Parafermionic observables in planar statistical physics models

Hugo Duminil-Copin, Université de Genève

2013
I. Warming up!

II. Phase diagram of the FK percolation (non rigorous)

III. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
Self-avoiding walk

On the hexagonal lattice, consider self-avoiding walks of length n starting at the origin [Flory, Ott, '50s].
Self-avoiding walk

On the hexagonal lattice, consider self-avoiding walks of length n starting at the origin [Flory, Ott, ’50s].

Proposition [Hammersley]

$\left(\# \text{SAWs of length } n \right)^{1/n} \rightarrow \mu_c$ (called the connective constant).
Theorem [D-C, Smirnov, 2010]

The connective constant of the **hexagonal lattice** is equal to $\sqrt{2} + \sqrt{2}$.

The connective constant of the **hexagonal lattice** is equal to $\sqrt{2} + \sqrt{2}$.

The connective constant of the **hexagonal lattice** is equal to $\sqrt{2 + \sqrt{2}}$.

\[
F(z) := \sum_{\gamma \in \mathcal{D}: \, \alpha \to z} \mu^{-|\gamma|}.
\]

The connective constant of the **hexagonal lattice** is equal to $\sqrt{2 + \sqrt{2}}$.

Definition

The **winding** $W_\Gamma(a, b)$ of a curve Γ between a and b is the rotation (in radians) of the curve between a and b.

$$F(z) := \sum_{\gamma \subset \mathcal{D}: a \rightarrow z} \mu^{-|\gamma|}.$$

The connective constant of the **hexagonal lattice** is equal to $\sqrt{2 + \sqrt{2}}$.

Definition

The **winding** $W_\Gamma(a, b)$ of a curve Γ between a and b is the rotation (in radians) of the curve between a and b.

The **parafermionic operator** at a mid-point $z \in \mathcal{D}$ is defined by

$$F(z) := \sum_{\gamma \subset \mathcal{D}: a \rightarrow z} e^{-i\sigma W_\gamma(a, z)} \mu^{-|\gamma|}.$$
Lemma (Local relation around a vertex)

If $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2} + \sqrt{2}$, then F satisfies the following relation for every vertex $v \in V(D)$,

$$(p - v)F(p) + (q - v)F(q) + (r - v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that $\oint_C F(z) \, dz = 0$ along the contour $qvrp$.
Lemma (Local relation around a vertex)

If \(\sigma = \frac{5}{8} \) and \(\mu = \sqrt{2 + \sqrt{2}} \), then \(F \) satisfies the following relation for every vertex \(v \in V(D) \),

\[
(p - v)F(p) + (q - v)F(q) + (r - v)F(r) = 0
\]

where \(p, q, r \) are the mid-edges of the three edges adjacent to \(v \).

This relation means that \(\oint F(z)dz = 0 \) along the contour.
Lemma (Local relation around a vertex)

If $\sigma = \frac{5}{6}$ and $\mu = \sqrt{2} + \sqrt{2}$, then F satisfies the following relation for every vertex $v \in V(D)$,

$$(p - v)F(p) + (q - v)F(q) + (r - v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that $\oint F(z)dz = 0$ along the contour.

Proposition (Discrete holomorphicity)

If D is simply connected, then $\int_C F(z)dz = 0$ for any discrete contour C.
Lemma (Local relation around a vertex)

If $\sigma = \frac{5}{3}$ and $\mu = \sqrt{2 + \sqrt{2}}$, then F satisfies the following relation for every vertex $v \in V(D)$,

$$(p - v)F(p) + (q - v)F(q) + (r - v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that $\oint F(z)dz = 0$ along the contour $qvrp$.

Proposition (Discrete holomorphicity)

If D is simply connected, then $\oint_C F(z)dz = 0$ for any discrete contour C.

These relations do not determine the observable from its boundary conditions.
If we consider the exterior boundary of this trapeze, we obtain

When $\sigma = 5$ and $\mu = \sqrt{2 + \sqrt{2}}$,

$$0 = -\sum_{z \in \text{bottom}} F(z) + \sum_{z \in \text{top}} F(z) + e^{i 2 \pi/3} \sum_{z \in \text{left}} F(z) + e^{-i 2 \pi/3} \sum_{z \in \text{right}} F(z).$$

The winding on the boundary is deterministic! Thus, F can be replaced by the sum of Boltzmann weights.

