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Self-avoiding walk

On the hexagonal lattice, consider self-avoiding walks of length n starting
at the origin [Flory, Ott, ’50s].

0

Proposition [Hammersley]

(
# SAWs of length n

)1/n −→ µc (called the connective constant).
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Theorem [D-C, Smirnov, 2010]

conjectured by Nienhuis (1980)

The connective constant of the hexagonal lattice is equal to
√

2 +
√

2.

mid-edge

a

D
z

Definition

The winding WΓ(a, b) of a curve Γ between a and b is the rotation (in
radians) of the curve between a and b.

The parafermionic operator at a mid-point z ∈ D is defined by

F (z) :=
∑

γ⊂D: a→z

µ−|γ|.
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Theorem [D-C, Smirnov, 2010] conjectured by Nienhuis (1980)

The connective constant of the hexagonal lattice is equal to
√

2 +
√
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mid-edge

a

D
z

Definition

The winding WΓ(a, b) of a curve Γ between a and b is the rotation (in
radians) of the curve between a and b.

The parafermionic operator at a mid-point z ∈ D is defined by

F (z) :=
∑

γ⊂D: a→z
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Lemma (Local relation around a vertex)

If σ = 5
8 and µ =

√
2 +
√

2, then F satisfies the following relation for
every vertex v ∈ V (D),

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0

where p, q, r are the mid-edges of the three edges adjacent to v.

This relation means that
∮

F (z)dz = 0 along the contour

q

r
v p

Proposition (Discrete holomorphicity)

If D is simply connected, then
∮
C F (z)dz = 0 for any discrete contour C.

These relations do not determine the observable from its boundary

conditions.
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0

ST,L

a

T cells

L cells

If we consider the exterior boundary of this trapeze, we obtain

When σ = 5
8 and µ =

√
2 +
√

2,

0 = −
∑

z∈bottom

F (z) +
∑

z∈top
F (z) + ei

2π
3

∑

z∈left

F (z) + e−i
2π
3

∑

z∈right

F (z)

The winding on the boundary is deterministic! Thus, F can be
replaced by the sum of Boltzman weights.

Last ingredient. The result follows from combinatorial arguments.
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Potts model [Potts, Domb, 1951]

Consider q colors. Assign to each site x outside Bn = [−n, n]2 the color
σx = 1 and each site x ∈ Bn an arbitrary color σx ∈ {1, . . . , q} according
to the following probability measure:

P(1)
T ,q,n[σ] ∝ exp(−H(σ)/T ) where H(σ) := card(x ∼ y with σx 6= σy ).

This model undergoes a phase transition in infinite volume at critical
temperature Tc(q):

lim
n→∞

P(1)
T ,q,n[σ0 = 1] =





1
q if T > Tc(q),

1
q + m(T ) > 1

q if T < Tc(q).
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A geometrical representation of Potts models: the FK percolation

This percolation model [Fortuin-Kasteleyn, 1969] is defined as follows.
Edges outside Bn are open. Each edge in Bn is open or closed. The
probability of a configuration ω ∈ {open, closed}E(Bn) is given by the
formula

φwp,q,n(ω) :=
1

Zp,q,n
· p#open edges(1− p)#closed edgesq#connected components.

For q = 1, the model is Bernoulli percolation.

For q ≥ 1, in infinite volume, there exists pc(q) ∈ (0, 1) such that

φwp,q,Z2 (0↔∞) =

{
0 if p < pc(q),

θq(p) > 0 if p > pc(q).
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Hugo Duminil-Copin, Université de Genève Parafermionic observables in planar statistical physics models



A geometrical representation of Potts models: the FK percolation

This percolation model [Fortuin-Kasteleyn, 1969] is defined as follows.
Edges outside Bn are open. Each edge in Bn is open or closed. The
probability of a configuration ω ∈ {open, closed}E(Bn) is given by the
formula

φwp,q,n(ω) :=
1

Zp,q,n
· p#open edges(1− p)#closed edgesq#connected components.

For q = 1, the model is Bernoulli percolation.

For q ≥ 1, in infinite volume, there exists pc(q) ∈ (0, 1) such that

φwp,q,Z2 (0↔∞) =

{
0 if p < pc(q),

θq(p) > 0 if p > pc(q).
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A geometrical representation of Potts models: the FK percolation (2)

The q-states Potts model can be obtained from the FK percolation with
cluster weight q ∈ N \ {0, 1} by coloring each cluster independently.

This coupling provides us with a dictionary between properties of FK
percolation and Potts models. For instance,

The transition exists and the critical point follows by considerations
of duality Tc(q) = −1/ log(1− pc(q)).
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A first guess for pc(q)

A dual model can be defined on the dual lattice (Z2)∗ = ( 1
2 ,

1
2 ) + Z2:

type 1: open

type 2: closed

For Bernoulli percolation, the dual model is a Bernoulli percolation
with p? defined by p? = 1− p.

For FK percolation, the dual model is a FK percolation with p? and
q? defined by

q? = q and
pp?

(1− p)(1− p?)
= q.

