= & \frac{\mathrm{d}}{\mathrm{~d} t}\langle U(t, s) \psi(s), U(t, s) \phi(s)\rangle \\
= & \langle-\mathrm{i} H(t) U(t, s) \psi(s), U(t, s) \phi(s)\rangle \\
& +\langle U(t, s) \psi(s),-\mathrm{i} H(t) U(t, s) \phi(s)\rangle \\
= & \mathrm{i}\langle U(t, s) \psi(s), H(t) U(t, s) \phi(s)\rangle \\
& +(-\mathrm{i})\langle U(t, s) \psi(s), H(t) U(t, s) \phi(s)\rangle=0 .
\end{aligned}
$$

Furthermore, $\left\langle\psi(s), U(t, s)^{*} U(t, s) \phi(s)\right\rangle=\left\langle\psi(s), U(s, t) U(s, t)^{*} \phi(s)\right\rangle$ by our preliminary observations. Hence the operators $U(t, s)^{*} U(t, s), U(t, s) U(t, s)^{*}$ and $\mathbb{1}$ all satisfy the same differential equation with common initial value at $t=s$ and therefore coincide, which implies the unitarity of $U(t, s)$.
For the second part, we get

$$
\begin{aligned}
\mathrm{i} \partial_{s} U(t, s) U(s, r) & =\left(\mathrm{i} \partial_{s} U(t, s)\right) U(s, r)+U(t, s) \mathrm{i} \partial_{s} U(s, r) \\
& =-U(t, s) H(s) U(s, r)+U(t, s) H(s) U(s, r)=0
\end{aligned}
$$

and the same argument as above yields the desired equality.
(iii) In the j-th component, Newton's equation of motion is $m \ddot{x}_{j}=F_{j}$, with F_{j} the j-th component of the Lorentz force,

$$
F=e\left(E+\frac{1}{c} \dot{x} \times B\right)=-e \nabla \varphi-\frac{e}{c} \partial_{t} A+\frac{e}{c} \dot{x} \times(\nabla \times A) .
$$

Hamilton's equations of motion on the other hand imply

$$
\begin{align*}
& \frac{\mathrm{d} p_{j}}{\mathrm{~d} t}=-\frac{\mathrm{d} H}{\mathrm{~d} x_{j}}=-\frac{1}{m} \sum_{i=1}^{3}\left(p_{i}-\frac{e}{c} A_{i}\right)\left(-\frac{e}{c}\right) \partial_{j} A_{i}-e \partial_{j} \varphi, \tag{4}\\
& \frac{\mathrm{~d} x_{j}}{\mathrm{~d} t}=\frac{\mathrm{d} H}{\mathrm{~d} p_{j}}=\frac{1}{m}\left(p_{j}-\frac{e}{c} A_{j}\right) . \tag{5}
\end{align*}
$$

Thus $p_{i}=m \dot{x}_{i}+(e / c) A_{i}$ by (5), and plugging this into (4) yields

$$
m \ddot{x}_{j}+\frac{e}{c} \partial_{t} A_{j}+\frac{e}{c} \sum_{k=1}^{3} \dot{x}_{k} \partial_{k} A_{j}=\frac{e}{c} \sum_{i=1}^{3} m \dot{x}_{i} \partial_{j} A_{i}-e \partial_{j} \varphi
$$

where the last term on the left-hand side appears due to the time-dependence of the x_{j} 's. The statement follows now by comparison.
(iv) Let $\tilde{H}(t)$ be given by replacing A, φ by $\tilde{A}, \tilde{\varphi}$ in $H(t)$. We are looking for $\tilde{\psi}(t)$ such that

$$
\begin{align*}
\mathrm{i} \partial_{t} \tilde{\psi}(t) & =\tilde{H}(t) \tilde{\psi}(t) \tag{6}\\
& =\frac{1}{2 m} \sum_{i=1}^{3}\left(-\mathrm{i} \partial_{i}-\frac{e}{c} A_{i}-\frac{e}{c} \partial_{i} \chi\right)^{2} \tilde{\psi}(t)+e \varphi \tilde{\psi}(t)-\frac{e}{c}\left(\partial_{t} \chi\right) \tilde{\psi}(t) .
\end{align*}
$$

We have $\tilde{H}(t)=H(t)+H^{\prime}(t)$ with

$$
H^{\prime}(t)=\frac{1}{2 m} \sum_{i=1}^{3}\left(\left(\frac{e}{c}\right)^{2}\left(\partial_{i} \chi\right)^{2}+2 \mathrm{i} \frac{e}{c}\left(\partial_{i} \chi\right) \partial_{i}+\mathrm{i}-\frac{e}{c} \partial_{i}^{2} \chi+2\left(\frac{e}{c}\right)^{2} A_{i} \partial_{i} \chi\right)-\frac{e}{c} \partial_{t} \chi ;
$$

hence comparing (1) and (6) leads to the conclusion that $\tilde{\psi}$ has to have the form $\tilde{\psi}=f \psi$ for some function $f=f(t, x)$. The l.h.s. of (6) therefore is

$$
\begin{equation*}
f \mathrm{i} \partial_{t} \psi(t)+\mathrm{i}\left(\partial_{t} f\right) \psi(t), \tag{7}
\end{equation*}
$$

whereas the r.h.s. is

$$
\begin{equation*}
f H(t) \psi+\sum_{i=1}^{3}\left(2 \mathrm{i} \frac{e}{c} A_{i}\left(\partial_{i} f\right) \psi-\left(\partial_{i}^{2} f\right) \psi-2\left(\partial_{i} f\right) \partial_{i} \psi\right)+H^{\prime}(t) f \psi . \tag{8}
\end{equation*}
$$