Last ingredient. The result follows from combinatorial arguments.
If we consider the exterior boundary of this trapeze, we obtain

When \(\sigma = \frac{5}{8} \) and \(\mu = \sqrt{2 + \sqrt{2}} \),

\[
0 = - \sum_{z \in \text{bottom}} F(z) + \sum_{z \in \text{top}} F(z) + e^{i \frac{2\pi}{3}} \sum_{z \in \text{left}} F(z) + e^{-i \frac{2\pi}{3}} \sum_{z \in \text{right}} F(z)
\]
If we consider the exterior boundary of this trapeze, we obtain

When $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2 + \sqrt{2}}$,

\[0 = -\sum_{z \in \text{bottom}} F(z) + \sum_{z \in \text{top}} F(z) + e^{i\frac{2\pi}{3}} \sum_{z \in \text{left}} F(z) + e^{-i\frac{2\pi}{3}} \sum_{z \in \text{right}} F(z) \]

The winding on the boundary is deterministic! Thus, F can be replaced by the sum of Boltzman weights.
If we consider the exterior boundary of this trapeze, we obtain

When $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2 + \sqrt{2}}$, we find

$$1 = \cos\left(\frac{3\pi}{8}\right) \sum_{\gamma: a \to \text{bottom}} \mu^{-|\gamma|} + \sum_{\gamma: a \to \text{top}} \mu^{-|\gamma|} + \cos\left(\frac{\pi}{4}\right) \sum_{\gamma: a \to \text{sides}} \mu^{-|\gamma|}.$$

💡 The winding on the boundary is deterministic! Thus, F can be replaced by the sum of Boltzman weights.
If we consider the exterior boundary of this trapeze, we obtain

When $\sigma = \frac{5}{8}$ and $\mu = \sqrt{2 + \sqrt{2}}$, we find

$$1 = \cos \left(\frac{3\pi}{8} \right) \sum_{\gamma: a \rightarrow \text{bottom}} \mu^{-|\gamma|} + \sum_{\gamma: a \rightarrow \text{top}} \mu^{-|\gamma|} + \cos \left(\frac{\pi}{4} \right) \sum_{\gamma: a \rightarrow \text{sides}} \mu^{-|\gamma|}.$$

💡 The winding on the boundary is deterministic! Thus, F can be replaced by the sum of Boltzman weights.

Last ingredient. The result follows from combinatorial arguments.
I. Warming up!

II. Phase diagram of the FK percolation (non rigorous)

III. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
Potts model [Potts, Domb, 1951]

Consider q colors. Assign to each site x outside $B_n = [-n, n]^2$ the color $\sigma_x = 1$ and each site $x \in B_n$ an arbitrary color $\sigma_x \in \{1, \ldots, q\}$ according to the following probability measure:

$$\mathbb{P}^{(1)}_{T, q, n}[\sigma] \propto \exp(-H(\sigma)/T) \quad \text{where} \quad H(\sigma) := \text{card}(x \sim y \text{ with } \sigma_x \neq \sigma_y).$$
Potts model [Potts, Domb, 1951]

Consider q colors. Assign to each site x outside $B_n = [-n, n]^2$ the color $\sigma_x = 1$ and each site $x \in B_n$ an arbitrary color $\sigma_x \in \{1, \ldots, q\}$ according to the following probability measure:

$$\mathbb{P}^{(1)}_{T, q, n}[\sigma] \propto \exp(-H(\sigma)/T) \quad \text{where} \quad H(\sigma) := \text{card}(x \sim y \text{ with } \sigma_x \neq \sigma_y).$$

This model undergoes a phase transition in infinite volume at critical temperature $T_c(q)$:

$$\lim_{n \to \infty} \mathbb{P}^{(1)}_{T, q, n}[\sigma_0 = 1] = \begin{cases}
1 & \text{if } T > T_c(q),
\frac{1}{q} + \frac{m(T)}{q} & \text{if } T < T_c(q).
\end{cases}$$
Consider q colors. Assign to each site x outside $B_n = [-n, n]^2$ the color $\sigma_x = 1$ and each site $x \in B_n$ an arbitrary color $\sigma_x \in \{1, \ldots, q\}$ according to the following probability measure:

$$\mathbb{P}^{(1)}_{T, q, n}[\sigma] \propto \exp(-H(\sigma)/T) \quad \text{where} \quad H(\sigma) := \text{card}(x \sim y \text{ with } \sigma_x \neq \sigma_y).$$

This model undergoes a phase transition in infinite volume at critical temperature $T_c(q)$:

$$\lim_{n \to \infty} \mathbb{P}^{(1)}_{T, q, n}[\sigma_0 = 1] = \begin{cases} \frac{1}{q} & \text{if } T > T_c(q), \\ \frac{1}{q} + m(T) > \frac{1}{q} & \text{if } T < T_c(q). \end{cases}$$
A geometrical representation of Potts models: the FK percolation

This percolation model [Fortuin-Kasteleyn, 1969] is defined as follows. Edges outside B_n are open. Each edge in B_n is open or closed. The probability of a configuration $\omega \in \{\text{open, closed}\}^{E(B_n)}$ is given by the formula

$$
\phi_{p,q,n}^w(\omega) := \frac{1}{Z_{p,q,n}} \cdot p^\#\text{open edges} \cdot (1 - p)^\#\text{closed edges} \cdot q^\#\text{connected components}.
$$