Conjecture [Potts, 1952] pc(q) = pc(q)∗ =
√
q

1+
√
q .
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Hugo Duminil-Copin, Université de Genève Parafermionic observables in planar statistical physics models



A first guess for pc(q)

A dual model can be defined on the dual lattice (Z2)∗ = ( 1
2 ,

1
2 ) + Z2:

type 1: open

type 2: closed

For Bernoulli percolation, the dual model is a Bernoulli percolation
with p? defined by p? = 1− p.

For FK percolation, the dual model is a FK percolation with p? and
q? defined by

q? = q and
pp?

(1− p)(1− p?)
= q.

Conjecture [Potts, 1952] pc(q) = pc(q)∗ =
√
q

1+
√
q .
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0 1p

pc(q) =
√
q

1+
√
q

q
subcritical phase (exponential decay)

1

2

4

percolation

FK Ising

UST

supercritical phase (infinite cluster)

Discontinuous [Baxter 73]

Continuous [Baxter 73]

[Potts 52]
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[Onsager, Wu 50s]

[Kesten 80]

q ≥ 25, 72 regime Pirogov-Sinai

[Kotecký-Schlosman, 80s]

critical line for q ≥ 4 [Hinterman et al, 78]
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Theorem [Beffara, D-C, 2010]

Let q ≥ 1 and p < pc(q), there exists τ = τ(p, q) > 0 such that

φwp,q,Z2 (0←→ x) ≤ e−τ |x| for any x ∈ Z2.

The proof is based on

Considerations of both the model and its dual but no discrete
holomorphicity.

A sharp threshold argument for boolean functions coming from
combinatorics.

Corollaries

(For FK) pc(q) =
√
q

1+
√
q when q ≥ 1.

(For Potts) Tc(q) = 1
ln(1+

√
q) for q ≥ 2.

(For FK and Potts) Turn several results on subcritical and
supercritical regimes into unconditional results.
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Theorem [D-C, Sidoravicius, Tassion, 201?]

Consider the FK percolation with parameters q ≥ 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: φwpc ,q,Z2 (0←→∞) = 0,

(2) Uniqueness of infinite measures: φwpc ,q,Z2 = φfpc ,q,Z2 ,

(3) Infinite susceptibility at criticality:

φfpc ,q,Z2 (|C |) :=
∑

x∈Z2

φfpc ,q,Z2 (0←→ x) =∞,

(4) Absence of exponential decay of correlations:

lim
|x|→∞

1

|x | log φfpc ,q,Z2 (0←→ x) = 0,

(5) Strong form of RSW: There exists c > 0 such that for any rectangle
Rn = [0, 2n]× [0, n],

φfpc ,q,B3n
(Rn is crossed from left to right) > c .

Hugo Duminil-Copin, Université de Genève Parafermionic observables in planar statistical physics models



Theorem [D-C, Sidoravicius, Tassion, 201?]

Consider the FK percolation with parameters q ≥ 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: φwpc ,q,Z2 (0←→∞) = 0,

(2) Uniqueness of infinite measures: φwpc ,q,Z2 = φfpc ,q,Z2 ,

(3) Infinite susceptibility at criticality:

φfpc ,q,Z2 (|C |) :=
∑

x∈Z2

φfpc ,q,Z2 (0←→ x) =∞,

(4) Absence of exponential decay of correlations:

lim
|x|→∞

1

|x | log φfpc ,q,Z2 (0←→ x) = 0,

(5) Strong form of RSW: There exists c > 0 such that for any rectangle
Rn = [0, 2n]× [0, n],

φfpc ,q,B3n
(Rn is crossed from left to right) > c .
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Hugo Duminil-Copin, Université de Genève Parafermionic observables in planar statistical physics models



Theorem [D-C, Sidoravicius, Tassion, 201?]

Consider the FK percolation with parameters q ≥ 1 and p = pc(q). The
following properties are equivalent:

(1) Absence of infinite cluster at criticality: φwpc ,q,Z2 (0←→∞) = 0,

(2) Uniqueness of infinite measures: φwpc ,q,Z2 = φfpc ,q,Z2 ,

(3) Infinite susceptibility at criticality:

φfpc ,q,Z2 (|C |) :=
∑

x∈Z2

φfpc ,q,Z2 (0←→ x) =∞,

(4) Absence of exponential decay of correlations:

lim
|x|→∞

1

|x | log φfpc ,q,Z2 (0←→ x) = 0,

(5) Strong form of RSW: There exists c > 0 such that for any rectangle
Rn = [0, 2n]× [0, n],

φfpc ,q,B3n
(Rn is crossed from left to right) > c .
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I. Warming up!

II. Phase diagram of the FK percolation (non rigorous)

III. Rigorous results (without parafermionic observable)

IV. Rigorous results (with parafermionic observable)
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The loop representation of the FK percolation (dense Temperley-Lieb model)

Consider both the primal and the dual models at the critical point
p =
√

q/(1 +
√

q):

type 1: open

type 2: closed

It is a Temperley-Lieb loop model: the probability of a
configuration is given by:

φpc ,q,D(ω) =

√
q#loops

Z (D, q)
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Let D be a discrete domain with two prescribed points a and b on
the boundary.

a

b

D

We consider the loop model with Dobrushin boundary conditions.