The fist terms of (7) and (8) coincide. Furthermore, comparing the coefficients of $\partial_{i} \psi$ in the left over parts, we get

$$
\partial_{i} f=\mathrm{i} \frac{e}{c}\left(\partial_{i} \chi\right) f,
$$

and hence $f=\mathrm{e}^{\mathrm{i} \frac{\mathrm{e}}{c} \chi}$ (up to a multiplicative constant which is chosen to be 1 in order for the wave function to be normalized). This is verified by plugging in f into the remaining terms of (7) and (8).

2. Self-adjointness of Schrödinger operators with Coulomb potential

(i) We have

$$
\begin{aligned}
\sum_{i=1}^{n}\left\langle\psi, A_{i}^{*} A_{i} \psi\right\rangle & =\sum_{i=1}^{n}\left\langle\psi,\left(\mathrm{i} \partial_{i}-\mathrm{i} \alpha \frac{x^{i}}{|x|^{2}}\right)\left(\mathrm{i} \partial_{i}+\mathrm{i} \alpha \frac{x^{i}}{|x|^{2}}\right) \psi\right\rangle \\
& =\sum_{i=1}^{n}\left\langle\psi,-\partial_{i}^{2} \psi\right\rangle+\alpha^{2}\left\langle\psi, \frac{\left(x^{i}\right)^{2}}{|x|^{4}} \psi\right\rangle-\alpha\left\langle\psi, \partial_{i}\left(\frac{x^{i}}{|x|^{2}}\right) \psi\right\rangle \\
& =\langle\psi,-\Delta \psi\rangle+\alpha^{2}\left\langle\psi, \frac{1}{|x|^{2}} \psi\right\rangle-\sum_{i=1}^{n} \alpha\left\langle\psi,\left(\frac{1}{|x|^{2}}-\frac{2\left(x^{i}\right)^{2}}{|x|^{4}}\right) \psi\right\rangle \\
& =\langle\psi,-\Delta \psi\rangle+\left(\alpha^{2}-\alpha(n-2)\right)\left\langle\psi, \frac{1}{|x|^{2}} \psi\right\rangle .
\end{aligned}
$$

Note that this expression is positive (as indicated on the exercise sheet), since $\left\langle\psi, A_{i}^{*} A_{i} \psi\right\rangle=$ $\left\langle A_{i} \psi, A_{i} \psi\right\rangle=\left\|A_{i} \psi\right\|^{2}$. It attains a minimum for $\alpha=(n-2) / 2$, where $\alpha^{2}-\alpha(n-2)=$ $-(n-2)^{2} / 4$.
(ii) Set $\hbar=1$. We have

$$
\begin{aligned}
\|w(x) \psi\|^{2} & \left.=\left.d^{2}\langle | x\right|^{-1} \psi,|x|^{-1} \psi\right\rangle \\
& \left.=\left.d^{2}\langle\psi,| x\right|^{-2} \psi\right\rangle \\
& \leqslant 4 d^{2}\langle\psi,-\Delta \psi\rangle \\
& \left.=\left.4 d^{2}\langle\hat{\psi},| p\right|^{2} \hat{\psi}\right\rangle,
\end{aligned}
$$

where the inequality follows from the Hardy inequality and we used Fourier transform for the last step. By Young's inequality we have $|p|^{2} \leqslant c|p|^{4}+1 / c$ for some (arbitrary) positive constant c. Thus

$$
\begin{aligned}
\|w(x) \psi\|^{2} & \left.\leqslant\left. 4 d^{2} c\langle\hat{\psi},| p\right|^{4} \hat{\psi}\right\rangle+\frac{4 d^{2}}{c}\langle\hat{\psi}, \hat{\psi}\rangle \\
& \leqslant 4 d^{2} c\left\||p|^{2} \hat{\psi}\right\|^{2}+\frac{4 d^{2}}{c}\|\hat{\psi}\|^{2} \\
& =4 d^{2} c\|-\Delta \psi\|^{2}+\frac{4 d^{2}}{c}\|\psi\|^{2} .
\end{aligned}
$$

In order to satisfy the conditions for the Kato-Rellich theorem, we must have

$$
\|w(x) \psi\| \leqslant a\|-\Delta \psi\|+b\|\psi\|
$$

for some $a, b>0, a<1$, i.e.

$$
\|w(x) \psi\|^{2} \leqslant a^{2}\|-\Delta \psi\|^{2}+b^{2}\|\psi\|^{2}+2 a b\|-\Delta \psi\|\|\psi\| .
$$

By the above computation, we actually have

$$
\|w(x) \psi\|^{2} \leqslant a^{2}\|-\Delta \psi\|^{2}+b^{2}\|\psi\|^{2}
$$

for $a=2|d| \sqrt{c}$ and $b=2|d| / \sqrt{c}$. Moreover, we can choose the constant $c>0$ such that $\sqrt{c}<1 / 2|d|$, whence $a<1$ and the conditions of the theorem are satisfied.

