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Let f (z) = ∑n>0anzn be a holomorphic function in the unit discD.

Further assume thatf is injective.Thena1 6= 0 andBieberbachproved in

1916 that|a2|6 2|a1|. In the same paper, he famously conjectured that

∀n> 2, |an|6 n|a1|, guided by the intuition that theKoebe function

K (z) :=− ∑
n>1

n(−z)n =
z

(1+z)2 ,

which is a holomorphic bijection betweenD andC\[1/4,+∞), should be

extremal. This conjecture was finally proven in 1984 byde Branges. The

earliest important contribution to the proof of Bieberbach’s conjecture is

that byLoewnerin 1923 that|a3|6 3|a1|. Oded Schrammrevived

Loewner’s method in 1999, introducingrandomnessinto it, as driven by

standard Brownian motion.



Whole-Plane SLE & LLE
∂ ft
∂t

= z
∂ ft
∂z

λ(t)+z
λ(t)−z

, z∈ D,

λ(t) = ei
√

κBt [eiξLt ].

The characteristic function of aLévy processLt has the form

E(eiξLt ) = e−tη(ξ),

whereη the Lévy symbol. The function

η(ξ) = κ|ξ|α/2, α ∈ (0,2]

is the Ĺevy symbol of theα−stable process. The normalization here is

chosen so that it isSLEκ for α = 2.



Whole-Plane SLE(D→ C\ γ[0,∞))
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Loewner map z7→ ft(z) from the unit diskD to the slit domain

Ωt =C\γ([t,∞)). One has ft(0) = 0,∀t > 0. At t = 0, λ(0) = 1, so that

the image of z= 1 is at the tipγ(0) = f0(1) of the curve.



Series expansions
Let ft be the whole-plane evolution generated by the Lévy process(Lt)

with Lévy symbolη. We write

e−t ft(z) = z+
∞

∑
n=2

an(t)z
n; e−t/2ht(z) = z+ ∑

n>1

b2n+1(t)z
2n+1.

Then theconjugatewhole-plane LLE e−iLt ft
(

eiLt z
)

has the same law as

f0(z), i.e., ei(n−1)Lt an(t)
(law)
= an(0). Similarly, the conjugate of the

oddifiedwhole-plane LLEht(z) := z
√

ft(z2)/z2, e−(i/2)Lt ht
(

e(i/2)Lt z
)

, has

the same law ash0(z), i.e., einLt bn(t)
(law)
= bn(0).



Loewner’s method

Recall that

ft(z) = et(z+ ∑
n>2

an(t)z
n).

By expanding both sides of Loewner’s equation as power series, and

identifying coefficients, leads one to the set ofrecursion equations for

n> 2

ȧn(t)− (n−1)an(t) = 2
n−1

∑
k=1

kak(t)λ̄n−k(t),

with a1 = 1; the dot means at-derivative, andλ̄(t) = 1/λ(t), with

λ(t) = ei
√

κBt [eiξLt ].



Expected coefficients

Theorem 1. Setting an := an(0) and b2n+1 := b2n+1(0), we have

E(an) =
n−2

∏
k=0

ηk−k−2
ηk+1+k+1

, n> 2,

E(b2n+1) =
n−1

∏
k=0

ηk−k−1
ηk+1+k+1

, n> 1.

Corollary 1. If η1 = 3, E( f ′0(z)) = 1−z (SLE6);

if η1 = 1 andη2 = 4, E( f ′0(z)) = (1−z)2 (SLE2);

if η1 = 2, E(h′0(z)) = 1−z2 (SLE4).

[See alsoKemppainen ’10for expectations of SLE coefficient moments.]



Corollary 2. The expected conformal mapE[ f0(z)] of the whole-plane

Lévy-Loewner evolution ispolynomial of degree k+1 if there exists a

positive k such thatηk = k+2, and has radius of convergence1 for an

α-stableLévy process of symbolηn = κnα/2, α ∈ (0,2], except for the

Cauchy processα = 1,κ = 2, whereE[ f0(z)] = ze−z.

