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Motivation

Kinematics of quantum systems [Born, Heisenberg, Jordan]:

X : real (finite or infinite dimensional) vector space
σ : X × X → R non–degenerate symplectic form
Consider algebra P(X , σ) generated by basic observables φ(f ), f ∈ X

φ(cf + c′f ′) = c φ(f ) + c′ φ(f ′) , φ(f )∗ = φ(f ) ,

[φ(f ), φ(f ′)] = i σ(f , f ′) 1 .

Difficulties:
elements of P(X , σ) are (intrinsically) unbounded
group of *–automorphisms AutP(X , σ) is small (does not contain
interesting dynamics: quadratic Hamiltonians)

Recipe:
Proceed to C*–algebra containing the same algebraic information:
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Motivation

(1) Weyl–algebraW(X , σ); generators W (f ) = e iφ(f ), f ∈ X satisfy

W (f )W (f ′) = eiσ(f ,f ′) W (f ′)W (f ) , W (f )∗ = W (−f )

Difficulties:
no interesting dynamics (reason: W(X , σ) simple algebra)
representation theory not manageable . . .

(2) C(H) (group algebra generated byW(X , σ))

Difficulties:
works only for finite systems
specific features of system disappear (φ(f ) not affiliated) . . .

(3) B(H) (multiplyer algebra of C(H))

Difficulties:
nonspecific input (oversized algebra)

dynamics for infinite systems (construction of s.a. generators) . . .
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Motivation

Proposal: [DB, H Grundling]

Proceed to algebra generated by resolvents of the basic observables

R(λ, f )
.

= (iλ1 + φ(f ))−1, f ∈ X , λ ∈ R\{0} .

Remark: All algebraic properties of the basic observables can be expressed in terms
of polynomial relations between these resolvents. They determine abstractly the

Resolvent Algebra
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Outline
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Resolvent algebra

Defining relations: f , g ∈ X , λ, µ ∈ R\{0}

R(λ, f )− R(µ, f ) = i(µ− λ)R(λ, f )R(µ, f )

R(λ, f )∗ = R(−λ, f )ˆ
R(λ, f ), R(µ, g)

˜
= iσ(f , g) R(λ, f ) R(µ, g)2R(λ, f )

ν R(νλ, νf ) = R(λ, f )

R(λ, f )R(µ, g) =

= R(λ+ µ, f + g)
ˆ
R(λ, f ) + R(µ, g) + iσ(f , g)R(λ, f )2R(µ, g)

˜
R(λ, 0) = 1

iλ 1

Definition: R0(X , σ) is the unital *-algebra generated by {R(λ, f )}
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Resolvent algebra

Lemma
Denote by (π,H) (cyclic) the representations of R0(X , σ). Then

‖R‖ .= sup(π,H) ‖π(R)‖H , R ∈ R0(X , σ)

exists and defines a C∗–norm.

Definition: Given (X , σ), the associated resolvent algebra R(X , σ) is
the completion of R0(X , σ) with respect to this norm.
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Basic properties

Definition: A representation (π,H) of R(X , σ) is said to be regular if
there exist self–adjoint generators for all resolvents,

π(R(λ, f )) = (iλ1 + φπ(f ))−1, f ∈ X , λ ∈ R\{0} .

Proposition
Any faithful factorial representation of R(X , σ) is regular
Any regular representation of R(X , σ) is faithful
The regular representations of R(X , σ) are in 1–1 correspondence
with the regular representations ofW(X , σ). (Yet there is no such
correspondence between the non–regular representations.)

Non–regular representations? (constraints, ideal structure, . . . )
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Basic properties

Classification of irreducible representations π of R(X , σ) for dimX <∞:

X

X

X              XX              X
R

S

T

Fig. Decomposition of X for given π

regular subspace Xr : kerπ(R(λ, f )) = {0} , f ∈ Xr

trivial subspace Xt ⊂ Xr : π(R(λ, f )) ∈ C1\{0} , f ∈ Xt

singular complement Xs = X\Xr : π(R(λ, f )) = 0 , f ∈ Xs
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Basic properties

Finite systems

Proposition
Let (X , σ) be a symplectic space with dimX <∞.

R(X , σ) is of type I (postliminal). (Every irreducible representation
contains the compact operators)

π̂ 7→ Ker π̂ is a bijection from the spectrum R̂(X , σ) of R(X , σ) to
its primitive ideals. (Compare abelian C*–algebras)

The intersection of all closed non–zero ideals of R(X , σ) is
isomorphic to C(H). (Unique minimal ideal)

dimX is a complete algebraic invariant for the resolvent algebras.
(Size of system algebraically encoded)
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Basic properties

Infinite systems

Proposition
Let (X , σ) be a symplectic space with dimX =∞.

