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Self-avoiding walk

On the hexagonal lattice, consider self-avoiding walks of length n starting
at the origin [Flory, Ott, '50s].

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



Self-avoiding walk

On the hexagonal lattice, consider self-avoiding walks of length n starting
at the origin [Flory, Ott, '50s].

Proposition

(# SAWs of length n)l/" — pe  (called the connective constant).
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The connective constant of the hexagonal lattice is equal to /2 + v/2.

Hugo Duminil-Copin, Université de Genéeve Parafermionic observables in planar statistical physics models



The connective constant of the hexagonal lattice is equal to /2 + v/2.
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The connective constant of the hexagonal lattice is equal to /2 + v/2.

F(z) = Z p

yCD: a—z
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The connective constant of the hexagonal lattice is equal to /2 + v/2.

Definition
The winding Wr(a, b) of a curve I' between a and b is the rotation (in
radians) of the curve between a and b.

F(z) = Z p

yCD: a—z
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The connective constant of the hexagonal lattice is equal to /2 + v/2.

Definition
The winding Wr(a, b) of a curve I' between a and b is the rotation (in
radians) of the curve between a and b.

The parafermionic operator at a mid-point z € D is defined by

F(z):= Z e’i"w“(a‘z)ufw‘.
YCD: a—z
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Lemma (Local relation around a vertex)

Ifo = % and ;1 = \/2 + /2, then F satisfies the following relation for
every vertex v € V(D),

(p—Vv)F(p)+(a—v)F(a) + (r—v)F(r) =0

where p, q, r are the mid-edges of the three edges adjacent to v.

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



Lemma (Local relation around a vertex)

If o = % and ;1 = \/2 + /2, then F satisfies the following relation for
every vertex v € V(D),

(p—v)F(p) + (g —v)F(q) + (r = v)F(r) =0

where p, q, r are the mid-edges of the three edges adjacent to v.

:@: This relation means that § F(z)dz = 0 along the contour
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Lemma (Local relation around a vertex)

If o = % and ;1 = \/2 + /2, then F satisfies the following relation for

every vertex v € V(D),

(p—v)F(p) + (g —v)F(q) + (r = v)F(r) =0

where p, q, r are the mid-edges of the three edges adjacent to v.

q

N

@: This relation means that § F(z)dz = 0 along the contour

Proposition (Discrete holomorphicity)

If D is simply connected, then ¢, F(z)dz = 0 for any discrete contour C.
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Lemma (Local relation around a vertex)

If o = % and ;1 = \/2 + /2, then F satisfies the following relation for

every vertex v € V(D),

(p—v)F(p) + (g —v)F(q) + (r = v)F(r) =0

where p, q, r are the mid-edges of the three edges adjacent to v.

q

:@: This relation means that § F(z)dz = 0 along the contour

Proposition (Discrete holomorphicity)

If D is simply connected, then ¢, F(z)dz = 0 for any discrete contour C.

& These relations do not determine the observable from its boundary
conditions.

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



Hugo Duminil-Copin, Université de Genéve rafermionic observables in planar statistical physics models



If we consider the exterior boundary of this trapeze, we obtain

When o = 2 and = 2+ V2,
0=— Y F@+ Y F@+eF Y F@)+eF Y F(z)

z€bottom zEtop z€E left z€Eright
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If we consider the exterior boundary of this trapeze, we obtain

When o = 2 and = 2+ V2,
0=— Y F@+ Y F@+eF Y F@)+eF Y F(z)

z€bottom zEtop z€E left z€Eright

:@: The winding on the boundary is deterministic! Thus, F can be
replaced by the sum of Boltzman weights.
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If we consider the exterior boundary of this trapeze, we obtain

When o = 2 and p = /2 + /2, we find

1=cos(3) Y p M S pMics(z) Y uh

~:a— bottom y:a—top ~y:a—>sides

:@: The winding on the boundary is deterministic! Thus, F can be
replaced by the sum of Boltzman weights.
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If we consider the exterior boundary of this trapeze, we obtain

When o = 2 and p = /2 + /2, we find

1=cos(3) Y p M S pMics(z) Y uh

~:a— bottom y:a—top ~y:a—>sides

:@: The winding on the boundary is deterministic! Thus, F can be
replaced by the sum of Boltzman weights.

