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1. Time-dependent Hamilton operators

(i) In the Schrödinger picture, let ψ(s) denote an arbitrary state at time s. Then the
state evolved to time t is given by ψ(t) := U(t, s)ψ(s), since U(t, s)ψ(s) is the unique
solution of (1) with initial condition ψ(s) at t = s. For the Heisenberg picture, let A(s)
be a (possibly time-dependent) operator in the Schrödinger picture. We have

〈ψ(t), A(s)ψ(t)〉 =〈U(t, s)ψ(s), A(s)U(t, s)ψ(s)〉
=〈ψ(s), U(t, s)∗A(s)U(t, s)ψ(s)〉 ,

hence the operator in the Heisenberg picture is A(t) = U(t, s)∗A(s)U(t, s).

(ii) We make the following preliminary observations:

0 = i∂sψ(t) = i∂s(U(t, s)ψ(s)) =(i∂sU(t, s))ψ(s) + U(t, s)i∂sψ(s)

=(i∂sU(t, s))ψ(s) + U(t, s)H(s)ψ(s) ;

and thus i∂sU(t, s) = −U(t, s)H(s). Moreover, the dual of equation (2) is

−i∂tU(t, s)∗ = U(t, s)∗H(t) .

Hence U(s, t) and U(t, s)∗ satisfy the same differential equation, and also the initial
condition at time t = s, U(s, s) = U(s, s)∗ = 1. Thus U(t, s)∗ ≡ U(s, t).

For the first part, consider now two elements of the Hilbert space at time s, ψ(s) and
φ(s). We have

d

dt
〈ψ(s), U(t, s)∗U(t, s)φ(s)〉 =

d

dt
〈U(t, s)ψ(s), U(t, s)φ(s)〉

=〈−iH(t)U(t, s)ψ(s), U(t, s)φ(s)〉
+ 〈U(t, s)ψ(s),−iH(t)U(t, s)φ(s)〉

=i〈U(t, s)ψ(s), H(t)U(t, s)φ(s)〉
+ (−i)〈U(t, s)ψ(s), H(t)U(t, s)φ(s)〉 = 0 .

Furthermore, 〈ψ(s), U(t, s)∗U(t, s)φ(s)〉 = 〈ψ(s), U(s, t)U(s, t)∗φ(s)〉 by our prelimi-
nary observations. Hence the operators U(t, s)∗U(t, s), U(t, s)U(t, s)∗ and 1 all satisfy
the same differential equation with common initial value at t = s and therefore coin-
cide, which implies the unitarity of U(t, s).

For the second part, we get

i∂sU(t, s)U(s, r) =(i∂sU(t, s))U(s, r) + U(t, s)i∂sU(s, r)

=− U(t, s)H(s)U(s, r) + U(t, s)H(s)U(s, r) = 0 ,

and the same argument as above yields the desired equality.



(iii) In the j-th component, Newton’s equation of motion is mẍj = Fj, with Fj the j-th
component of the Lorentz force,

F = e(E +
1

c
ẋ×B) = −e∇ϕ− e

c
∂tA+

e

c
ẋ× (∇× A) .

Hamilton’s equations of motion on the other hand imply

dpj
dt

=− dH

dxj
= − 1

m

3∑
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c
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c
)∂jAi − e∂jϕ , (4)

dxj
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=
dH

dpj
=

1

m
(pj −

e

c
Aj) . (5)

Thus pi = mẋi + (e/c)Ai by (5), and plugging this into (4) yields

mẍj +
e

c
∂tAj +

e

c

3∑
k=1

ẋk∂kAj =
e

c

3∑
i=1

mẋi∂jAi − e∂jϕ ,

where the last term on the left-hand side appears due to the time-dependence of the
xj’s. The statement follows now by comparison.