Corollary 3. The expected conformal mapE[h0(z)] of the oddified

whole-plane Ĺevy-Loewner evolution ispolynomial of degree2k+1 if

there exists a positive k such thatηk = k+1, and has radius of

convergence1 for an α-stableLévy process of symbolηn = κnα/2,

α ∈ (0,2], except for the Cauchy processα = 1,κ = 2, where

E[h0(z)] = ze−z2/2.



The Surprise: Expected Square Coefficients
Example: For SLE6



Expected Square Coefficients
Example:For SLE6

E(|an|2) = 1, κ = 6,∀n

E
(

|a4|2
)

=
8
9

κ5+104κ4+4576κ3+18288κ2+22896κ+8640
(κ+10)(3κ+2)(κ+6)(κ+1)(κ+2)2 .

[Recursion:n6 4; Computer assisted:n6 8 (formal),n6 19 (num.)]

Theorem 2.

(i) if η1 = 3, E(|an|2) = 1, ∀n> 1 (SLE6);

(ii) if η1 = 1,η2 = 4, E(|an|2) = n, n> 1 (SLE2);

(iii) if η1 = 2, E(|b2n+1|2) = 1/(2n+1), n> 1 (SLE4).



Derivative Moments
Theorem 3. The whole-plane SLEκ map f0(z) has derivative moments

E
[

( f ′0(z))
p/2] = (1−z)α,

E
[

| f ′0(z)|p
]

=
(1−z)α(1− z̄)α

(1−zz̄)β ,

for the special set of exponents p= p(κ) := (6+κ)(2+κ)/8κ, with

α = (6+κ)/2κ andβ = (6+κ)2/8κ. [See alsoLoutsenko &
Yermolayeva ’12]

Corollary 4. p= 2 case:for κ = 6:

E( f ′0(z)) = 1−z, E(| f ′0(z)|2) =
(1−z)(1− z̄)
(1−zz̄)3 ;

for κ = 2:

E( f ′0(z)) = (1−z)2, E(| f ′0(z)|2) =
(1−z)2(1− z̄)2

(1−zz̄)4 .



m-fold version
Theorem 4. The m-fold whole-plane SLEκ map

h(m)
0 (z) := [ f0(zm)]1/m has derivative moments

E
[(

(h(m)
0 )′(z)

)p/2]
= (1−zm)α,

E
[

|(h(m)
0 )′(z)|p

]

=
(1−zm)α(1− z̄m)α

(1−zmz̄m)β ,

for the special set of exponents
p= pm(κ) = m(2m+4+κ)(2+κ)/2(m+1)2κ, with
α = (2m+4+κ)/(m+1)κ and
β = (2m+4+κ)2/2(m+1)2κ.

Form= 2
p2(κ = 4) = 2,α = 1,β = 2.



The BS Equation
Beliaev and Smirnov (2005)obtained by martingale arguments the

following equation for theexterior whole-planecase

(F(z) = F(reiθ), r > 1, σ =+1)

p

(

r4+4r2(1− r cosθ)−1
(r2−2r cosθ+1)2 −σ

)

F +
r(r2−1)

r2−2r cosθ+1
Fr

− 2r sinθ
r2−2r cosθ+1

Fθ +ΛF = 0.

Proposition 1. For the interior whole-planeSchramm (or Ĺevy)-Loewner

evolution, the moments of the derivative modulus, F(z) = E(| f ′0(z)|p),
satisfy the same BS equation, but withσ =−1, andΛ = (κ/2)∂2/∂θ2 the

generator of the driving Brownian process (or of the Lévy process).



Holomorphic Coordinates
Switch toz,zvariables, instead of polar coordinates, and writeF(z) above

as

F(z, z̄) := E(| f ′0(z)|p) = E[( f ′0(z))
p/2( f̄ ′0(z̄))

p/2].

