Resolvent Algebras

An alternative approach to canonical quantum systems

Detlev Buchholz

"Analytical Aspects of Mathematical Physics"
ETH Zürich May 29, 2013

Motivation

Kinematics of quantum systems [Born, Heisenberg, Jordan]:

X : real (finite or infinite dimensional) vector space
$\sigma: X \times X \rightarrow \mathbb{R}$ non-degenerate symplectic form
Consider algebra $\mathcal{P}(X, \sigma)$ generated by basic observables $\phi(f), f \in X$

$$
\begin{gathered}
\phi\left(c f+c^{\prime} f^{\prime}\right)=c \phi(f)+c^{\prime} \phi\left(f^{\prime}\right), \quad \phi(f)^{*}=\phi(f) \\
{\left[\phi(f), \phi\left(f^{\prime}\right)\right]=i \sigma\left(f, f^{\prime}\right) 1}
\end{gathered}
$$

Difficulties:

- elements of $\mathcal{P}(X, \sigma)$ are (intrinsically) unbounded
- group of *-automorphisms Aut $\mathcal{P}(X, \sigma)$ is small (does not contain interesting dynamics: quadratic Hamiltonians)

Recipe:

Proceed to C^{*}-algebra containing the same algebraic information:

Motivation

(1) Weyl-algebra $\mathcal{W}(X, \sigma)$; generators $W(f)=e^{i \phi(f)}, f \in X$ satisfy

$$
W(f) W\left(f^{\prime}\right)=e^{i \sigma\left(f, f^{\prime}\right)} W\left(f^{\prime}\right) W(f), \quad W(f)^{*}=W(-f)
$$

Difficulties:

- no interesting dynamics (reason: $\mathcal{W}(X, \sigma)$ simple algebra)
- representation theory not manageable ...
(2) $\mathcal{C}(\mathcal{H})$ (group algebra generated by $\mathcal{W}(X, \sigma)$)
- works only for finite systems
- specific features of system disappear ($\phi(f)$ not affiliated)
(3) $\mathcal{B}(\mathcal{H})$ (multiplyer algebra of $\mathcal{C}(\mathcal{H})$)
- nonspecific input (oversized algebra)
- dynamics for infinite systems (construction of s.a. generators)

Motivation

(1) Weyl-algebra $\mathcal{W}(X, \sigma)$; generators $W(f)=e^{i \phi(f)}, f \in X$ satisfy

$$
W(f) W\left(f^{\prime}\right)=e^{i \sigma\left(f, f^{\prime}\right)} W\left(f^{\prime}\right) W(f), \quad W(f)^{*}=W(-f)
$$

Difficulties:

- no interesting dynamics (reason: $\mathcal{W}(X, \sigma)$ simple algebra)
- representation theory not manageable ...
(2) $\mathcal{C}(\mathcal{H})$ (group algebra generated by $\mathcal{W}(X, \sigma)$)

Difficulties:

- works only for finite systems
- specific features of system disappear ($\phi(f)$ not affiliated) ...
(3) $\mathcal{B}(\mathcal{H})$ (multiplyer algebra of $\mathcal{C}(\mathcal{H})$)
- nonspecific input (oversized algebra)
- dynamics for infinite systems (construction of s.a. generators)

Motivation

(1) Weyl-algebra $\mathcal{W}(X, \sigma)$; generators $W(f)=e^{i \phi(f)}, f \in X$ satisfy

$$
W(f) W\left(f^{\prime}\right)=e^{i \sigma\left(f, f^{\prime}\right)} W\left(f^{\prime}\right) W(f), \quad W(f)^{*}=W(-f)
$$

Difficulties:

- no interesting dynamics (reason: $\mathcal{W}(X, \sigma)$ simple algebra)
- representation theory not manageable...
(2) $\mathcal{C}(\mathcal{H})$ (group algebra generated by $\mathcal{W}(X, \sigma)$)

Difficulties:

- works only for finite systems
- specific features of system disappear ($\phi(f)$ not affiliated) ...
(3) $\mathcal{B}(\mathcal{H})$ (multiplyer algebra of $\mathcal{C}(\mathcal{H})$)

Difficulties:

- nonspecific input (oversized algebra)
- dynamics for infinite systems (construction of s.a. generators) ...