For $q = 1$, the model is Bernoulli percolation. For $q \geq 1$, in infinite volume, there exists $p_c(q) \in (0, 1)$ such that

$$
\phi_{p,q,n}(\omega) = \begin{cases}
0 & \text{if } p < p_c(q), \\
\theta(q(p)) > 0 & \text{if } p > p_c(q).
\end{cases}
$$
A geometrical representation of Potts models: the FK percolation

This **percolation model** [Fortuin-Kasteleyn, 1969] is defined as follows. Edges outside B_n are open. Each edge in B_n is open or closed. The probability of a configuration $\omega \in \{\text{open}, \text{closed}\}^{E(B_n)}$ is given by the formula

$$\phi_{p,q,n}^{w}(\omega) := \frac{1}{Z_{p,q,n}} \cdot p^\# \text{open edges} \cdot (1 - p)^\# \text{closed edges} \cdot q^\# \text{connected components}.$$

- For $q = 1$, the model is Bernoulli percolation.
A geometrical representation of Potts models: the FK percolation

This **percolation model** [Fortuin-Kasteleyn, 1969] is defined as follows. Edges outside B_n are open. Each edge in B_n is open or closed. The probability of a configuration $\omega \in \{\text{open, closed}\}^{E(B_n)}$ is given by the formula

$$
\phi_{p,q,n}^w(\omega) := \frac{1}{Z_{p,q,n}} \cdot p^{\# \text{open edges}} (1 - p)^{\# \text{closed edges}} q^{\# \text{connected components}}.
$$

- For $q = 1$, the model is Bernoulli percolation.
- For $q \geq 1$, in infinite volume, there exists $p_c(q) \in (0, 1)$ such that

$$
\phi_{p,q,\mathbb{Z}^2}^w(0 \leftrightarrow \infty) = \begin{cases}
0 & \text{if } p < p_c(q), \\
\theta_q(p) > 0 & \text{if } p > p_c(q).
\end{cases}
$$
The \(q \)-states Potts model can be obtained from the FK percolation with cluster weight \(q \in \mathbb{N} \setminus \{0, 1\} \) by coloring each cluster independently.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.

This coupling provides us with a dictionary between properties of FK percolation and Potts models. For instance, the transition exists and the critical point follows by considerations of duality $T_c(q) = -1/\log(1 - p_c(q))$.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.

This coupling provides us with a dictionary between properties of FK percolation and Potts models. For instance, the transition exists and the critical point follows by considerations of duality $T_c(q) = -\frac{1}{\log(1-p_c(q))}$.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
A geometrical representation of Potts models: the FK percolation (2)

The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
A geometrical representation of Potts models: the FK percolation (2)

The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.

This coupling provides us with a dictionary between properties of FK percolation and Potts models. For instance, the transition exists and the critical point follows by considerations of duality $T_c(q) = -\frac{1}{\log(1 - p_c(q))}$.
A geometrical representation of Potts models: the FK percolation (2)

The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.
A geometrical representation of Potts models: the FK percolation (2)

The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently.

This coupling provides us with a dictionary between properties of FK percolation and Potts models. For instance, the transition exists and the critical point follows by considerations of duality $T_c(q) = -1 / \log(1 - p_c(q))$.
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0, 1\}$ by coloring each cluster independently. This coupling provides us with a **dictionary** between properties of FK percolation and Potts models. For instance,

$$\mathbb{P}_{T(p),q,n}[\sigma_0 = 1] = \frac{1}{q} + \left(1 - \frac{1}{q}\right) \phi_{p,q,n}^{w}(0 \leftrightarrow \partial B_n)$$
The q-states Potts model can be obtained from the FK percolation with cluster weight $q \in \mathbb{N} \setminus \{0,1\}$ by coloring each cluster independently.

This coupling provides us with a **dictionary** between properties of FK percolation and Potts models. For instance,

\[
\mathbb{P}_{T(p),q,n}^{(1)}[\sigma_0 = 1] = \frac{1}{q} + \left(1 - \frac{1}{q}\right) \phi_{p,q,n}^w(0 \leftrightarrow \partial B_n)
\]

The transition exists and the critical point follows by considerations of duality

\[T_c(q) = -1/\log(1 - p_c(q)).\]
A first guess for $p_c(q)$

A **dual model** can be defined on the dual lattice $(\mathbb{Z}^2)^* = (\frac{1}{2}, \frac{1}{2}) + \mathbb{Z}^2$:
A first guess for $p_c(q)$

A dual model can be defined on the dual lattice $(\mathbb{Z}^2)^* = \left(\frac{1}{2}, \frac{1}{2}\right) + \mathbb{Z}^2$:

