
Theoretical physics Spring Semester 2016

Solution 12

1. Displacement operators and coherent states

(i) For Z = αa∗ − ᾱa, Y = βa∗ − β̄a and [Z, Y ] = −αβ̄[a∗, a] − ᾱβ[a, a∗] = αβ̄ − ᾱβ =
−2i Im(ᾱβ) we have [[Z, Y ], Z] = [[Z, Y ], Y ] = 0 and hence eZ+Y = eZeY e−[Z,Y ]/2. Thus

V (α + β) = V (α)V (β)ei Im(ᾱβ) , (8)

which, together with (α↔ β), yields

V (α)V (β) = e−2i Im(ᾱβ)V (β)V (α) . (9)

By a similar consideration with Z = −isP , Y = itX, or by (9) with UP (s) = V (s/
√

2),
UX(t) = V (it/

√
2), we have

UP (s)UX(t) = e−istUX(t)UP (s) .

Hence

[V (α), V (β)] = 0 ⇔ Im(ᾱβ) = πn ,

[UP (s), UX(t)] = 0 ⇔ st = 2πn ,

n ∈ Z.

(ii) Using Wα = V (α)ψ0 and V (α) = eαa
∗
e−αae−|α|

2/2 we get

〈ψ0, V (α)ψ0〉 = e−|α|
2/2〈ψ0, (e

ᾱa)∗(e−ᾱa)ψ0〉 = e−|α|
2/2 .

The last equality above follows from

e−αaψ0 =
∞∑
k=0

(−α)k

k!
akψ0 = ψ0 +

∞∑
k=1

(−α)k

k!
akψ0 = ψ0 = eαaψ0 ,

which in turn follows from aψ0 = 0. The identity V (α)∗ = V (α)−1 = V (−α) together
with (8) then implies

〈Wα1 ,Wα2〉 = 〈ψ0, V (α1)∗V (α2)ψ0〉 = 〈ψ0, V (−α1)V (α2)ψ0〉

= ei Im(α1α2)〈ψ0, V (α2 − α1)ψ0〉 = ei Im(α1α2)e−|α2−α1|2/2 .

(iii) Since V (α)ψ0 = e−|α|
2/2eαa

∗
ψ0, the function in the hint is

f(α) = e|α|
2/2〈ψ,Wα〉 = e|α|

2/2〈ψ, V (α)ψ0〉 = 〈ψ, eαa∗ψ0〉 =
∞∑
n=0

αn√
n!
〈ψ, ψn〉 , (10)

where the eigenstates ψn = (a∗)nψ0/
√
n! form an orthonormal basis. Hence 〈ψ,Wα〉 =

0 (α ∈ C) implies that the coefficient for every power of α in (10) vanishes, i.e. 〈ψ, ψn〉 =
0 (n ∈ N), and therefore ψ ≡ 0.



(iv) By the hint, we have to show

1

π

∫
C
〈Wβ,Wα〉〈Wα,Wγ〉 d(Reα) d(Imα) = 〈Wβ,Wγ〉 .

By (1) we have 〈Wβ,Wα〉〈Wα,Wγ〉 = eF , where

F = −1

2

(
|β − α|2 + |α− γ|2

)
+ i Im(β̄α + ᾱγ)

= −1

2

(
|β − γ|2 + 2 |α|2 − 2 Re(β̄α + ᾱγ − β̄γ)

)
+ i Im(β̄α + ᾱγ)

=
(
−1

2
|β − γ|2 + i Im β̄γ

)
− |α|2 + β̄α + ᾱγ − β̄γ .

We are thus left to show that

e−β̄γ

π

∫
C

e−|α|
2+β̄α+ᾱγ d(Reα) d(Imα) = 1 . (11)

The integral can be written as the product of the two factors∫
e−(Reα)2+(β̄+γ) Reα d(Reα) =

√
πe(β̄+γ)2/4 ,∫

e−(Imα)2+i(β̄−γ) Imα d(Imα) =
√
πe−(β̄−γ)2/4 ,

where (β̄ + γ)2 − (β̄ − γ)2 = 4β̄γ. This proves (11) and therefore (2). The second
version (3) follows by the substitution of variables given in the exercise.

2. Particle in the plane with transverse magnetic field

(ia) Classically, we have the Lorentz force FL = (e/c)v × B which is orthogonal to v:
FL · v = 0. Thus the kinetic energy is conserved,

d

dt
(
1

2
mv2) = mv · dv

dt
= FL · v = 0 ,

and therefore also |v|: dv2/dt = d|v|2/dt = 0. Hence the particle is moving on a circle
of some radius R, which already implies that the vectors on the two sides of eq. (5)
point in the same direction. Moreover, we know now that FL equals the corresponding
centripetal force FZ , i.e.

e

c
|v|B = |FL| = |FZ | = m

|v|2

|R|
,

where the first equation follows from v being perpendicular to B and eB > 0. This
proves (5), as well as |v| = ω|R| with ω = eB/mc. In the situation of the hint we have
x = R, and therefore

p = mv +
e

c
A = − e

2c
B ×R

has constant absolute value. The quantization n~ applies to

|p||R| = e

2c
B|R|2 =

m

2
ω|R|2 ,



and yields the radii |Rn|2 = (2c/eB)n~. Comparison with E = m|v|2/2 = m(ω|R|)2/2
in turn yields the energies En = n~ω. The degeneracy of the level En can be computed
heuristically: for a fixed center, the state takes a circular ring between his radius
|Rn| and the one of its neighbour level, |Rn+1| (or |Rn−1|). The area amounts to
F = π(|Rn+1|2−|Rn|2) = hc/eB, (h = 2π~). Without any restrictions to the centers of
the circles, those can be put in a way such that the circular rings of states corresponding
to the same level do not overlap. Considering only the area (and not the geometry),
this yields a density ρ = 1/F of the centers, which is the degeneracy per unit area,
and thus (7) follows.