Motivation

Proposal: [Dв, н Grundling]

Proceed to algebra generated by resolvents of the basic observables

$$
R(\lambda, f) \doteq(i \lambda 1+\phi(f))^{-1}, \quad f \in X, \lambda \in \mathbb{R} \backslash\{0\}
$$

Remark: All algebraic properties of the basic observables can be expressed in terms of polynomial relations between these resolvents. They determine abstractly the

Resolvent Algebra

Outline

- Motivation \checkmark
- Resolvent algebra
- Basic properties
- Applications
- Conclusions

Resolvent algebra

Defining relations: $\quad f, g \in X, \lambda, \mu \in \mathbb{R} \backslash\{0\}$

$$
\begin{gathered}
R(\lambda, f)-R(\mu, f)=i(\mu-\lambda) R(\lambda, f) R(\mu, f) \\
R(\lambda, f)^{*}=R(-\lambda, f) \\
{[R(\lambda, f), R(\mu, g)]=i \sigma(f, g) R(\lambda, f) R(\mu, g)^{2} R(\lambda, f)} \\
\nu R(\nu \lambda, \nu f)=R(\lambda, f) \\
R(\lambda, f) R(\mu, g)= \\
=R(\lambda+\mu, f+g)\left[R(\lambda, f)+R(\mu, g)+i \sigma(f, g) R(\lambda, f)^{2} R(\mu, g)\right]
\end{gathered}
$$

$$
R(\lambda, 0)=\frac{1}{i \lambda} 1
$$

Definition: $\mathcal{R}_{0}(X, \sigma)$ is the unital *-algebra generated by $\{R(\lambda, f)\}$

Resolvent algebra

Lemma

Denote by (π, \mathcal{H}) (cyclic) the representations of $\mathcal{R}_{0}(X, \sigma)$. Then

$$
\|R\| \doteq \sup _{(\pi, \mathcal{H})}\|\pi(R)\|_{\mathcal{H}}, \quad R \in \mathcal{R}_{0}(X, \sigma)
$$

exists and defines a C^{*}-norm.

Definition: Given (X, σ), the associated resolvent algebra $\mathcal{R}(X, \sigma)$ is the completion of $\mathcal{R}_{0}(X, \sigma)$ with respect to this norm.

Basic properties

Definition: A representation (π, \mathcal{H}) of $\mathcal{R}(X, \sigma)$ is said to be regular if there exist self-adjoint generators for all resolvents,

$$
\pi(R(\lambda, f))=\left(i \lambda 1+\phi_{\pi}(f)\right)^{-1}, \quad f \in X, \lambda \in \mathbb{R} \backslash\{0\}
$$

Proposition

- Any faithful factorial representation of $\mathcal{R}(X, \sigma)$ is regular
- Any regular representation of $\mathcal{R}(X, \sigma)$ is faithful
- The regular representations of $\mathcal{R}(X, \sigma)$ are in 1-1 correspondence with the regular representations of $\mathcal{W}(X, \sigma)$. (Yet there is no such correspondence between the non-regular representations.)

Non-regular representations? (constraints, ideal structure, ...)

Basic properties

Classification of irreducible representations π of $\mathcal{R}(X, \sigma)$ for $\operatorname{dim} X<\infty$:

Fig. Decomposition of X for given π

- regular subspace $X_{r}: \quad \operatorname{ker} \pi(R(\lambda, f))=\{0\}, f \in X_{r}$
- trivial subspace $X_{t} \subset X_{r}: \quad \pi(R(\lambda, f)) \in \mathbb{C} 1 \backslash\{0\}, f \in X_{t}$
- singular complement $X_{s}=X \backslash X_{r}: \quad \pi(R(\lambda, f))=0, f \in X_{s}$

Basic properties

Finite systems

Proposition

Let (X, σ) be a symplectic space with $\operatorname{dim} X<\infty$.

- $\mathcal{R}(X, \sigma)$ is of type I (postliminal). (Every irreducible representation contains the compact operators)
- $\widehat{\pi} \mapsto$ Ker $\widehat{\pi}$ is a bijection from the spectrum $\widehat{\mathcal{R}}(X, \sigma)$ of $\mathcal{R}(X, \sigma)$ to its primitive ideals. (Compare abelian C^{*}-algebras)
- The intersection of all closed non-zero ideals of $\mathcal{R}(X, \sigma)$ is isomorphic to $\mathcal{C}(\mathcal{H})$. (Unique minimal ideal)
- $\operatorname{dim} X$ is a complete algebraic invariant for the resolvent algebras. (Size of system algebraically encoded)

Basic properties

Infinite systems

Proposition

Let (X, σ) be a symplectic space with $\operatorname{dim} X=\infty$.