For Bernoulli percolation, the dual model is a Bernoulli percolation with p^* defined by $p^* = 1 - p$.
A first guess for $p_c(q)$

A **dual model** can be defined on the dual lattice $(\mathbb{Z}^2)^* = (\frac{1}{2}, \frac{1}{2}) + \mathbb{Z}^2$:

- For Bernoulli percolation, the dual model is a Bernoulli percolation with p^* defined by $p^* = 1 - p$.
- For FK percolation, the dual model is a FK percolation with p^* and q^* defined by

\[
q^* = q \quad \text{and} \quad \frac{pp^*}{(1 - p)(1 - p^*)} = q.
\]
A first guess for $p_c(q)$

A dual model can be defined on the dual lattice $(\mathbb{Z}^2)^* = (\frac{1}{2}, \frac{1}{2}) + \mathbb{Z}^2$:

- For Bernoulli percolation, the dual model is a Bernoulli percolation with p^* defined by $p^* = 1 - p$.
- For FK percolation, the dual model is a FK percolation with p^* and q^* defined by

\[q^* = q \quad \text{and} \quad \frac{pp^*}{(1 - p)(1 - p^*)} = q. \]

Conjecture [Potts, 1952] $p_c(q) = p_c(q)^* = \frac{\sqrt{q}}{1 + \sqrt{q}}$.

Hugo Duminil-Copin, Université de Genève

Parafermionic observables in planar statistical physics models
$p_c(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$ [Potts 52]

Discontinuous [Baxter 73]

Continuous [Baxter 73]
Parafermionic observables in planar statistical physics models

\[p_c(q) = \frac{\sqrt{q}}{1+\sqrt{q}} \]

- **Subcritical phase (exponential decay)**

 \(q \geq 25, \text{72 regime Pirogov-Sinai} \)

 [Kotecký-Schlosman, 80s]

- **Supercritical phase (infinite cluster)**

 Discontinuous [Baxter 73]

 Critical line for \(q \geq 4 \) [Hinterman et al, 78]

- **FK Ising**

 Continuous [Baxter 73]

 [Onsager, Wu 50s]

 [Kesten 80]
I. Warming up!

II. Phase diagram of the FK percolation (non rigorous)

III. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
Theorem [Beffara, D-C, 2010]

Let $q \geq 1$ and $p < p_c(q)$, there exists $\tau = \tau(p, q) > 0$ such that

$$\phi_{p,q,\mathbb{Z}^2}^w(0 \leftrightarrow x) \leq e^{-\tau|x|} \quad \text{for any } x \in \mathbb{Z}^2.$$

The proof is based on

- Considerations of both the model and its dual but no discrete holomorphicity.

- A sharp threshold argument for boolean functions coming from combinatorics.
Theorem [Beffara, D-C, 2010]

Let $q \geq 1$ and $p < p_c(q)$, there exists $\tau = \tau(p, q) > 0$ such that

$$\phi^w_{p, q, \mathbb{Z}^2}(0 \leftrightarrow x) \leq e^{-\tau|x|} \quad \text{for any } x \in \mathbb{Z}^2.$$

The proof is based on

- Considerations of both the model and its dual but no discrete holomorphicity.
- A sharp threshold argument for boolean functions coming from combinatorics.

Corollaries

- (For FK) $p_c(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$ when $q \geq 1$.

Theorem [Beffara, D-C, 2010]

Let $q \geq 1$ and $p < p_c(q)$, there exists $\tau = \tau(p, q) > 0$ such that

$$\phi_{p,q,\mathbb{Z}^2}^w(0 \longleftrightarrow x) \leq e^{-\tau|x|}$$

for any $x \in \mathbb{Z}^2$.

The proof is based on

- Considerations of both the model and its dual but no discrete holomorphicity.
- A sharp threshold argument for boolean functions coming from combinatorics.

Corollaries

- (For FK) $p_c(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$ when $q \geq 1$.
- (For Potts) $T_c(q) = \frac{1}{\ln(1+\sqrt{q})}$ for $q \geq 2$.
Theorem [Beffara, D-C, 2010]

Let $q \geq 1$ and $p < p_c(q)$, there exists $\tau = \tau(p, q) > 0$ such that

$$
\phi^{w}_{p,q,\mathbb{Z}^2}(0 \longleftrightarrow x) \leq e^{-\tau|x|} \quad \text{for any } x \in \mathbb{Z}^2.
$$

The proof is based on

- Considerations of both the model and its dual but no discrete holomorphy.
- A sharp threshold argument for boolean functions coming from combinatorics.