Last ingredient. The result follows from combinatorial arguments. )
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. Warming up!

Il. Phase diagram of the FK percolation (non rigorous)

I11. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
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Potts model [Potts, Domb, 1951]

Consider g colors. Assign to each site x outside B, = [—n, n]? the color
ox = 1 and each site x € B, an arbitrary color o, € {1,..., g} according
to the following probability measure:

P [o] o exp(—H(0)/T) where H(o) := card(x ~ y with ox # 0,). J

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



Potts model [Potts, Domb, 1951]

Consider g colors. Assign to each site x outside B, = [—n, n]? the color
ox = 1 and each site x € B, an arbitrary color o, € {1,..., g} according
to the following probability measure:

P o] o exp(—H(0)/T) where H(0) := card(x ~ y with ox # 0). J
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Potts model [Potts, Domb, 1951]

Consider g colors. Assign to each site x outside B, = [—n, n]? the color
« = 1 and each site x € B, an arbitrary color o, € {1,..., g} according
to the following probability measure:

p . ) [0] x exp(—H(c)/T) where H(c) := card(x ~ y with oy % 7). J

This model undergoes a phase transition in infinite volume at critical
temperature T.(q):

if T> Tc(q),

I|m ]P’( )

an[oO:]'] =

+m(T)>2L if T < Tq).

q

Q= Q=
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A geometrical representation of Potts models: the FK percolation

This percolation model [Fortuin-Kasteleyn, 1969] is defined as follows.
Edges outside B,, are open. Each edge in B, is open or closed. The
probability of a configuration w € {open, c/osed}E(B") is given by the
formula

1

Zpqn

W #open edges ##closed edges . #connected components
w) ) 1-p) q .
p,q,n(
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A geometrical representation of Potts models: the FK percolation

This percolation model [Fortuin-Kasteleyn, 1969] is defined as follows.
Edges outside B,, are open. Each edge in B, is open or closed. The
probability of a configuration w € {open, c/osed}E(B") is given by the
formula

W (w) o 1 i p#open edges(l _ p)#closed edgesq#connected components }
Pyq;n = 0

P,q,n

@ For g = 1, the model is Bernoulli percolation.
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A geometrical representation of Potts models: the FK percolation

This percolation model [Fortuin-Kasteleyn, 1969] is defined as follows.
Edges outside B,, are open. Each edge in B, is open or closed. The
probability of a configuration w € {open, c/osed}E(B") is given by the

formula
1
W A #open edges ##closed edges . #connected components
p,q,n(w) E P (1 - P) q .
P,q,n

@ For g = 1, the model is Bernoulli percolation.

@ For g > 1, in infinite volume, there exists p.(q) € (0,1) such that

N 0 if p < pc(q),
2(0 =
¢p7q7Z (0 ¢ 0) {gq(p) >0 if p> p(q).
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0,1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0,1} by coloring each cluster independently.

o

i
I
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0,1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.

S
i
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b
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.

St
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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This coupling provides us with a dictionary between properties of FK
percolation and Potts models. For instance,

P(;()P),q,n[Uo =1] = % + (1 — %) (bz”q’,,(o  0By)
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A geometrical representation of Potts models: the FK percolation (2)

The g-states Potts model can be obtained from the FK percolation with
cluster weight g € N\ {0, 1} by coloring each cluster independently.
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e o 00 0 0 00 0O0O0CO0OEe
© 0 00@©e0000O0O0e
© 000000000 O0O0e
© 000000000000

This coupling provides us with a dictionary between properties of FK
percolation and Potts models. For instance,

P(;()P),q,n[Uo =1] = % + (1 — %) Bp gun (0« 0B,)

| Tlie it odEs nd e aiies) point follows by considerations
of duality  Tc(g) = —1/log(1 — pc(q)).
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A first guess for p.(q)

A dual model can be defined on the dual lattice (Z?)* = (3, 3) + Z*:

- = ,,,,, ‘,

Hugo Duminil-Copin, Université de Geneve

Parafermionic observables in planar statistical physics models



A first guess for p.(q)

A dual model can be defined on the dual lattice (Z?)* = (3, 3) + Z*:

@ For Bernoulli percolation, the dual model is a Bernoulli percolation
with p* defined by p* =1 — p.
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A first guess for p.(q)

A dual model can be defined on the dual lattice (Z?)* = (3, 3) + Z*:

@ For Bernoulli percolation, the dual model is a Bernoulli percolation
with p* defined by p* =1 — p.

