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Motivation

Kinematics of quantum systems [Born, Heisenberg, Jordan]:

X: real (finite or infinite dimensional) vector space

o : X x X — R non—-degenerate symplectic form

Consider algebra P(X, o) generated by basic observables ¢(f), f € X

¢(cf+c'f) = co(f) +c'o(f),  o(f)" = o(f),
[6(F), o(F)] = i (f, F)1.

Difficulties:
@ elements of P(X, o) are (intrinsically) unbounded
@ group of *—automorphisms Aut P(X, o) is small (does not contain
interesting dynamics: quadratic Hamiltonians)

Recipe:
Proceed to C*—algebra containing the same algebraic information:
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Motivation

(1) Weyl-algebra W(X, o); generators W(f) = e/, f ¢ X satisfy
W(HW(F) = e W YW(F), W(f)* = W(-F)

Difficulties:

@ no interesting dynamics (reason: W(X, o) simple algebra)
@ representation theory not manageable ...
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Motivation

(1) Weyl-algebra W(X, o); generators W(f) = e/, f ¢ X satisfy
W(HW(F) = e W YW(F), W(f)* = W(-F)
Difficulties:

@ no interesting dynamics (reason: W(X, o) simple algebra)
@ representation theory not manageable ...

(2) C(H) (group algebra generated by W(X, o))
Difficulties:
@ works only for finite systems
@ specific features of system disappear (4(f) not affiliated) . . .

(3) B(H) (multiplyer algebra of C(H))
Difficulties:

@ nonspecific input (oversized algebra)
@ dynamics for infinite systems (construction of s.a. generators) . . .
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Motivation

Proposal: [pB,H Grundiing]
Proceed to algebra generated by resolvents of the basic observables
R\ ) = (iM +¢(f)~', feX, AeR\{0}.

Remark: All algebraic properties of the basic observables can be expressed in terms
of polynomial relations between these resolvents. They determine abstractly the

Resolvent Algebra
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Outline
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Resolvent algebra

Defining relations: f,ge X, \,ucR\{0}
R(A, f) = R(p, ) = i( — M) R(X, ) R(p, f)
R\, f)* = R(=\, f)

[R(A. 1), R, 9)] = io(f,9) R(X, f) R(i, 9)?R(A, f)
v R(wA, vf) = R\, f)

R\, )R(k, 9) =
=R\ +p, f+g)[RO\ ) + R(u, 9) + io(f,g)R(N, )*Rly, 9)]

R(),0) = 4 1

Definition: Ry(X, o) is the unital *-algebra generated by {R(\, )}
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Resolvent algebra

Denote by (7, H) @vic) the representations of Ro(X, o). Then

IRl = sup(z) [7(R)ll=, R € Ro(X,0)

exists and defines a C*—norm.

Definition: Given (X, o), the associated resolvent algebra R(X, o) is
the completion of Ry (X, o) with respect to this norm.



Basic properties

Definition: A representation (7, H) of R(X, o) is said to be regular if
there exist self—adjoint generators for all resolvents,

m(R(\ ) = (1M 4+ ¢-(F)7",  fe X, A eR\{0}.

Proposition

@ Any faithful factorial representation of R(X, o) is regular
@ Any regular representation of R(X, o) is faithful
@ The regular representations of R(X, o) are in 1-1 correspondence

with the regular representations of W(X, o). (Yet there is no such
correspondence between the non—regular representations.)

Non—regular representations? (constraints, ideal structure, ...)



Basic properties

Classification of irreducible representations = of R(X, o) for dimX < oo:

Xr

X

X

Xr

Fig. Decomposition of X for given 7

@ regular subspace X; :

@ trivial subspace X; C X; :
@ singular complement Xs = X\ X; :

kerm(R(\, f)) = {0}, f e X,

7(R(\, f)) € CI\{0}, f e X,

(RO ) =0, feXs
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Basic properties

Finite systems

Proposition
Let (X, o) be a symplectic space with dimX < oc.

@ R(X,o0) is of type I (postliminal). (Every irreducible representation
contains the compact operators)

e 7 — Ker7 is a bijection from the spectrum R(X, o) of R(X, o) to
its primitive ideals. (Compare abelian C*—algebras)

@ The intersection of all closed non—zero ideals of R(X, o) is
isomorphic to C(H). (Unique minimal ideal)

@ dimX is a complete algebraic invariant for the resolvent algebras.
(Size of system algebraically encoded)
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Basic properties

Infinite systems

Proposition

Let (X, o) be a symplectic space with dimX = cc.

@ R(X,o0) is the C*—inductive limit of its subalgebras R(Y, o), where
Y C X is finite dimensional and non—degenerate. (EachR(Y,o)
contains minimal ideal isomorphic to C(H), key to the construction of dynamics)

@ R(X, o) does not contain any non-zero minimal ideal.