Corollaries

- (For FK) $p_c(q) = \frac{\sqrt{q}}{1 + \sqrt{q}}$ when $q \geq 1$.
- (For Potts) $T_c(q) = \frac{1}{\ln(1 + \sqrt{q})}$ for $q \geq 2$.
- (For FK and Potts) Turn several results on subcritical and supercritical regimes into unconditional results.
Theorem [D-C, Sidoravicius, Tassion, 2017]

Consider the FK percolation with parameters $q \geq 1$ and $p = p_c(q)$. The following properties are equivalent:

1. Absence of infinite cluster at criticality: $\phi_{w_{p_c(q)},Z_2}(0\leftarrow\infty) = 0$,
2. Uniqueness of infinite measures: $\phi_f_{p_c(q),Z_2} = \phi_f_{p_c(q),Z_2}$,
3. Infinite susceptibility at criticality: $\phi_f_{p_c(q),Z_2}(\vert C \vert) := \sum_{x \in Z_2} \phi_f_{p_c(q),Z_2}(0\leftarrow x) = \infty$,
4. Absence of exponential decay of correlations: $\lim_{\vert x \vert \to \infty} \frac{1}{\vert x \vert \log \phi_{f_{p_c(q),Z_2}(0\leftarrow x)}} = 0$,
5. Strong form of RSW: There exists $c > 0$ such that for any rectangle $R_n = [0, 2^n] \times [0, n]$, $\phi_{f_{p_c(q),B_3}(R_n)\text{is crossed from left to right)} > c$.

Hugo Duminil-Copin, Université de Genève
Parafermionic observables in planar statistical physics models
Consider the FK percolation with parameters $q \geq 1$ and $p = p_c(q)$. The following properties are equivalent:

1. **Absence of infinite cluster at criticality:** $\phi^{w}_{p_c, q, \mathbb{Z}^2}(0 \longleftrightarrow \infty) = 0$,
Theorem [D-C, Sidoravicius, Tassion, 2017]

Consider the FK percolation with parameters $q \geq 1$ and $p = p_c(q)$. The following properties are equivalent:

1. **Absence of infinite cluster at criticality:** $\phi_{p_c, q, \mathbb{Z}^2}(0 \to \infty) = 0$,

2. **Uniqueness of infinite measures:** $\phi_{p_c, q, \mathbb{Z}^2}^{w} = \phi_{p_c, q, \mathbb{Z}^2}^{f}$,
Theorem [D-C, Sidoravicius, Tassion, 201?]

Consider the FK percolation with parameters $q \geq 1$ and $p = p_c(q)$. The following properties are equivalent:

1. Absence of infinite cluster at criticality: $\phi_{p_c,q,\mathbb{Z}^2}^w(0 \leftrightarrow \infty) = 0$,
2. Uniqueness of infinite measures: $\phi_{p_c,q,\mathbb{Z}^2}^w = \phi_{p_c,q,\mathbb{Z}^2}^f$,
3. Infinite susceptibility at criticality:

$$
\phi_{p_c,q,\mathbb{Z}^2}^f(|C|) := \sum_{x \in \mathbb{Z}^2} \phi_{p_c,q,\mathbb{Z}^2}^f(0 \leftrightarrow x) = \infty,
$$

4. Absence of exponential decay of correlations:

$$
\lim_{|x| \to \infty} \frac{1}{|x| \log \phi_{p_c,q,\mathbb{Z}^2}^f(0 \leftrightarrow x)} = 0,
$$

5. Strong form of RSW: There exists $c > 0$ such that for any rectangle $R_n = [0, 2^n] \times [0, n]$, $\phi_{p_c,q,B_3^n}(R_n \text{ is crossed from left to right}) > c$.

Hugo Duminil-Copin, Université de Genève
Parafermionic observables in planar statistical physics models
Theorem [D-C, Sidoravicius, Tassion, 201?]

Consider the FK percolation with parameters $q \geq 1$ and $p = p_c(q)$. The following properties are equivalent:

1. Absence of infinite cluster at criticality: $\phi_{p_c, q, \mathbb{Z}^2}^w(0 \longleftrightarrow \infty) = 0$,

2. Uniqueness of infinite measures: $\phi_{p_c, q, \mathbb{Z}^2}^w = \phi_{p_c, q, \mathbb{Z}^2}^f$,

3. Infinite susceptibility at criticality:

 $$\phi_{p_c, q, \mathbb{Z}^2}^f(|C|) := \sum_{x \in \mathbb{Z}^2} \phi_{p_c, q, \mathbb{Z}^2}^f(0 \longleftrightarrow x) = \infty,$$

4. Absence of exponential decay of correlations:

 $$\lim_{|x| \to \infty} \frac{1}{|x|} \log \phi_{p_c, q, \mathbb{Z}^2}^f(0 \longleftrightarrow x) = 0,$$
Theorem [D-C, Sidoravicius, Tassion, 201?]

