Solution 11

1. Half a harmonic oscillator

The unitary operator $(U \psi)(x)=\psi(-x)$ on $L^{2}(\mathbb{R})$ corresponds to the reflection in space $\mathbb{R} \rightarrow \mathbb{R}, x \mapsto-x$. Being unitary, the eigenvalues $\lambda \in \mathbb{C}$ of U satisfy $|\lambda|=1$. Moreover, since U is also an involution, it is a self-adjoint operator and hence its eigenvalues are ± 1. The two eigenspaces $E_{ \pm}=\left\{\psi \in L^{2}(\mathbb{R}) \mid \psi(-x)= \pm \psi(x)\right\}$ consist of the even and odd wave functions respectively. The Hamiltonian H of the (full) harmonic oscillator commutes with U, i.e. $[H, U]=0$; hence H leaves $E_{ \pm}$invariant and the eigenstates of H are either even or odd. Indeed,

$$
\psi_{n}(x)=\frac{\pi^{-1 / 4}}{\sqrt{2^{n} n!}} H_{n}(x) \mathrm{e}^{-x^{2} / 2}=(-1)^{n} \psi_{n}(-x),
$$

as seen from $H_{n}(x)=\mathrm{e}^{x^{2}}(-d / d x)^{n} \mathrm{e}^{-x^{2}}$. The eigenvalues are $E_{n}=n+1 / 2$ in our units. The ψ_{n} with n odd satisfy $\psi_{n}(x=0)=0$, and hence their restrictions to $x \geqslant 0$ are eigenstates of half of the harmonic oscillator (after multiplication with $\sqrt{2}$ in order to recover the normalization). Conversely the continuation as an odd function from $[0, \infty)$ to \mathbb{R} of an eigenstate of half of the harmonic oscillator is an eigenstate of the full oscillator, since $\psi^{\prime}(x)$ is then continuous at $x=0$.

2. Time-energy uncertainty principle

(i) The definition of \dot{A} together with (2) yields

$$
|\dot{A}|=\left|\frac{\mathrm{d}}{\mathrm{~d} t}\langle A\rangle_{\psi_{t}}\right|=\left|\frac{\mathrm{d}}{\mathrm{~d} t}\langle A(t)\rangle_{\psi}\right|=\frac{1}{\hbar}\left|\langle[H, A(t)]\rangle_{\psi}\right|=\frac{1}{\hbar}\left|\langle[H, A]\rangle_{\psi_{t}}\right| \leqslant \frac{2}{\hbar} \Delta H \cdot \Delta A,
$$

where the fourth equality holds true since H commutes with the time evolution; and the inequality in the last step follows using the uncertainty principle. We therefore have

$$
\Delta H \cdot \Delta t \equiv \Delta H \cdot \frac{\Delta A}{|\dot{A}|} \geqslant \frac{\hbar}{2}
$$

(ii) For $f(t)=\left|\left\langle\psi_{0}, \psi_{t}\right\rangle\right|^{2}=\left\langle\psi_{t}, \psi_{0}\right\rangle\left\langle\psi_{0}, \psi_{t}\right\rangle$ we have

$$
\dot{f}(t)=\frac{\mathrm{i}}{\hbar}\left(\left\langle\psi_{t}, H \psi_{0}\right\rangle\left\langle\psi_{0}, \psi_{t}\right\rangle-\left\langle\psi_{t}, \psi_{0}\right\rangle\left\langle\psi_{0}, H \psi_{t}\right\rangle\right)=\frac{\mathrm{i}}{\hbar}\left\langle\psi_{t},(H P-P H) \psi_{t}\right\rangle
$$

where $P=\psi_{0} \psi_{0}^{*}$. Thus $|\dot{f}(t)| \leqslant(2 / \hbar) \Delta H \cdot \Delta P$ by the uncertainty principle. Moreover we have

$$
\Delta P=\sqrt{\left\langle P^{2}\right\rangle_{\psi_{t}}-\langle P\rangle_{\psi_{t}}^{2}}=\sqrt{\langle P\rangle_{\psi_{t}}\left(1-\langle P\rangle_{\psi_{t}}\right)} .
$$

Since $\langle P\rangle_{\psi_{t}}=f(t)$ we get

$$
|\dot{f}(t)| \leqslant \frac{2 \Delta H}{\hbar} \sqrt{f(t)(1-f(t))}
$$

(where ΔH is independent of t, since H commutes with the time evolution). In particular, the following differential inequality holds true:

$$
\dot{f} \geqslant-\frac{2 \Delta H}{\hbar} \sqrt{f(1-f)}
$$

with $f(0)=1$. The solution of the corresponding differential equation

$$
\dot{f}_{0}=-\frac{2 \Delta H}{\hbar} \sqrt{f_{0}\left(1-f_{0}\right)}
$$

with $f_{0}=1$ is $f_{0}(t)=\cos ^{2}(\Delta H \cdot t / \hbar)$. (Use

$$
\int \frac{d f_{0}}{\sqrt{f_{0}\left(1-f_{0}\right)}}=-2 \arccos \sqrt{f_{0}}+C
$$

or plug in.) Using (4) we get $f(t) \geqslant \cos ^{2}(\Delta H \cdot t / \hbar)$, and hence

$$
\begin{equation*}
\cos ^{2}(\Delta H \cdot t / \hbar) \leqslant\left|\left\langle\psi_{0}, \psi_{t}\right\rangle\right|^{2} \tag{5}
\end{equation*}
$$

For $t=t_{0}$, (5) becomes

$$
\cos ^{2}\left(\Delta H \cdot t_{0} / \hbar\right) \leqslant 0
$$

and positivity of $\cos ^{2}$ yields $\Delta H \cdot t_{0}=\hbar n \pi / 2$, which implies desired statement.
(iii) The state shifted by $x, \psi_{x}\left(x^{\prime}\right)=\psi_{0}\left(x^{\prime}-x\right)$, satisfies the differential equation $(d / d x) \psi_{x}=$ $-\psi_{x}^{\prime}$, i.e. (3) with $H=p$ and $t=x$.