@ For FK percolation, the dual model is a FK percolation with p* and
g* defined by

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



A first guess for p.(q)

A dual model can be defined on the dual lattice (Z?)* = (3, 3) + Z*:

@ For Bernoulli percolation, the dual model is a Bernoulli percolation
with p* defined by p* =1 — p.

@ For FK percolation, the dual model is a FK percolation with p* and
g* defined by
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q . . P
1 subcritical phase (exponential decay) supercritical phase (infinite cluster)
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A
9 subcritical phase (exponential decay) i supercritical phase (infinite cluster)
L]
(a) = 7% + [Potts 5
pe(q) = 1375 * [Potts 52]
:
L . . —
¢ > 25,72 regime Pirogov-Sinai ! Discontinuous [Baxter 73]
[Kotecky-Schlosman, 80s] i

L]
1
¢ critical line for ¢ > 4 [Hinterman et al, 78]
L)

4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Continuous [Baxter 73]
9 FK Ising
[Onsager, Wu 50s]
1 percolation
[Kesten 80]
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. Warming up!

Il. Phase diagram of the FK percolation (non rigorous)

I11. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
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Let g > 1 and p < pc(q), there exists 7 = 7(p, g) > 0 such that

b g.z2(0 < x) < eI for any x € Z2.

The proof is based on

@ Considerations of both the model and its dual but no discrete
holomorphicity.

@ A sharp threshold argument for boolean functions coming from
combinatorics.
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Let g > 1 and p < p.(q), there exists 7 = 7(p, g) > 0 such that

b g.z2(0 < x) < eI for any x € Z2.

The proof is based on

@ Considerations of both the model and its dual but no discrete
holomorphicity.

@ A sharp threshold argument for boolean functions coming from
combinatorics.

Corollaries

@ (For FK) p.(q) = Q/Eq when g > 1.

S
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Let g > 1 and p < p.(q), there exists 7 = 7(p, g) > 0 such that

b g.z2(0 < x) < eI for any x € Z2.

The proof is based on

@ Considerations of both the model and its dual but no discrete
holomorphicity.

@ A sharp threshold argument for boolean functions coming from
combinatorics.

Corollaries

@ (For FK) p.(q) = 1+f when g > 1.

@ (For Potts) T.(q) = |n(1+f for g > 2.
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Let g > 1 and p < p.(q), there exists 7 = 7(p, g) > 0 such that

b g.z2(0 < x) < eI for any x € Z2.

The proof is based on

@ Considerations of both the model and its dual but no discrete
holomorphicity.

@ A sharp threshold argument for boolean functions coming from
combinatorics.

Corollaries

@ (For FK) p.(q) = 1+f when g > 1.

@ (For Potts) T.(q) = for g > 2.

|n(1+f

@ (For FK and Potts) Turn several results on subcritical and
supercritical regimes into unconditional results.
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Consider the FK percolation with parameters ¢ > 1 and p = pc(q). The
following properties are equivalent:
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Consider the FK percolation with parameters ¢ > 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: ¢} _ ;.(0 +— 00) =0,
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Theorem

Consider the FK percolation with parameters ¢ > 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: ¢} _ ;.(0 +— 00) =0,

w

. . . . . . f
(2) Uniqueness of infinite measures: Op g7z = Do gz
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Theorem

Consider the FK percolation with parameters ¢ > 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: ¢} _ ;.(0 +— 00) =0,

w

. . . . . . f
(2) Uniqueness of infinite measures: Op g7z = Do gz

(3) Infinite susceptibility at criticality:

¢;quyzz(|C|) = Z ng;“q’Zz(O +— x) = o0,

XEZ2
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Theorem

Consider the FK percolation with parameters ¢ > 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: ¢} _ ;.(0 +— 00) =0,

w

. . . . . . f
(2) Uniqueness of infinite measures: Op g7z = Do gz

(3) Infinite susceptibility at criticality:
¢;cy‘7yzz(|c|) = Z ¢;c,q,ZZ(O — X) = g
x€EZ?