- $\mathcal{R}(X, \sigma)$ is the C^{*}-inductive limit of its subalgebras $\mathcal{R}(Y, \sigma)$, where $Y \subset X$ is finite dimensional and non-degenerate. (Each $\mathcal{R}(Y, \sigma)$ contains minimal ideal isomorphic to $\mathcal{C}(\mathcal{H})$; key to the construction of dynamics)
- $\mathcal{R}(X, \sigma)$ does not contain any non-zero minimal ideal.
- $\mathcal{R}(X, \sigma)$ is nuclear. (Unique tensor products)

Thus the resolvent algebras provide a convenient mathematical framework which encodes specific information about the underlying quantum systems.

Applications

Resolvent algebras have found applications in

- representation theory for abelian Lie algebras of derivations
- study of constraint systems, BRST cohomology
- algebraic framework for SUSY, super KMS functionals
- construction of dynamical systems ...

Technical virtue: algebras accessible to "uniform" and "weak" methods

Applications

Resolvent algebras have found applications in

- representation theory for abelian Lie algebras of derivations
- study of constraint systems, BRST cohomology
- algebraic framework for SUSY, super KMS functionals
- construction of dynamical systems ...

Technical virtue: algebras accessible to "uniform" and "weak" methods

Applications

Instructive example: $\mathcal{R}(X, \sigma)$ with $\operatorname{dim} X=2 N$
Recall: Every regular representation is faithful; Schrödinger representation $\left(\pi_{s}, \mathcal{H}_{s}\right)$ Symplectic basis: $f_{i}, g_{i} \in X ; \quad P_{i} \doteq \phi_{\pi_{s}}\left(f_{i}\right), Q_{i} \doteq \phi_{\pi_{s}}\left(g_{i}\right) i=1, \ldots, N$ Resolvents:

$$
\left(i \lambda 1+a_{1} P_{1}+\ldots a_{N} P_{N}+b_{1} Q_{1}+\ldots b_{N} Q_{N}\right)^{-1}
$$

Standard Hamiltonian: (N interacting particles in one dimension)

$$
H=H_{0}+V=\sum_{i} \frac{1}{2 m_{i}} P_{i}^{2}+\sum_{i \neq j} V_{i j}\left(Q_{i}-Q_{j}\right)
$$

Applications

Proposition

$(i \mu 1+H)^{-1} \in \pi_{S}(\mathcal{R}(X, \sigma))$ for $\mu \in \mathbb{R} \backslash\{0\} \quad$ (i.e. H is affiliated with $\left.\mathcal{R}(X, \sigma)\right)$.

Note: $(i \mu 1+H)^{-1} \notin \pi_{s}(\mathcal{W}(X, \sigma)), \mathcal{C}(\mathcal{H})$

Sketch of proof:

(1) The abelian C^{*}-subalgebra generated by
contains $\left(i \mu 1+H_{0}\right)^{-1}, \mu \in \mathbb{R} \backslash\{0\}$
(2) The abelian C^{*}-subalgebra generated by
contains $V_{i j}\left(Q_{i}-Q_{j}\right), i, j=1, \ldots, N$ and hence V
(3) The series $(i \mu 1+H)^{-1}=\sum_{n=0}^{\infty}\left(i \mu 1+H_{0}\right)^{-1}\left(V\left(i \mu 1+H_{0}\right)^{-1}\right)^{n}$ converges in norm for $|\mu|>\|V\|$

Applications

Proposition

$(i \mu 1+H)^{-1} \in \pi_{S}(\mathcal{R}(X, \sigma))$ for $\mu \in \mathbb{R} \backslash\{0\} \quad$ (i.e. H is affiliated with $\left.\mathcal{R}(X, \sigma)\right)$.
Note: $(i \mu 1+H)^{-1} \notin \pi_{s}(\mathcal{W}(X, \sigma)), \mathcal{C}(\mathcal{H})$
Sketch of proof:
(1) The abelian C^{*}-subalgebra generated by

$$
\left(i \lambda 1+a_{1} P_{1}+\ldots a_{N} P_{N}\right)^{-1}, \quad a_{1}, \ldots, a_{n} \in \mathbb{R}, \lambda \in \mathbb{R} \backslash\{0\}
$$