Consider the FK percolation with parameters $q \geq 1$ and $p = p_c(q)$. The following properties are equivalent:

1. **Absence of infinite cluster at criticality**: $\phi_{p_c, q, \mathbb{Z}^2}^w(0 \longleftrightarrow \infty) = 0$,

2. **Uniqueness of infinite measures**: $\phi_{p_c, q, \mathbb{Z}^2}^w = \phi_{p_c, q, \mathbb{Z}^2}^f$,

3. **Infinite susceptibility at criticality**:

 $$\phi_{p_c, q, \mathbb{Z}^2}^f(|C|) := \sum_{x \in \mathbb{Z}^2} \phi_{p_c, q, \mathbb{Z}^2}^f(0 \longleftrightarrow x) = \infty,$$

4. **Absence of exponential decay of correlations**:

 $$\lim_{|x| \to \infty} \frac{1}{|x|} \log \phi_{p_c, q, \mathbb{Z}^2}^f(0 \longleftrightarrow x) = 0,$$

5. **Strong form of RSW**: There exists $c > 0$ such that for any rectangle $R_n = [0, 2n] \times [0, n]$,

 $$\phi_{p_c, q, B_{3n}}^f(R_n \text{ is crossed from left to right}) > c.$$
I. Warming up!

II. Phase diagram of the FK percolation (non rigorous)

III. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
The loop representation of the FK percolation (dense Temperley-Lieb model)

- Consider both the primal and the dual models at the critical point
 \[p = \sqrt{q}/(1 + \sqrt{q}) \]:

![Diagram showing the loop representation of the FK percolation]
The loop representation of the FK percolation (dense Temperley-Lieb model)

Consider both the primal and the dual models at the critical point $p = \sqrt{q} / (1 + \sqrt{q})$:
The loop representation of the FK percolation (dense Temperley-Lieb model)

- Consider both the primal **and** the dual models at the critical point $p = \sqrt{q}/(1 + \sqrt{q})$:

- It is a Temperley-Lieb loop model: the **probability of a configuration** is given by:

$$\phi_{p_c, q, D}(\omega) = \frac{\sqrt{q}^{\text{#loops}}}{Z(D, q)}$$
Let \mathcal{D} be a **discrete domain** with two prescribed points a and b on the boundary.

We consider the loop model with **Dobrushin** boundary conditions.

We consider the loop model with **Dobrushin** boundary conditions.
Let \mathcal{D} be a **discrete domain** with two prescribed points a and b on the boundary.

We consider the loop model with **Dobrushin** boundary conditions.

The loop representation of this model is a **collection of loops** and a **single curve** from a to b called the **exploration path** γ.
For any mid-edge of the medial lattice, the so-called parafermionic observable F is defined as:

$$F(e) = \mathbb{E}_{\rho_c, q, \mathcal{D}}^{a, b} \left[e^{i\sigma W(e, b)} \mathbb{1}_{e \in \gamma} \right].$$

Define the spin σ satisfying $\sin(\sigma \pi/2) = \sqrt{q^2}$. This observable satisfies a local relation:

$$F(e_1) - F(e_3) = i \left[F(e_2) - F(e_4) \right].$$

These relations do not determine F, but one can integrate along discrete contours to obtain relevant information.
For any **mid-edge of the medial lattice**, the so-called **parafermionic observable** F is defined as:

$$F(e) = \mathbb{E}_{p_c,q,D}^{a,b} \left[e^{i\sigma W(e,b)} 1_{e \in \gamma} \right].$$

Define the **spin** σ satisfying

$$\sin(\sigma \pi/2) = \frac{\sqrt{q}}{2}.$$
For any **mid-edge of the medial lattice**, the so-called **parafermionic observable** F is defined as:

$$F(e) = \mathbb{H}^{a,b}_{p_c, q, D} \left[e^{i\sigma W(e,b)} \mathbbm{1}_{e \in \gamma} \right].$$

Define the **spin** σ satisfying

$$\sin(\sigma \pi/2) = \frac{\sqrt{q}}{2}.$$

This observable satisfies a local relation:

$$F(e_1) - F(e_3) = i \left[F(e_2) - F(e_4) \right].$$
For any **mid-edge of the medial lattice**, the so-called **parafermionic observable** F is defined as:

$$F(e) = \mathbb{E}^{a,b}_{p_c,q,D} \left[e^{i\sigma W(e,b)} \mathbbm{1}_{e \in \gamma} \right].$$

Define the **spin** σ satisfying

$$\sin(\sigma \pi/2) = \frac{\sqrt{q}}{2}.$$

This observable satisfies a local relation:

$$F(e_1) - F(e_3) = i[F(e_2) - F(e_4)].$$

These relations **do not** determine F, but one can integrate along discrete contours to obtain relevant information.
Theorem [D-C, 2012] [D-C, Sidoravicius, Tassion, 2013]

For $1 \leq q \leq 4$, the transition is continuous at p_c.

Exploit the fact that discrete contour integrals vanish on universal cover of \mathbb{Z}^2 minus a face.