@ R(X, o) is nuclear. (Unique tensor products)

Thus the resolvent algebras provide a convenient mathematical framework which
encodes specific information about the underlying quantum systems.
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Applications

Resolvent algebras have found applications in

@ representation theory for abelian Lie algebras of derivations
@ study of constraint systems, BRST cohomology

@ algebraic framework for SUSY, super KMS functionals

@ construction of dynamical systems ...

12/19



Applications

Resolvent algebras have found applications in

@ representation theory for abelian Lie algebras of derivations
@ study of constraint systems, BRST cohomology

@ algebraic framework for SUSY, super KMS functionals

@ construction of dynamical systems ...

Technical virtue: algebras accessible to “uniform” and “weak” methods
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Applications

Instructive example: R(X,o) with dimX = 2N
Recall: Every regular representation is faithful; Schrédinger representation (7s, Hs)
Symplectic basis: f;,g; € X;  Pi = ¢x5(fi), Qi = drg(9i) i=1,....N
Resolvents:
(i 4+ aPy+...ayPy+biQy +...byQu) .

Standard Hamiltonian: (N interacting particles in one dimension)

H=Ho+V=> 2P+ > Vi(Q-Q)

i i#]

Vi
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Applications

Proposition
(ip1 + H)™" € 75(R(X,0)) for u € R\{0} (ie. H is affiliated with R(X, 7)).

Note: (ip1 4+ H)™' ¢ 7s(W(X, o)), C(H)
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Applications

Proposition
(ip1 + H)™" € 75(R(X,0)) for u € R\{0} (ie. H is affiliated with R(X, 7)).

Note: (ip1 4+ H)™' ¢ 7s(W(X, o)), C(H)
Sketch of proof:
@ The abelian C*—subalgebra generated by
(iM +aiPy+...avPn)"", ai,...,an € R, A € R\{0}

contains (iu1 + Hp)™", € R\{0}
@ The abelian C*—subalgebra generated by
(M +biQi+...bvQN) ™", bi,...,by €R, X € R\{0}

contains V;(Q — @), i,j=1,...,Nand hence V

© The series (ip1+ H)™" =320, (iud + Ho) ™' (V (ip1 + Ho)~')" converges in
norm for |p| > || V]| QED
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Applications

Proposition
Ade™ (1s(R(X,0))) = ms(R(X, o)) (ie. H generator of dynamics of R(X, o).
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Applications

Proposition
Ade™ (1s(R(X,0))) = ms(R(X, o)) (ie. H generator of dynamics of R(X, o).

Sketch of proof:
@ Ade™ (ms(R(X,0))) = ms(R(X,0)) (symplectic transformation)
@ Dyson series (norm convergent)

e/1‘H —itHy — /dt1 / dtn tn) ( )

V(s) = Ade™ (V) = Z,#,- i/(s) =2 Vi((Q = Q) + (7P — 7 P))

Warning: Integrals only defined in the strong operator topology

© Let Yi; C X be the subspace corresponding to (%/_P,— — r:T,-P/')v (Q — Q). Then
s1, 82 — Vij(s1) Vj(s2) € ms(R(Vij, 0));

for sy # s, elements of the compact ideal C; C ws(R(Yi;,0))
Q (JydsVy(s)® = Jydsi fyds2Vi(s1) Vi(sz) € Cy, hence [,dsVy(s) € ms(R(X, 7))
@ Induction argument: e™e =" ¢ 1y(R(X, 7)) QED
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Applications

Systems with infinite number of degrees of freedom (Example):

vibrating atoms on an infinite lattice; (X, ¢) has countable basis

Fock representation of R(X, o) faithful, local Hamiltonians

Hhi=> (PP +™5@) + Y V(Q— Q). ACZ;
jen Jrj+1en
corresponding unitary groups

Up(t):=e™, teR
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Applications

Proposition

Let V € (.
@ Hy is affiliated with R(X,0), N C Z
@ U, induces automorphic action ap : R — AutR(X,0), N C Z
@ o =1limp ~7 apy exists on R(X, o) in the strong topology, t € R

Straightforward application of C*—algebraic methods:

Proposition

There exists a regular ground state wy for (R(X, o), ar), i.e.in
GNS—representation (mg, Ho, Q) there is Uy : R — U(Ho) with
positive generator such that

Uo(t)ﬂ'o(R)Qo :Wo(at(R))Qo, FI’GR(X,O’), teR.
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Concluding remarks

Resolvent algebras

encode specific information about quantum systems
have comfortable algebraic properties

have a manageable representation theory

include physically relevant observables

are stable under a wealth of interesting dynamics

cover infinite systems (Bosonic lattice theories, Pauli-Fierz models?, .

simplify discussion of constraints
provide a framework for studies of SUSY

are a convenient analytical framework for quantum physics

)
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Concluding remarks
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