(iv) Let H̃(t) be given by replacing A,ϕ by Ã, ϕ̃ in H(t). We are looking for ψ̃(t) such that

i∂tψ̃(t) =H̃(t)ψ̃(t) (6)

=
1

2m

3∑
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(−i∂i −
e

c
Ai −

e

c
∂iχ)2ψ̃(t) + eϕψ̃(t)− e

c
(∂tχ)ψ̃(t) .

We have H̃(t) = H(t) +H ′(t) with

H ′(t) =
1

2m

3∑
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e

c
)2(∂iχ)2 + 2i

e

c
(∂iχ)∂i + i

e

c
∂2i χ+ 2(

e

c
)2Ai∂iχ)− e

c
∂tχ ;

hence comparing (1) and (6) leads to the conclusion that ψ̃ has to have the form

ψ̃ = fψ for some function f = f(t, x). The l.h.s. of (6) therefore is

f i∂tψ(t) + i(∂tf)ψ(t) , (7)

whereas the r.h.s. is

fH(t)ψ +
3∑
i=1

(2i
e

c
Ai(∂if)ψ − (∂2i f)ψ − 2(∂if)∂iψ) +H ′(t)fψ . (8)

The fist terms of (7) and (8) coincide. Furthermore, comparing the coefficients of ∂iψ
in the left over parts, we get

∂if = i
e

c
(∂iχ)f ,

and hence f = ei
e
c
χ (up to a multiplicative constant which is chosen to be 1 in order

for the wave function to be normalized). This is verified by plugging in f into the
remaining terms of (7) and (8).



2. Self-adjointness of Schrödinger operators with Coulomb potential

(i) We have

n∑
i=1

〈ψ ,A∗iAiψ〉 =
n∑
i=1

〈ψ ,
(
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xi

|x|2

)(
i∂i + iα
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|x|2

)
ψ〉

=
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|x|4
ψ〉 − α〈ψ , ∂i(

xi

|x|2
)ψ〉

=〈ψ ,−∆ψ〉+ α2〈ψ , 1

|x|2
ψ〉 −

n∑
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α〈ψ ,
(

1

|x|2
− 2(xi)2
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=〈ψ ,−∆ψ〉+ (α2 − α(n− 2))〈ψ , 1

|x|2
ψ〉 .

Note that this expression is positive (as indicated on the exercise sheet), since 〈ψ ,A∗iAiψ〉 =
〈Aiψ ,Aiψ〉 = ‖Aiψ‖2. It attains a minimum for α = (n− 2)/2, where α2−α(n− 2) =
−(n− 2)2/4.

(ii) Set ~ = 1. We have

‖w(x)ψ‖2 =d2〈|x|−1ψ, |x|−1ψ〉
=d2〈ψ, |x|−2ψ〉
64d2〈ψ,−∆ψ〉
=4d2〈ψ̂, |p|2ψ̂〉 ,

where the inequality follows from the Hardy inequality and we used Fourier transform
for the last step. By Young’s inequality we have |p|2 6 c|p|4 + 1/c for some (arbitrary)
positive constant c. Thus

‖w(x)ψ‖2 64d2c〈ψ̂, |p|4ψ̂〉+
4d2

c
〈ψ̂, ψ̂〉

64d2c‖|p|2ψ̂‖2 +
4d2

c
‖ψ̂‖2

=4d2c‖ −∆ψ‖2 +
4d2

c
‖ψ‖2 .

In order to satisfy the conditions for the Kato-Rellich theorem, we must have

‖w(x)ψ‖ 6 a‖ −∆ψ‖+ b‖ψ‖ ,

for some a, b > 0, a < 1, i.e.

‖w(x)ψ‖2 6a2‖ −∆ψ‖2 + b2‖ψ‖2 + 2ab‖ −∆ψ‖‖ψ‖ .

By the above computation, we actually have

‖w(x)ψ‖2 6a2‖ −∆ψ‖2 + b2‖ψ‖2

for a = 2|d|
√
c and b = 2|d|/

√
c. Moreover, we can choose the constant c > 0 such

that
√
c < 1/2|d|, whence a < 1 and the conditions of the theorem are satisfied.