Some delicate probability arguments to go from the universal cover geometry to \mathbb{Z}^2.

Corollary

- No spontaneous magnetization for critical 2, 3 and 4 Potts models
- Existence of polynomial bounds for arm-exponents.
- Computation of universal arm-exponents for $1 \leq q < 4$.
- Spatial mixing properties.
- Sub-sequential limits of exploration paths can be parametrized by Loewner chains.
Theorem [D-C, 2012] [D-C, Sidoravicius, Tassion, 2013]

For $1 \leq q \leq 4$, the transition is continuous at p_c.

\rightarrow Exploit the fact that discrete contour integrals vanish on universal cover of \mathbb{Z}^2 minus a face

\rightarrow Some delicate probability arguments to go from the universal cover geometry to \mathbb{Z}^2.

Corollary

- No spontaneous magnetization for critical 2, 3 and 4 Potts models
- Existence of polynomial bounds for arm-exponents.
- Computation of universal arm-exponents for $1 \leq q < 4$.
- Spatial mixing properties.
- Sub-sequential limits of exploration paths can be parametrized by Loewner chains.

Hugo Duminil-Copin, Université de Genève

Parafermionic observables in planar statistical physics models
Theorem [D-C, 2012] [D-C, Sidoravicius, Tassion, 2013]

For $1 \leq q \leq 4$, the transition is continuous at p_c.

→ Exploit the fact that discrete contour integrals vanish on universal cover of \mathbb{Z}^2 minus a face
→ Some delicate probability arguments to go from the universal cover geometry to \mathbb{Z}^2.

Corollary

- No spontaneous magnetization for critical 2, 3 and 4 Potts models
- Existence of polynomial bounds for arm-exponents.
- Computation of universal arm-exponents for $1 \leq q < 4$.
- Spatial mixing properties.
- Sub-sequential limits of exploration paths can be parametrized by Loewner chains.
Conjecture [Schramm, 2006]

Let $q \in (0, 4]$ and consider a domain (\mathcal{D}, a, b). The exploration path γ_δ converges in law (as $\delta \to 0$) to an SLE(κ) where

$$\kappa = \kappa(q) = \frac{4\pi}{\arccos(-\sqrt{q}/2)}.$$

Next step: Connections with conformal invariance
Next step: Connections with conformal invariance

Conjecture [Schramm, 2006]

Let $q \in (0, 4]$ and consider a domain (\mathcal{D}, a, b). The exploration path γ_δ converges in law (as $\delta \to 0$) to an SLE(κ) where

$$\kappa = \kappa(q) = \frac{4\pi}{\arccos(-\sqrt{q}/2)}.$$
Next step: Connections with conformal invariance

Conjecture [Schramm, 2006]

Let \(q \in (0, 4] \) and consider a domain \((D, a, b)\). The exploration path \(\gamma_\delta \) converges in law (as \(\delta \to 0 \)) to an \(\text{SLE}(\kappa) \) where

\[
\kappa = \kappa(q) = \frac{4\pi}{\arccos(-\sqrt{q}/2)}.
\]

\[
\Phi \begin{array}{c}
\gamma \\
\Phi(\gamma)
\end{array}
\]

\[
\Phi \begin{array}{c}
a \\
\Phi(a)
\end{array}
\]

\[
\Phi \begin{array}{c}
b \\
\Phi(b)
\end{array}
\]

\[
\Phi(D)
\]
Next step: Connections with conformal invariance

Conjecture [Schramm, 2006]

Let $q \in (0, 4]$ and consider a domain (\mathcal{D}, a, b). The exploration path γ_δ converges in law (as $\delta \to 0$) to an SLE(κ) where

$$
\kappa = \kappa(q) = \frac{4\pi}{\arccos(-\sqrt{q}/2)}.
$$

Conjecture [Smirnov, 2010]

Let $q \in (0, 4)$ and consider a domain (\mathcal{D}, a, b). The sequence of functions $(F/(2\delta)^{\sigma})_{\delta > 0}$ converges (as $\delta \to 0$) to $(\Phi')^{\sigma}$, where Φ is the conformal map from (\mathcal{D}, a, b) to $(\mathbb{R} \times [0, 1], -\infty, \infty)$.

FK representation of the Ising model (cluster weight $q = 2$): The spin equals $\sigma = \frac{1}{2}$, thus determining the complex argument of the observable. Stanislav Smirnov used this fact to prove the convergence of the (para)fermionic observable.

Theorem [Chelkak, D-C, Hongler, Kemppainen, Smirnov, 2012]

The exploration path converges to SLE(16/3) for $q = 2$.

