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I Results by Balaban

I Exposition of the method for φ4
3 (some new features)

I Technical remarks
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Overview

I T−NM =
(
L−NZ/LMZ

)d
= toroidal lattice with spacing L−N , linear dimension LM .

I fields ϕ : T−NM → R
I Euclidean action A(ϕ)

I partition function ZM,N =
∫

exp
(
−A(ϕ)

)∏
x dϕ(x)

I correlation functions
Z−1
M,N

∫
ϕ(x1) . . . ϕ(xn) exp

(
−A(ϕ)

)∏
x dφ(x)

I UV problem - bounds uniform in N.
IR problem - bounds uniform in M
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Balaban projects

1. Scalar electrodynamics in d=2,3 (UV problem, 5 papers,
1982-83)

2. Yang-Mills in d=3,4 (UV problem, 11 papers, 1984-89)

3. Linear σ-model in d ≥ 3 (IR problem, 8 papers, 1995-99)

(Also with J. Imbrie, A. Jaffe: partial results on abelian Higgs
model in d=2,3 (UV and IR, 1988) )
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1. Scalar electrodynamics in d=2,3

I ϕ : T−NM → C A : bonds in T−NM → R
I with

∫
x · · · = L−Nd

∑
x . . .

A(ϕ,A) =
1

2

∫ (
|∂Aϕ|2 + m2|ϕ|2 + λ|φ|4 + |∂A|2 + µ2|A|2

)
Note: massive photons

I Results (after renormalization):
I bounds on effective densities for RG flow uniform in N
I stability bound:

exp
(
− cVol(T−N

M

)
≤ ZM,N

ZM,N(0)
≤ exp

(
cVol(T−N

M )
)

with constants independent of N,M.
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2. Yang-Mills in d=3,4

I U: bonds in T−NM → semi-simple compact Lie group G

I A(U) = 1
g2

∫
p tr
(

1− U(∂p)
)

U(∂p) =
∏

b∈∂p U(b)

I Results (after renormalization):
I bounds on effective densities for RG flow
I upper stability bound

I Caveat: paper on coupling constant flow in second order
perturbation theory missing
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3. Linear σ-model in d ≥ 3

I ϕ : T0
M → Rn n ≥ 2

I A(φ) = β
(
|∂ϕ|2 + λ(|ϕ|2 − 1)2

)
I Results : For β large, 1 ≤ λ ≤ ∞ and uniformly in M:

1. bounds on effective densities for RG flow
2. spontanenous magnetization
3. massless decay of correlations (Goldstone bosons)

(Last part with M. O’Carroll)
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ϕ4
3 model - the UV problem

I T−NM =
(
L−NZ/LMZ

)3
ϕ : T−NM :→ R

A(ϕ) = S(ϕ) + V (ϕ)

S(ϕ) =
1

2
‖∂ϕ‖2 +

1

2
µ̄ ‖ϕ‖2

V (ϕ) = εVol(T−NM ) +
1

2
µ ‖ϕ‖2 +

1

4
λ

∫
ϕ4

I Scale to Φ : T0
M+N :→ R (Now IR problem)

A0(Φ) = S0(Φ) + V0(Φ)

S0(Φ) =
1

2
‖∂Φ‖2 +

1

2
µ̄0 ‖Φ‖2

V (Φ) = ε0Vol(T0
M+N) +

1

2
µ0 ‖Φ‖2 +

1

4
λ0

∫
Φ4

with tiny coupling constants:

ε0 = L−3Nε µ0 = L−2Nµ λ0 = L−Nλ
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RG transformation: define densities ρk(Φk) on Φk : T0
M+N−k → R

by ρ0 = exp(−A0(Φ)) and

ρk+1(Φk+1) = N−1
k+1

∫
exp

(
− a

L2
‖Φk+1,L − QΦk‖2

)
ρk(Φk)dΦk

where

I For y ∈ T1
M+N−k

(QΦk)(y) = L−3
∑

x :|x−y |<L/2

Φk(x)

I Φk+1,L(x) = L−1/2Φk+1(x/L)

I Nk+1 is chosen so∫
ρk+1(Φk+1)dΦk+1 =

∫
ρk(Φk)dΦk

Can calculate partition function from any ρk .
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First step:

I

ρ1(Φ1) = N−1
1

∫
exp

(
− a

L2
‖Φ1,L−QΦ0‖2 −S0(Φ0)−V0(Φ0)

)
dΦ0

I First two terms in exponential have minimum at

Φ0 = a
(
−∆ + µ̄0 +

a

L2
QTQ

)−1
QTΦ1,L ≡ ϕ1,L

where ϕ1 : T−1
M+N−1 → R. (ϕ1 is Φ1 smeared on finer lattice.)