The loop representation of this model is a collection of loops and
a single curve from a to b called the exploration path γ.
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For any mid-edge of the medial lattice, the so-called parafermionic
observable F is defined as:

F (e) = Ea,b
pc ,q,D

[
eiσW (e,b)

1e∈γ

]
.

Define the spin σ satisfying

sin(σπ/2) =

√
q

2
.

This observable satisfies a local relation:

F (e1)− F (e3) = i
[
F (e2)− F (e4)

]
. e1 e4

e3e2

These relations do not determine F , but one can integrate along
discrete contours to obtain relevant information.
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Theorem [D-C, 2012] [D-C, Sidoravicius, Tassion, 2013]

For 1 ≤ q ≤ 4, the transition is continuous at pc .

−→ Exploit the fact that discrete contour integrals vanish on universal
cover of Z2 minus a face
−→ Some delicate probability arguments to go from the universal cover
geometry to Z2.

(0, 0, 0)

Corollary

- No spontaneous magnetization for critical 2, 3 and 4 Potts models
- Existence of polynomial bounds for arm-exponents.
- Computation of universal arm-exponents for 1 ≤ q < 4.
- Spatial mixing properties.
- Sub-sequential limits of exploration paths can be parametrized by
Loewner chains.
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Next step: Connections with conformal invariance

Conjecture [Schramm, 2006]

Let q ∈ (0, 4] and consider a domain (D, a, b). The exploration path γδ
converges in law (as δ → 0) to an SLE(κ) where
κ = κ(q) = 4π

arccos(−√q/2) .

Φ

γδ

γ′

Φ(γ)

aδ

bδ

Φ(a)

Φ(b)

Φ(D)
Dδ

meshsize δ

Conjecture [Smirnov, 2010]

Let q ∈ (0, 4) and consider a domain (D, a, b). The sequence of
functions (F/(2δ)σ)δ>0 converges (as δ → 0) to (Φ′)σ, where Φ is the
conformal map from (D, a, b) to (R× [0, 1],−∞,∞).
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conformal map from (D, a, b) to (R× [0, 1],−∞,∞).

FK representation of the Ising model (cluster weight q = 2):

The spin equals σ = 1
2 , thus determining the complex argument of the

observable. Stanislav Smirnov used this fact to prove the convergence of
the (para)fermionic observable.

Theorem [Chelkak, D-C, Hongler, Kemppainen, Smirnov, 2012]

The exploration path converges to SLE(16/3) for q = 2.
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0 1p

pc(q) =
√
q

1+
√
q

q
subcritical phase (exponential decay)

1

2

4

percolation

FK Ising

UST

supercritical phase (infinite cluster)

Discontinuous [Baxter 73]

SLE
(

4π
arccos(−√q/2)

)
[Schramm, 06]

Continuous

SLE (16/3)
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Open questions

Show that the transition is discontinuous when q > 4.

Prove conformal invariance for 1 ≤ q ≤ 4.

Prove universality for FK percolation:

For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general q ≥ 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

Understand the q < 1 phase:

The model is conjecturally negatively correlated in this regime.

Do the same with loop O(n)-models:

In particular prove Nienhuis’s conjecture that xc(n) = 1√
2+
√

2−n
for

n ∈ (−2, 2).

Hugo Duminil-Copin, Université de Genève Parafermionic observables in planar statistical physics models



Open questions

Show that the transition is discontinuous when q > 4.

Prove conformal invariance for 1 ≤ q ≤ 4.

Prove universality for FK percolation:

For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general q ≥ 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

Understand the q < 1 phase:

The model is conjecturally negatively correlated in this regime.

Do the same with loop O(n)-models:

In particular prove Nienhuis’s conjecture that xc(n) = 1√
2+
√

2−n
for

n ∈ (−2, 2).

Hugo Duminil-Copin, Université de Genève Parafermionic observables in planar statistical physics models



Open questions

Show that the transition is discontinuous when q > 4.

Prove conformal invariance for 1 ≤ q ≤ 4.

Prove universality for FK percolation:

For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general q ≥ 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

Understand the q < 1 phase:

The model is conjecturally negatively correlated in this regime.

Do the same with loop O(n)-models:

In particular prove Nienhuis’s conjecture that xc(n) = 1√
2+
√

2−n
for

n ∈ (−2, 2).
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Open questions

Show that the transition is discontinuous when q > 4.

Prove conformal invariance for 1 ≤ q ≤ 4.

Prove universality for FK percolation:

For Ising, some results are known (see e.g. [Pinson, Spencer],
[Giuliani, Mastropietro, 2012], [Chelkak, Smirnov, 2009]). For
general q ≥ 1, results [D-C, Manolescu, 2013] dealing with critical
exponents for critical weights on isoradial graphs.

Understand the q < 1 phase:

The model is conjecturally negatively correlated in this regime.

Do the same with loop O(n)-models:

In particular prove Nienhuis’s conjecture that xc(n) = 1√
2+
√

2−n
for

n ∈ (−2, 2).
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Thank you
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