Next step: Connections with conformal invariance

Conjecture [Schramm, 2006]

Let \(q \in (0, 4] \) and consider a domain \((\mathcal{D}, a, b)\). The exploration path \(\gamma_\delta \) converges in law (as \(\delta \to 0 \)) to an SLE\((\kappa)\) where
\[
\kappa = \kappa(q) = \frac{4\pi}{\arccos(-\sqrt{q}/2)}.
\]

Conjecture [Smirnov, 2010]

Let \(q \in (0, 4) \) and consider a domain \((\mathcal{D}, a, b)\). The sequence of functions \((F/(2\delta)\sigma)_{\delta>0}\) converges (as \(\delta \to 0 \)) to \((\Phi')\sigma\), where \(\Phi \) is the conformal map from \((\mathcal{D}, a, b)\) to \((\mathbb{R} \times [0, 1], -\infty, \infty)\).

FK representation of the Ising model (cluster weight \(q = 2 \)):

The spin equals \(\sigma = \frac{1}{2} \), thus determining the complex argument of the observable. Stanislav Smirnov used this fact to prove the convergence of the (para)fermionic observable.

Theorem [Chelkak, D-C, Hongler, Kemppainen, Smirnov, 2012]

The exploration path converges to SLE\((16/3)\) for \(q = 2 \).
Next step: Connections with conformal invariance

Conjecture [Schramm, 2006]

Let $q \in (0, 4]$ and consider a domain (\mathcal{D}, a, b). The exploration path γ_δ converges in law (as $\delta \to 0$) to an SLE(κ) where

$$\kappa = \kappa(q) = \frac{4\pi}{\arccos(-\sqrt{q}/2)}.$$
Parafermionic observables in planar statistical physics models

$p_c(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$

- subcritical phase (exponential decay)
- supercritical phase (infinite cluster)

$\text{SLE} \left(\frac{4\pi}{\arccos(-\sqrt{q}/2)} \right)$ [Schramm, 06]

- Discontinuous [Baxter 73]
- Continuous SLE (16/3)

- FK Ising
- UST
- percolation
- $p\rightarrow 1$
Open questions

- Show that the transition is **discontinuous** when $q > 4$.
- Prove **conformal invariance** for $1 \leq q \leq 4$.

Parafermionic observables in planar statistical physics models
Open questions

- Show that the transition is **discontinuous** when $q > 4$.

- Prove **conformal invariance** for $1 \leq q \leq 4$.

- Prove **universality** for FK percolation:
Open questions

- Show that the transition is **discontinuous** when $q > 4$.

- Prove **conformal invariance** for $1 \leq q \leq 4$.

- Prove **universality** for FK percolation:

 For Ising, some results are known (see e.g. [Pinson, Spencer], [Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For general $q \geq 1$, results [D-C, Manolescu, 2013] dealing with critical exponents for critical weights on isoradial graphs.
Open questions

- Show that the transition is **discontinuous** when \(q > 4 \).

- Prove **conformal invariance** for \(1 \leq q \leq 4 \).

- Prove ** universality** for FK percolation:
 For Ising, some results are known (see e.g. [Pinson, Spencer], [Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For general \(q \geq 1 \), results [D-C, Manolescu, 2013] dealing with critical exponents for critical weights on isoradial graphs.

- Understand the \(q < 1 \) phase:
Open questions

- Show that the transition is discontinuous when $q > 4$.

- Prove conformal invariance for $1 \leq q \leq 4$.

- Prove universality for FK percolation:
 For Ising, some results are known (see e.g. [Pinson, Spencer], [Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For general $q \geq 1$, results [D-C, Manolescu, 2013] dealing with critical exponents for critical weights on isoradial graphs.

- Understand the $q < 1$ phase:
 The model is conjecturally negatively correlated in this regime.
Open questions

- Show that the transition is **discontinuous** when $q > 4$.

- Prove **conformal invariance** for $1 \leq q \leq 4$.

- Prove **universality** for FK percolation:
 - For Ising, some results are known (see e.g. [Pinson, Spencer], [Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For general $q \geq 1$, results [D-C, Manolescu, 2013] dealing with critical exponents for critical weights on isoradial graphs.

- Understand the $q < 1$ phase:
 - The model is conjecturally negatively correlated in this regime.

- Do the same with **loop $O(n)$-models**:
Open questions

- Show that the transition is **discontinuous** when \(q > 4 \).

- Prove **conformal invariance** for \(1 \leq q \leq 4 \).

- Prove **universality** for FK percolation:
 For Ising, some results are known (see e.g. [Pinson, Spencer], [Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For general \(q \geq 1 \), results [D-C, Manolescu, 2013] dealing with critical exponents for critical weights on isoradial graphs.

- Understand the \(q < 1 \) phase:
 The model is conjecturally negatively correlated in this regime.

- Do the same with **loop \(O(n) \)-models**:
 In particular prove Nienhuis’s conjecture that \(x_c(n) = \frac{1}{\sqrt{2+\sqrt{2-n}}} \) for \(n \in (-2, 2) \).
Thank you