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Ground states of quantum spin systems

r Quantum spin system: a countable collection of finite dimensional

quantum systems, labeled by x ∈ Γ

r For finite Λ ⊂ Γ: local Hamiltonian

HΛ =
∑

X⊂Λ

Φ(X), Φ(X) = Φ(X)∗ ∈ AX

with fast decay of Φ(X) in the size of X

r Our interest: ground state spaces SΛ of HΛ, their limit SΓ as Λ→ Γ

r Either: Understand specific models in details,

or: Identify equivalence classes of models with similar behaviour

Today: Gapped ground state phases of quantum spin chains, local order

versus string or topological order
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On ‘topological order’

r So far: phases are defined by symmetries and their breaking

Multiple Gibbs states (or ground states) arise from symmetry breaking

r In particular, different states can be distinguished locally

In the Ising model, the magnetization in the x direction: Mi = ωi(S
0)

r Kitaev’s model (2003). Spin model defined on 2-dimensional surfaces

◦ when defined on a surface of genus g, the Hamiltonian has 4g

ground states

◦ expectation values of local observables are independent of the

ground state: no local order parameter

; Phases carrying topological order: Locally disordered, topological

order parameters
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The Haldane phase

An typical example: The Heisenberg antiferromagnet on a graph (Γ, E)

H =
∑

(x,y)∈E

JxyS
x · Sy, Jxy > 0.

Haldane’s conjecture for Γ = Z (1983):

r Half-integer spins: Unique ground state, polynomial decay of

correlations, no spectral gap

Affleck-Lieb (1986), Aizenman-Nachtergaele (1994)

r Integer spins: Unique ground state, exponential decay of correlations,

spectral gap

The Haldane phase exists: S = 1 AKLT model (1988)

Exponential clustering: Spectral gap⇒ exponential decay

Hastings (2004), Nachtergaele-Sims (2006)
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AKLT model: Ground states

H [a,b] =
b−1
∑

x=a

[
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Sx · Sx+1
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=
b−1
∑

x=a

P x,x+1
(2)

r Uniform spectral gap above the ground state energy γ[a,b] > 0.137194

r Unique ground state ω on Z.

r No long range order: |ω(S0
3S

x
3 )| ∝ 3−x

r ‘Dilute Néel order’: In the product basis (−, 0,+) of all Sx
3 , ω is a

superposition of all words of the form

· · ·+ 00000− 000 +−0 + 000000− 0 + 000− · · ·

r String order: den Nijs-Rommelse (1989), Kennedy-Tasaki (1992)
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AKLT model: Excess spin

All related properties to string order:

r Degenerate ground state on half-infinite chains: edge states

r Edge state space is isomorphic to a Bloch sphere

r Existence of an excess spin:

Representation of SU(2) in the GNS Hilbert space of ω

Ug = s-lim
L→∞

exp

(

ig ·
L
∑

x=1

πω(Sx)

)

In fact, fractional spin at the edge is a characteristics of the Haldane phase

Experimental measurement: Hagiwara et al (1990)

Impurity
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What is a phase?

Vaguely: An equivalence class of qualitatively similar models

No phase transition without closing the gap (Ising in transverse field)

Assume:

r The spectral gap above the ground state energy of

HΛn
(s) =

∑

X⊂Λn

Φs(X), s ∈ [0, 1],

is uniformly bounded below by γ > 0, in n and s.

r Φs is smooth, short range for all s

Let S(s) be the set of weak-* limits of ground states of HΛn
(s). E.g., if

there is only one ground state: for each local observable A,

ωs(A) = lim
Λn→Γ

〈ψΛn
(s), AψΛn

(s)〉
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Equivalence

Theorem. [B, Michalakis, Nachtergaele, Sims] There exists a cocycle of

automorphisms αs,s′ of the algebra of observables such that

S(s) = S(0) ◦ αs,0

for s ∈ [0, 1]. The automorphisms αs,s′ can be constructed as the thermodynamic

limit of the s-dependent evolution for an interaction Ψ(X, s), which decays

almost exponentially.

Concretely, the action of the quasi-local transformations αs = αs,0 on

observables is given by αs(A) = limn→∞ V ∗
n (s)AVn(s), where Vn(0) = 1

and Vn(s) solves a Schrödinger equation:

d

ds
Vn(s) = iDn(s)Vn(s), with Dn(s) =

∑

X⊂Λn

Ψ(X, s)
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Picture of a phase

r If there exists a gapped path H(s) between H0 and H1, then their

ground state spaces are globally equivalent

r Locality of αs,s′ :

‖[αs,s′(A), B]‖ ≤ ‖A‖‖B‖F
(

d(supp(A), supp(B))
)

where F decays faster than any polynomial

r True on any lattice: Z, but also [1,∞) or (−∞, 0]

r Precisely: the ground state spaces SΓ(s) are homeomorphic

In particular: same structure of edge states

r Symmetries? αs,s′ has all symmetries of the Hamiltonians:

θg(Φs(X)) = Φs(X) =⇒ αs,s′ ◦ θg = θg ◦ αs,s′
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Abstract excess spin

The excess spin arises as a representation of rotations on the half-line.

Natural question: is it constant within a phase?

For g ∈ SU(2), ρ a state, and A ∈ A[1,∞)

Θ[1,∞)
g (ρ)(A) := ρ(θ[1,∞)

g (A))

Theorem. [B, Nachtergaele] Let H(s) be a path of gapped SU(2) invariant

Hamiltonians, and let

Θ[1,∞)
s,g = Θ[1,∞)

g ↾S[1,∞)(s)

Then the representations Θ
[1,∞)
s,· are all equivalent

I.e. models in the same symmetric phase carry equivalent representations

of the symmetry group on the edge ground state spaces
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Proof

i. SU(2)-invariant interaction

=⇒ S [1,∞)(s) is SU(2)-invariant

=⇒ Θ
[1,∞)
s,· is a subrepresentation

ii. The theorem follows from

ω[1,∞)
(

αs(θg(A))
)

= ω[1,∞)
(

θg(αs(A))
)

i.e.