R(X , σ) is the C*–inductive limit of its subalgebras R(Y , σ), where
Y ⊂ X is finite dimensional and non–degenerate. (Each R(Y , σ)

contains minimal ideal isomorphic to C(H); key to the construction of dynamics)

R(X , σ) does not contain any non–zero minimal ideal.
R(X , σ) is nuclear. (Unique tensor products)

Thus the resolvent algebras provide a convenient mathematical framework which
encodes specific information about the underlying quantum systems.
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Applications

Resolvent algebras have found applications in

representation theory for abelian Lie algebras of derivations
study of constraint systems, BRST cohomology
algebraic framework for SUSY, super KMS functionals
construction of dynamical systems . . .

Technical virtue: algebras accessible to “uniform” and “weak” methods
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Applications

Instructive example: R(X , σ) with dimX = 2N

Recall: Every regular representation is faithful; Schrödinger representation (πS ,HS)

Symplectic basis: fi ,gi ∈ X ; Pi
.

= φπS (fi), Qi
.

= φπS (gi) i = 1, . . . ,N

Resolvents:

(iλ1 + a1P1 + . . . aNPN + b1Q1 + . . . bNQN)−1 .

Standard Hamiltonian: (N interacting particles in one dimension)

H = H0 + V =
∑

i

1
2mi

P2
i +

∑
i 6=j

Vij(Qi −Qj)

Q −Q

Vij

i j
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Applications

Proposition

(iµ1 + H)−1 ∈ πS(R(X , σ)) for µ ∈ R\{0} (i.e. H is affiliated with R(X , σ)).

Note: (iµ1 + H)−1 /∈ πs(W(X , σ)), C(H)

Sketch of proof:
1 The abelian C*–subalgebra generated by

(iλ1 + a1P1 + . . . aNPN)−1, a1, . . . , an ∈ R, λ ∈ R\{0}

contains (iµ1 + H0)
−1, µ ∈ R\{0}

2 The abelian C*–subalgebra generated by

(iλ1 + b1Q1 + . . . bNQN)−1, b1, . . . , bn ∈ R, λ ∈ R\{0}

contains Vij(Qi −Qj), i, j = 1, . . . ,N and hence V
3 The series (iµ1 + H)−1 =

P∞
n=0 (iµ1 + H0)

−1(V (iµ1 + H0)
−1)n converges in

norm for |µ| > ‖V‖ QED
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Applications

Proposition

Ad e itH(πs(R(X , σ))
)

= πs(R(X , σ)) (i.e. H generator of dynamics of R(X , σ)).

Sketch of proof:
1 Ad e itH0

`
πs(R(X , σ))

´
= πs(R(X , σ)) (symplectic transformation)

2 Dyson series (norm convergent)

e itHe−itH0 =
∞X

n=0

in
Z t

0
dt1 · · ·

Z tn−1

0
dtn V (tn) · · ·V (t1) ,

V (s)
.
= Ade isH0(V ) =

P
i 6=j Vij(s) =

P
i 6=j Vij

`
(Qi −Qj) + s( 1

mi
Pi − 1

mj
Pj)
´

Warning: Integrals only defined in the strong operator topology
3 Let Yi,j ⊂ X be the subspace corresponding to ( 1

mi
Pi − 1

mj
Pj), (Qi −Qj). Then

s1, s2 7→ Vij(s1)Vij(s2) ∈ πS(R(Yi,j , σ)) ;

for s1 6= s2 elements of the compact ideal Cij ⊂ πS(R(Yi,j , σ))

4
` R t

0 dsVij(s)
´2

=
R t

0 ds1
R t

0 ds2Vij(s1)Vij(s2) ∈ Cij , hence
R t

0 dsVij(s) ∈ πS(R(X , σ))

5 Induction argument: e itHe−itH0 ∈ πs(R(X , σ)) QED
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Applications

Systems with infinite number of degrees of freedom (Example):

vibrating atoms on an infinite lattice; (X , σ) has countable basis

Fock representation of R(X , σ) faithful, local Hamiltonians

HΛ :=
∑
j∈Λ

( 1
2m P2

j + mω2

2 Q2
j ) +

∑
j, j+1∈Λ

V (Qj −Qj+1) , Λ ⊂ Z ;

corresponding unitary groups

UΛ(t) := eitHΛ , t ∈ R
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Applications

Proposition
Let V ∈ C0.

HΛ is affiliated with R(X , σ), Λ ⊂ Z
UΛ induces automorphic action αΛ : R→ AutR(X , σ), Λ ⊂ Z
αt = limΛ↗Z αΛ t exists on R(X , σ) in the strong topology, t ∈ R

Straightforward application of C*–algebraic methods:

Proposition
There exists a regular ground state ω0 for (R(X , σ), αR), i.e. in
GNS–representation (π0,H0,Ω0) there is U0 : R −→ U(H0) with
positive generator such that

U0(t)π0(R) Ω0 = π0(αt (R)) Ω0 , R ∈ R(X , σ), t ∈ R .
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Concluding remarks

Resolvent algebras

encode specific information about quantum systems
have comfortable algebraic properties
have a manageable representation theory
include physically relevant observables
are stable under a wealth of interesting dynamics
cover infinite systems (Bosonic lattice theories, Pauli–Fierz models?, . . . )

simplify discussion of constraints
provide a framework for studies of SUSY

are a convenient analytical framework for quantum physics
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Concluding remarks
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