contains $\left(i \mu 1+H_{0}\right)^{-1}, \mu \in \mathbb{R} \backslash\{0\}$
(2) The abelian C^{*}-subalgebra generated by

$$
\left(i \lambda 1+b_{1} Q_{1}+\ldots b_{N} Q_{N}\right)^{-1}, \quad b_{1}, \ldots, b_{n} \in \mathbb{R}, \lambda \in \mathbb{R} \backslash\{0\}
$$

contains $V_{i j}\left(Q_{i}-Q_{j}\right), i, j=1, \ldots, N$ and hence V
(3) The series $(i \mu 1+H)^{-1}=\sum_{n=0}^{\infty}\left(i \mu 1+H_{0}\right)^{-1}\left(V\left(i \mu 1+H_{0}\right)^{-1}\right)^{n}$ converges in norm for $|\mu|>\|V\|$

Applications

Proposition

Ade $e^{i t H}\left(\pi_{s}(\mathcal{R}(X, \sigma))\right)=\pi_{s}(\mathcal{R}(X, \sigma))$ (i.e. H generator of dynamics of $\left.\mathcal{R}(X, \sigma)\right)$.

Sketch of proof:

(1) $\operatorname{Ad}^{i t H_{0}}\left(\pi_{s}(\mathcal{R}(X, \sigma))\right)=\pi_{s}(\mathcal{R}(X, \sigma))$ (symplectic transformation)
(2) Dyson series (norm convergent)

$$
V(s) \doteq \operatorname{Ade}^{i s H_{0}}(V)=\sum_{i \neq j} V_{i j}(s)=\sum_{i \neq j} V_{i j}\left(\left(Q_{i}-Q_{j}\right)+s\left(\frac{1}{m_{i}} P_{i}-\frac{1}{m_{j}} P_{j}\right)\right)
$$

Warning: Integrals only defined in the strong operator topology
(3) Let $Y_{i, j} \subset X$ be the subspace corresponding to $\left(\frac{1}{m} P_{i}-\frac{1}{m} P_{j}\right),\left(Q_{i}-Q_{j}\right)$. Then

$$
s_{1}, s_{2} \mapsto V_{i j}\left(s_{1}\right) V_{i j}\left(s_{2}\right) \in \pi_{s}\left(\mathcal{R}\left(Y_{i, j}, \sigma\right)\right)
$$

for $s_{1} \neq s_{2}$ elements of the compact ideal $\mathcal{C}_{i j} \subset \pi_{S}\left(\mathcal{R}\left(Y_{i, j}, \sigma\right)\right)$
(4) $\left(\int_{0}^{t} d s V_{i j}(s)\right)^{2}=\int_{0}^{t} d s_{1} \int_{0}^{t} d s_{2} V_{i j}\left(s_{1}\right) V_{i j}\left(s_{2}\right) \in \mathcal{C}_{i j}$, hence $\int_{0}^{t} d s V_{i j}(s) \in \pi_{s}(\mathcal{R}(X, \sigma))$
(5) Induction argument: $e^{i t h} e^{-i t H_{0}} \in \pi_{s}(\mathcal{R}(X, \sigma))$

Applications

Proposition

Ade $e^{i t H}\left(\pi_{s}(\mathcal{R}(X, \sigma))\right)=\pi_{s}(\mathcal{R}(X, \sigma))$ (i.e. H generator of dynamics of $\left.\mathcal{R}(X, \sigma)\right)$.

Sketch of proof:
(1) Ad $e^{i t H_{0}}\left(\pi_{s}(\mathcal{R}(X, \sigma))\right)=\pi_{s}(\mathcal{R}(X, \sigma))$ (symplectic transformation)
(2) Dyson series (norm convergent)

$$
\begin{gathered}
e^{i t H} e^{-i t H_{0}}=\sum_{n=0}^{\infty} i^{n} \int_{0}^{t} d t_{1} \cdots \int_{0}^{t_{n-1}} d t_{n} V\left(t_{n}\right) \cdots V\left(t_{1}\right), \\
V(s) \doteq \operatorname{Ad} e^{i s H_{0}}(V)=\sum_{i \neq j} V_{i j}(s)=\sum_{i \neq j} V_{i j}\left(\left(Q_{i}-Q_{j}\right)+s\left(\frac{1}{m_{i}} P_{i}-\frac{1}{m_{j}} P_{j}\right)\right)
\end{gathered}
$$