I Expand around minimizer Φ0 = φ1,L + Z . Integrate over Z .
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I

Z1 exp(−S1(Φ1))

∫
exp

(
− V0(φ1,L + Z )

)
dµC1(Z )

where measure is Gaussian with covariance

C1 =
(
−∆ + µ̄0 +

a

L2
QTQ

)−1

I cluster expansion, perturbation theory?

I Problem: need small coupling constants, small fields
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Remedy: Insert under integral sign:

1 =
∑

Ω

ζ(Ωc ,Φ0,Φ1)χ(Ω,Φ0,Φ1)

where Ω is union of cubes (not necessarily connected) and

I χ(Ω,Φ0,Φ1) enforces that in every cube in Ω we have

|Φ1,L − QΦ0| ≤ |logλ0|p

|∂Φ0| ≤ |logλ0|p

|Φ0| ≤ λ−1/4
0 |logλ0|p

I ζ(Ωc ,Φ0,Φ1) enforces that in every cube in Ωc there is at
least one point where one of these inequalities is violated.
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ρ1(Φ1) =
∑

Ω∫
dΦ0,Ωc ζ(Ωc) exp

(
− a

L2
‖Φ1,L−QΦ0‖2

Ωc −S0(Ωc ,Φ0)−V0(Ωc ,Φ0)
)

∫
dΦ0,Ω χ(Ω) exp

(
− a

L2
‖Φ1,L−QΦ0‖2

Ω −S0(Ω,Φ0)−V0(Ω,Φ0)
)

Large field integral :

I Get factor exp(−|logλ0|p) = O(λn0) for every cube in Ωc .

I Hence overall exp(−|logλ0|p|Ωc |).

I Sufficient to control sum over Ω.
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Small field integral: block averaging supplies a mass for cluster
expansion. Get

ZΩ exp
(
− S1(Ω,Φ1)− V1(Ω, ϕ1,Ω) +

∑
X⊂Ω

E1(X , ϕ1,Ω)
)

V1(Ω, ϕ) = ε1Vol(Ω) +
1

2
µ1‖φ‖2

Ω +
1

4
λ1

∫
Ω
φ4

where

1. X is connected union of cubes = ”polymer”

2. E1(X , ϕ) depends on ϕ only in X .

3. E1(X , ϕ) = O(e−κ|X |).

4. E1(X , ϕ) has local parts removed.
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Repeat first step. After k steps have lattice T−kM+N−k with larger
coupling constant

λk = Lkλ0 = L−(N−k)λ

At each step new small field region Ωk defined by λk .

Ω = (Ω1, · · ·Ωk) Ω1 ⊃ Ω2 ⊃ · · ·Ωk Ωj = L−(k−j) cubes

active fields

Φk,Ω = (Φ0,Ωc
1
,Φ1,δΩ1 , . . . ,Φk−1,δΩk−1

,Φk,Ωk
) δΩj = Ωj−Ωj+1

smeared fields: (Qk,Ω = (QδΩ1 ,Q
2
δΩ2

, . . . ,Qk
Ωk

))

ϕk,Ω = ak

[
−∆ + µ̄k + QT

Ω aQΩ

]−1

Ω1

QT
Ω Φk,Ω + . . .

and interaction

Vk(Ωk , ϕk,Ω) = εkVol(Ωk) +
1

2
µk‖ϕk,Ω‖2

Ωk
+

1

4
λk

∫
Ωk

ϕ4
k,Ω
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After k steps

ρk(Φk) =
∑

Ω=(Ω1,···Ωk )

k−1∏
j=0

∫
dΦj ,Ωc

j+1
exp

(
−aj‖Φj+1,L−QΦj‖2

Ωc
j+1

)
k−1∏
j=0

exp
(
− S̃j(δΩj)− Ṽj(δΩj) +

∑
X⊂Ωc

j+1,X∩δΩj 6=∅

B̃j ,Ωj
(X )
)