Θs,g = α∗
s ◦Θ0,g ◦ (α∗

s)
−1

and α∗
s is an isomorphism.

Note: the specific form of αs is essential
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Existence of the excess spin I

r The generator of these rotations
∑∞

x=1 S
x does not exist in algebra

r But: if spin-spin correlation in the ground state decay fast enough: may

exist in the GNS representation πω

; unitary implementation of the rotations

r Study limit of regularized sum

πω

(

S+(ǫ)
)

:=

∞
∑

x=1

e−ǫxπω (Sx)

We can prove the existence of the limit in two cases

r For models with finitely correlated ground states (matrix product states)

r For models that have a stochastic-geometric representation
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The stochastic picture

Example (Aizenman-Nachtergaele 1994): Heisenberg antiferromagnet:

H =
∑

e:edges

[

(1/2)− P e
(0)

]

Duhamel expansion ←→ 2d classical random loop model

Tr(e−βH) =
∞
∑

k=0

∫ β

0

dt1 · · ·

∫ tk−1

0

dtke−βL/2
∑

e1...ek

Tr
(

P e1

(0) · · ·P
ek

(0)

)

=

∫

dρ(ν)2# loops =

∫

dµ(ν)

r dρ(ν) is a Poisson process of bridges (ti, ei), rate 1, up to time β

r P ei

(0) ‘sits’ on the bridge (ti, ei)

r Bridges determine a loop configuration

r Each loop configuration determines
〈

σ0, P
e1

(0)σ1

〉

· · ·
〈

σk−1, P
ek

(0)σ0

〉
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Classical loop configurations

+ - + - + - + - +
0

β

γ

(t6, e6)
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The stochastic picture

r The ground state is obtained for the stochastic model on the plane

r Crucially,

ω(SxSy) ∝ Pµ(there is a loop between x and y)

; Loops express physical correlations

Expect: For each configuration ν, with loops γ ∈ ν

∑

x∈γ:γ intersects (−∞,0]

Sx

contribute to
∑∞

x=1 πω(Sx), as loops closed in [1,∞) sum to 0.

Therefore: Excess spin exists if large loops are rare, i.e. with sufficient

decay of correlations
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Which models?

Spin-1/2 Heisenberg antiferromagnet and higher spin generalizations

i. Represent a spin S as the highest spin component – totally symmetric

subspace – of 2S spins 1/2

ii. Interaction:

V ∗

k
∏

l=1

[

(1/2)− P
(x,l),(x+1,l)
(0)

]

V

where VDS = (D1/2)⊗2SV

Defines a ‘multiline’ model

Also expressed as polynomials in Sx · Sy

H = −
∑

x

2S
∑

k=0

JkQk(Sx · Sx+1)

Analytical Aspects of Mathematical Physics – 2013



Existence of the excess spin

Theorem. [B, Nachtergaele] Let H be as above. If

∑

x∈Z

∣

∣x3 ω(S0Sx)
∣

∣ <∞,

then the strong limit

U+
g = s-lim

ǫ→0
eig·πω(S+(ǫ))

exists and defines a strongly continuous representation of SU(2)

Moreover:

i. Let S+ be the self-adjoint generator of U+
g

S+ = s-lim
ǫ→0

πω

(

S+(ǫ)
)

ii. {πω(A)Ω : A ∈ Aloc} is contained in the domain of S+
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Idea of proof

In the stochastic picture: ν are the loop configurations and

ω(A) =

∫

dµ(ν)Eν(A)

for functions f((Sx)x∈Γ),

Eν(f) ∝
∑

σ compatible with ν

f(σ(0))

The theorem follows from

lim
max(ǫ,ǫ′)→0

ω
(

A∗ (S(ǫ)− S(ǫ′))
2
B
)

= 0

Reduce to the case A = B = 1 using decay of correlations: few loops

connect supp(B) to the far right
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Then prove
∫

dµ(ν)
[

Eν (S(ǫ)− S(ν))
2
]

−→ 0

For loops connecting the two half-lines:

∫

dµ(ν)Eν

[(

∑

x≥1

′

(e−ǫx − 1)Sx
)2]

∝

∫

dµ(ν)
∑

x,y≥1

(e−ǫx − 1)(e−ǫy − 1)Iν
[

x ∼ y ∼ (−∞, 0]
]

∝
∑

x,y≥1

(e−ǫx − 1)(e−ǫy − 1)Pµ(x ∼ y ∼ (−∞, 0])

conclude by Pµ(x ∼ y) ∝ ω(S0Sx) and dominated convergence

Similar for the loops remaining in the positive half-line
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Conclusion

r Gapped ground state phase as a set of models that can be smoothly

related without closing the spectral gap

r Implies the ‘local unitary’ equivalence of ground state spaces

r For phases with a symmetry group G: equivalent representations of G

at the edges

r Unitary implementability of the SU(2) action of on the GNS spaces:

Excess spin operator

r General classification of phases

r Topological order

r Long range entanglement, area laws

r Anyons?

Analytical Aspects of Mathematical Physics – 2013


	Ground states of quantum spin systems
	On `topological order'
	The Haldane phase
	AKLT model: Ground states
	AKLT model: Excess spin
	What is a phase?
	Equivalence
	Picture of a phase
	Abstract excess spin
	Proof
	Existence of the excess spin I
	The stochastic picture
	Classical loop configurations
	The stochastic picture
	Which models?
	Existence of the excess spin
	Idea of proof
	Conclusion