(4) Absence of exponential decay of correlations:

1
lim — log ¢’ 0+—x)=0
e ] %8 o0z (072 ) =0,
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Theorem

Consider the FK percolation with parameters ¢ > 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: ¢} _ ;.(0 +— 00) =0,

w

. . . . . . f
(2) Uniqueness of infinite measures: Op g7z = Do gz

(3) Infinite susceptibility at criticality:

¢;quyzz(|C|) = Z ng;“q’Zz(O +— x) = o0,

XEZ2

(4) Absence of exponential decay of correlations:

1
lim — log ¢’ 0+—x)=0
e ] %8 o0z (072 ) =0,

(5) Strong form of RSW: There exists ¢ > 0 such that for any rectangle
R, =1[0,2n] x [0, n],

¢;f757q,83n(Rn is crossed from left to right) > c.
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. Warming up!

Il. Phase diagram of the FK percolation (non rigorous)

I11. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



The loop representation of the FK percolation (dense Temperley-Lieb model)

@ Consider both the primal and the dual models at the critical point

p=+/4/(1+ /)

Py Py
® 4
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The loop representation of the FK percolation (dense Temperley-Lieb model)

@ Consider both the primal and the dual models at the critical point
p=a/(L+/q):

¢

-
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The loop representation of the FK percolation (dense Temperley-Lieb model)

@ Consider both the primal and the dual models at the critical point
p=a/(L+/q):

,“,,,,,,“,jit‘:,‘:,i‘ -

@ It is a Temperley-Lieb loop model: the probability of a
configuration is given by:

Ppe,qp(W) =

\/a#loops
Z(D, q)

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



@ Let D be a discrete domain with two prescribed points a and b on
the boundary.

@ We consider the loop model with Dobrushin boundary conditions.
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@ Let D be a discrete domain with two prescribed points a and b on
the boundary.

@ We consider the loop model with Dobrushin boundary conditions.

@ The loop representation of this model is a collection of loops and
a single curve from a to b called the exploration path ~.
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For any mid-edge of the medial lattice, the so-called parafermionic
observable F is defined as:

F(e) _ ]Ea’b eloW(e,b)

= 'pc,q,D Leey
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For any mid-edge of the medial lattice, the so-called parafermionic
observable F is defined as:

F(e) _ ]Ea’b eloW(e,b)

= 'pc,q,D Leey

Define the spin o satisfying

ol

sin(om/2) =
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For any mid-edge of the medial lattice, the so-called parafermionic
observable F is defined as:

F(e) _ ]Ea,b eiaW(e,b)

~ 'pe,q,D leey

Define the spin o satisfying

sin(om/2) = g

This observable satisfies a local relation:

Fe) — F(es) = i[F(e2) — F(es)] XK,
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For any mid-edge of the medial lattice, the so-called parafermionic
observable F is defined as:

F(e) _ ]Ea,b eiaW(e,b)

~ 'pe,q,D leey

Define the spin o satisfying

sin(om/2) = g

This observable satisfies a local relation:

Fler) — F(es) = i[F(e2) — Flea)]- Kt

@ These relations do not determine F, but one can integrate along
discrete contours to obtain relevant information.
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For 1 < g < 4, the transition is continuous at p..
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For 1 < g < 4, the transition is continuous at p..

— Exploit the fact that discrete contour integrals vanish on universal

cover of Z? minus a face
— Some delicate probability arguments to go from the universal cover

geometry to Z2.

~ (0,0,0)
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For 1 < g < 4, the transition is continuous at p..

— Exploit the fact that discrete contour integrals vanish on universal
cover of Z? minus a face

— Some delicate probability arguments to go from the universal cover
geometry to Z2.

Corollary

- No spontaneous magnetization for critical 2, 3 and 4 Potts models
- Existence of polynomial bounds for arm-exponents.

- Computation of universal arm-exponents for 1 < g < 4.