Warning: Integrals only defined in the strong operator topology
(3) Let $Y_{i, j} \subset X$ be the subspace corresponding to $\left(\frac{1}{m_{i}} P_{i}-\frac{1}{m_{j}} P_{j}\right),\left(Q_{i}-Q_{j}\right)$. Then

$$
s_{1}, s_{2} \mapsto V_{i j}\left(s_{1}\right) V_{i j}\left(s_{2}\right) \in \pi_{s}\left(\mathcal{R}\left(Y_{i, j}, \sigma\right)\right) ;
$$

for $s_{1} \neq s_{2}$ elements of the compact ideal $\mathcal{C}_{i j} \subset \pi_{s}\left(\mathcal{R}\left(Y_{i, j}, \sigma\right)\right)$
(4) $\left(\int_{0}^{t} d s V_{i j}(s)\right)^{2}=\int_{0}^{t} d s_{1} \int_{0}^{t} d s_{2} V_{i j}\left(s_{1}\right) V_{i j}\left(s_{2}\right) \in \mathcal{C}_{i j}$, hence $\int_{0}^{t} d s V_{i j}(s) \in \pi_{s}(\mathcal{R}(X, \sigma))$
(5) Induction argument: $e^{i t H} e^{-i t H_{0}} \in \pi_{s}(\mathcal{R}(X, \sigma))$

Applications

Systems with infinite number of degrees of freedom (Example):

vibrating atoms on an infinite lattice; (X, σ) has countable basis
Fock representation of $\mathcal{R}(X, \sigma)$ faithful, local Hamiltonians

$$
H_{\Lambda}:=\sum_{j \in \Lambda}\left(\frac{1}{2 m} P_{j}^{2}+\frac{m \omega^{2}}{2} Q_{j}^{2}\right)+\sum_{j, j+1 \in \Lambda} V\left(Q_{j}-Q_{j+1}\right), \quad \Lambda \subset \mathbb{Z} ;
$$

corresponding unitary groups

$$
U_{\Lambda}(t):=e^{i t H_{\Lambda}}, \quad t \in \mathbb{R}
$$

Applications

Proposition

Let $V \in \mathcal{C}_{0}$.

- H_{Λ} is affiliated with $\mathcal{R}(X, \sigma), \wedge \subset \mathbb{Z}$
- U_{Λ} induces automorphic action $\alpha_{\Lambda}: \mathbb{R} \rightarrow \operatorname{Aut} \mathcal{R}(X, \sigma), \Lambda \subset \mathbb{Z}$
- $\alpha_{t}=\lim _{\wedge \nearrow \mathbb{Z}} \alpha_{\wedge t}$ exists on $\mathcal{R}(X, \sigma)$ in the strong topology, $t \in \mathbb{R}$

Straightforward application of C^{*}-algebraic methods:

Proposition

There exists a regular ground state ω_{0} for $\left(\mathcal{R}(X, \sigma), \alpha_{\mathbb{R}}\right)$, i.e. in GNS-representation $\left(\pi_{0}, \mathcal{H}_{0}, \Omega_{0}\right)$ there is $U_{0}: \mathbb{R} \longrightarrow \mathcal{U}\left(\mathcal{H}_{0}\right)$ with positive generator such that

$$
U_{0}(t) \pi_{0}(R) \Omega_{0}=\pi_{0}\left(\alpha_{t}(R)\right) \Omega_{0}, \quad R \in \mathcal{R}(X, \sigma), t \in \mathbb{R}
$$

Concluding remarks

Resolvent algebras

- encode specific information about quantum systems
- have comfortable algebraic properties
- have a manageable representation theory
- include physically relevant observables
- are stable under a wealth of interesting dynamics
- cover infinite systems (Bosonic lattice theories, Pauli-Fierz models?, ...)
- simplify discussion of constraints
- provide a framework for studies of SUSY
are a convenient analytical framework for quantum physics

Concluding remarks

References:

- DB and HG: The resolvent algebra: A new approach to canonical quantum systems
Journal of Functional Analysis 254 (2008) 2725
- DB and HG: The resolvent algebra: Ideals and dimension arXiv:130x.xxxx
- DB and HG: Lie Algebras of Derivations and Resolvent Algebras Comm. Math. Phys. DOI 10.1007/s00220-012-1567-z
- P. Costello: The mathematics of the BRST-constraint method arXiv:0905.3570
- DB and HG: Algebraic Supersymmetry: A case study Commun. Math. Phys. 272 (2007) 699