(ib) Let A = (−Bx2, 0). Then

H =
1

2m

(
(p1 +

eB

c
x2)2 + p2

2

)
,

which does not contain x1. Hence H commutes with p1 and therefore leaves the
eigenspaces of p1 invariant. These eigenspaces consist of the functions ϕ(x2)eikx1 (i.e.
each k ∈ R corresponds to an eigenspace), where ϕ(x2) ∈ L2(R) is constant w.r.t. x1.
Moreover, since L2(R2) ∼= L2(R)⊗L2(R) and since the functions eikx1 span L2(R), the
eigenspaces of p1 cover the whole space. This justifies the ansatz ψ(x1, x2) = eikx1ϕ(x2)
for the eigenfunctions. Plugging it into the time-independent Schrödinger equation
Hψ = Eψ yields ( 1

2m
p2

2 +
1

2
mω2(x2 +

~kc
eB

)2
)
ϕ = Eϕ .

Up to a translation in 2-direction, this is the eigenvalue equation of the 1-dimensional
harmonic oscillator. The energies and the eigenfunctions (normed w.r.t. ξ, but not
w.r.t. x1) are

En = ~ω
(
n+

1

2

)
, ψn(x1, x2) = eikx1

π−1/4

√
2nn!

Hn(ξ)e−ξ
2/2 , (n ∈ N)

with

ξ =
√
ωm~−1

(
x2 +

~kc
eB

)
.

The degeneracy is infinite, since En is independent of k ∈ R. By considering a big but
finite domain (x1, x2) ∈ [0, L1]× [0, L2], for example with periodic boundary conditions
in 1-direction, one gets finite degeneracy. Then k is quantized, kL1 = 2πm (m ∈ Z),
and further restricted by the fact that the centers of the oscillators,

x
(0)
2 = −~kc

eB
= − hc

eBL1

m,

are roughly located in [0, L2], and therefore the ψn as well. Hence we have (eB/hc)L1(L2+
O(1)) possibilities for m, each of them providing a state of energy En. This confirms
(7).

Let now A = B(−x2, x1)/2. Then

H =
1

2m

(
(p1 +

eB

2c
x2)2 + (p2 −

eB

2c
x1)2

)
=

1

2m
(p2

1 + p2
2) +

mω̃2

2
(x2

1 + x2
2)− ω̃(x1p2 − x2p1) ,



where ω̃ = eB/2mc. Here L = x1p2 − x2p1 is the (canonical) angular momentum, i.e.
(0, 0, L) in 3 dimensions. Let a∗± be as in (6). Using [xi, xj] = [pi, pj] = 0, [xi, pj] =

ı~δij, (i, j = 1, 2), we get [a+, a
∗
+] = [a−, a

∗
−] = 1, [a

#+

+ , a
#−
− ] = 0, (#±= nothing, ∗).

These are the commutation relations of two independent harmonic oscillators. We have

2~ω̃N± =
1

2m
(p2

1 + p2
2) +

mω̃2

2
(x2

1 + x2
2)± ω̃(x1p2 − x2p1)− ~ω̃ .

Hence

H = ~ω̃(2N− + 1) , L = ~(N+ −N−) .

The energy eigenvalues are En− = 2~ω̃(n−+ 1
2
), which coincides with (4) since ω = 2ω̃.

The eigenfunctions are (n+!n−!)−1/2(a∗+)n+(a∗−)n−ψ0, (n+, n− ∈ N), where a±ψ0 = 0.
Here, the eigenvalues are infinitely degenerate since they are independent of n+.

(iia) The position x, the center r and the radius R satisfy x = r + R. By (5) we have
Π = −βR⊥, where β = (e/c)B and a⊥ = (−a2, a1) is the vector a = (a1, a2) turned by
90◦. Hence R = β−1Π⊥ and

r = x− β−1Π⊥ ;

i.e.
r1 = x1 + β−1Π2 , r2 = x2 − β−1Π1

in components.

(iib)

i[Π1,Π2] = −e
c

(i[p1, A2] + i[A1, p2]) = −e~
c

(∂1A2 − ∂2A1) = −β~ ,

i[r1, r2] = β−1
(
−i[x1,Π1] + i[Π2, x2]− iβ−1[Π2,Π1]

)
= β−1~ .

The commutators [Πi, rj] vanish, e.g.

i[Π1, r1] = i[Π1, x1] + β−1i[Π1,Π2] = ~− ~ = 0 ,

i[Π1, r2] = i[Π1, x2]− β−1i[Π1,Π1] = 0 .

(iic) We have H = (2m)−1(Π2
1 + Π2

2) and therefore [H, ri] = 0 by the preceding exercise.
The expression for H and i[Π2,Π1] = β~ correspond to the harmonic oscillator

H =
ω

2
(P 2 +X2) , i[P,X] = ~ ,

and arise from the latter by the replacements ω ; m−1, p ; Π2, x ; Π1, ~ ; β~;
and consequently the eigenvalues by

~ω
(
n+

1

2

)
;

β~
m

(
n+

1

2

)
,

(n ∈ N). They are infinitely degenerate because of the additional degree of freedom r1

(or r2).