ZΩ exp
(
− Sk(Ωk)− Vk(Ωk) +

∑
X⊂Ωk

Ek(X ) +
∑

X#Ωk

Bk,Ω(X )
)

× various characteristic functions
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In Vk(Ωk , φ) = εkVol(Ωk) + 1
2µk‖φ‖

2
Ωk

+ 1
4λk

∫
Ωk
φ4 find

RG flow:
εk+1 = L3εk + ε∗k(λk , µk ,Ek)

µk+1 = L2µk + µ∗k(λk , µk ,Ek)

λk+1 = L λk

Ek+1 = L(Ek) + E ∗k (λk , µk ,Ek)

‖L‖ < 1 if we use norm

‖Ek‖k = sup
X

[
sup

|φ|,|∂φ|≤λ
− 1

4
k

|Ek(X , φ)|
]
eκ|X |
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Theorem: (Non-perturbative renormalization) Let λ be sufficiently
small. Then there exists a unique (bounded) solution for
0 ≤ k ≤ N with εN = 0, µN = 0 and E0 = 0.

proof: Existence equivalent to existence of a fixed point of certain
operator on space of sequences {µk ,Ek}.

Show operator is contraction.

Fixed point theorem.
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After N steps we return to T−NM with λN = λ.
Last integral needs no block averaging

ZM,N =

∫
ρN(ΦN) dΦN

Final cluster expansion. Combine all terms that yield a fixed ΩN .

ZM,N = ZM,N(0)
∑
ΩN

ρ′(Ωc
N) exp

( ∑
X∩ΩN 6=∅

E ′N(X )
)

ρ′(Ωc
N) factors over connected components. After resummation

ZM,N = ZM,N(0) exp
( ∑

X⊂T−N
M

E ′′N(X )
)

with ‖E ′′N‖N = O(λ1/4)
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Theorem (stability bound): For renormalized ϕ4
3:

exp
(
− cVol(T−NM )

)
≤

ZM,N

ZM,N(0)
≤ exp

(
cVol(T−NM )

)
with constants independent of N,M.

History

I Glimm, Jaffe (1973) - upper bound
Feldman-Osterwalder (1975) - M →∞ limit

I Balaban (1983) - upper and lower bound

I Brydges, Dimock, Hurd (1995) - new proof upper

I Present work (2011)
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How much perturbation theory?

I Glimm, Jaffe (1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High order

I Balaban (1983) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Medium order

I Brydges, Dimock, Hurd (1995) . . . . . . . . . . . . . . . . Second order

I Present work (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . Zeroth order
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Remarks:

I Actual proof more complicated

I Method should work for correlation functions, N →∞ limit,
M →∞ limit.

I Method should work for QED3 as well
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Technical remarks

Locality and smoothness of fields?

Fields after k steps field on T−kM+N−k

ϕk,Ω = Gk,ΩQ
T
Ω aΩΦk,Ω + Gk,Ω∆Ω1,Ωc

1
Φ0,Ω1

where

Gk,Ω =
[
−∆ + µ̄k +

k∑
j=1

[QT
j ajL

2(k−j)Qj ]δΩj

]−1

Ω1

Effective mass L(k−j) in δΩj (soft boundary conditions).

Gk,Ω(x , y) has exponential decay, bounds on derivatives order < 2.
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Strictly localized fields?

Systematically replace Ω by

Ω′ = minimal Ω around final Ωk

φk,Ω′ − φk,Ω = O(λnk) in Ωk

Then φk,Ω′ is strictly localized near Ωk , still smooth
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Localize within Ωk?
Random walk expansion:

Gk,Ω(x , y) =
∑
ω:x→y

Gk,Ω,ω(x , y)

where
ω = (�0,�1, . . .�n)

is a sequence of (multiscale, overlapping) blocks and

Gk,Ω,ω =
n∏

j=0

Kk,Ω,�j

Use in cluster expansion for for fields and fluctuation covariance
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