- Spatial mixing properties.

- Sub-sequential limits of exploration paths can be parametrized by
Loewner chains.
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Next step: Connections with conformal invariance

Let g € (0,4] and consider a domain (D, a, b). The exploration path ~s
converges in law (as § — 0) to an SLE(x) where

k= 1(9) = s varD

meshsize § Ag§
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Next step: Connections with conformal invariance

Let g € (0,4] and consider a domain (D, a, b). The exploration path ~s
converges in law (as § — 0) to an SLE(x) where

k= 1(9) = s varD
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Next step: Connections with conformal invariance

Conjecture

Let g € (0,4] and consider a domain (D, a, b). The exploration path ~;s
converges in law (as § — 0) to an SLE(k) where

g = E(q) = arccos(4—7r\/6/2)'

Conjecture

| A\

Let g € (0,4) and consider a domain (D, a, b). The sequence of
functions (F/(26)?)s>0 converges (as § — 0) to ($')?, where & is the
conformal map from (D, a, b) to (R x [0, 1], —oc0, 00).

\
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Next step: Connections with conformal invariance

Conjecture

Let g € (0,4] and consider a domain (D, a, b). The exploration path ~s
converges in law (as 6 — 0) to an SLE(x) where

bs = K(q) = arccos(“f\/ﬁ/2) :

Conjecture

| A

Let g € (0,4) and consider a domain (D, a, b). The sequence of
functions (F/(26)?)s>0 converges (as § — 0) to ($')?, where & is the
conformal map from (D, a, b) to (R x [0, 1], —oc0, 00).

A\

FK representation of the Ising model (cluster weight q = 2):

The spin equals 0 = % thus determining the complex argument of the
observable. Stanislav Smirnov used this fact to prove the convergence of
the (para)fermionic observable.

The exploration path converges to SLE(16/3) for g = 2.
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Next step: Connections with conformal invariance

Let g € (0,4] and consider a domain (D, a, b). The exploration path ~;
converges in law (as § — 0) to an SLE(x) where

iy = ’i(q) = arccos(zllr\/ﬁ/2)'

L TR L
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A
7 suberitical phase (exponential decay) ] supercritical phase (infinite cluster)
L}
G "
pe(q) = 1{}5;
|
L]
1 Discontinuous [Baxter 73]
1
1
1
L]
1
L)
L)
1
4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
. . . Continuous
SLE (m) [Schramm, 06]
FK Ising
2 SLE (16/3)
1 percolation
0 US p 1 \

Parafermionic observables in planar statistical physics models
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Open questions
@ Show that the transition is discontinuous when g > 4.

@ Prove conformal invariance for 1 < g < 4.
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Open questions
@ Show that the transition is discontinuous when g > 4.
@ Prove conformal invariance for 1 < g < 4.

@ Prove universality for FK percolation:
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Open questions
@ Show that the transition is discontinuous when g > 4.
@ Prove conformal invariance for 1 < g < 4.

@ Prove universality for FK percolation:
For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general g > 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.
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@ Understand the g < 1 phase:
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Open questions
@ Show that the transition is discontinuous when g > 4.
@ Prove conformal invariance for 1 < g < 4.

@ Prove universality for FK percolation:

For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general g > 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

@ Understand the g < 1 phase:
The model is conjecturally negatively correlated in this regime.
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Open questions
@ Show that the transition is discontinuous when g > 4.
@ Prove conformal invariance for 1 < g < 4.
@ Prove universality for FK percolation:
For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For

general g > 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

@ Understand the g < 1 phase:
The model is conjecturally negatively correlated in this regime.

@ Do the same with loop O(n)-models:
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Open questions
@ Show that the transition is discontinuous when g > 4.
@ Prove conformal invariance for 1 < g < 4.

@ Prove universality for FK percolation:

For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general g > 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

@ Understand the g < 1 phase:
The model is conjecturally negatively correlated in this regime.

@ Do the same with loop O(n)-models:

In particular prove Nienhuis's conjecture that x.(n) = ——— for

ne(-2,2).

Hugo Duminil-Copin, Université de Genéve Parafermionic observables in planar statistical physics models



Thank you
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