Using∂ := ∂z, ∂ := ∂z, the equation then becomes

−κ
2
(z∂−z∂)2F+

z+1
z−1

z∂F+
z+1
z−1

z∂F−p

[

1
(z−1)2 +

1
(z−1)2 +(σ−1)

]

F = 0.

Exterior/Interior whole-plane:σ =±1.



The action of the differential operatorP (D) above on a function of the

factorized formF(z, z̄) = ϕ(z)ϕ(z̄)P(z, z̄) is, by Leibniz’s rule, given by

P (D)[ϕϕ̄P] = − κ
2

ϕϕ(z∂−z∂)2P−κ(z∂−z∂)(ϕϕ)(z∂−z∂)P

+ κ(z∂ϕ)(z∂ϕ)P+ϕϕ
z+1
z−1

z∂P+ϕϕ
z+1
z−1

z∂P

+

[

−κ
2

ϕ(z∂)2ϕ− κ
2

ϕ(z∂)2ϕ+ϕ
z+1
z−1

z∂ϕ+ϕ
z+1
z−1

z∂ϕ
]

P

− p

[

1
(z−1)2 +

1
(z−1)2 +σ−1

]

ϕϕP.

• For the the particular choice of a rotationally invariantP(z, z̄) := P(zz̄),

the first line above vanishes.

• Study the algebra generated by the action ofP (D) on

ϕ(z) = ϕα(z) := (1−z)α, andP(zz̄) := (1−zz̄)−β, ∀α,β.



Integral means spectrum

Definition 1. The integral means spectrum of a conformal
mapping f is the function defined onR by

β(p) := limr→1
log(

∫
∂D | f ′(rz)|p|dz|)
log( 1

1−r )
.

In thestochasticsetting, one defines theaverageintegral
means spectrum

Definition 2.

β(p) := limr→1
log(

∫
∂DE | f ′(rz)|p |dz|)

log( 1
1−r )

.



Corollary 5. For a Lévy-Loewner evolution withη1 = 1,η2 = 4, or

η1 = 3 (thus including SLE forκ = 2,6), and for an oddified LLE with

η1 = 2 (thus including SLE forκ = 4), one has, respectively:

E

(

1
2π

∫ 2π

0
| f ′(reiθ)|2dθ

)

=
1+4r2+ r4

(1− r2)4 ;
1+ r2

(1− r2)3 ;
1+ r4

(1− r4)2 .

This gives the values of the average integral means spectrumβ(2) = 4,3

for whole-plane LLE withη1 = 1,η2 = 4 or η1 = 3 (thuswhole-plane

SLEwith κ = 2,6) respectively. For the oddified LLE withη1 = 2 (thus

theoddified whole-plane SLE4), β2(2) = 2.

• They differ from the corresponding values atp= 2 of the SLE integral

mean spectrum ofBeliaev and Smirnov ’05.



Define

β0(p,κ) := −p+
4+κ
4κ

(

4+κ−
√

(4+κ)2−8κp

)

,

β̂0(p,κ) := p− (4+κ)2

16κ
.

This is theaverageintegral means spectrum̄β0(p,κ) of the
bulk of SLEκ, as obtained inBeliaev & Smirnov ’05:

β̄0(p,κ) = β0(p,κ), 06 p6 p∗0(κ),

= β̂0(p,κ), p> p∗0(κ),

p∗0(κ) :=
3(4+κ)2

32κ
.



Integral means spectra
The whole-plane SLEκ, ft=0(z),z∈ D, and itsm-fold transforms,

h(m)
0 (z) := z

[

f0(zm)/zm
]1/m

, m> 1, have average integral means spectra

βm(p,κ) that exhibit aphase transitionand are given, forp> 0, by

β1(p,κ) = max
{

β0(p,κ),3p− 1
2
− 1

2

√

1+2κp
}

,

β2(p,κ) = max
{

β0(p,κ),2p− 1
2
− 1

2

√

1+κp
}

,

βm(p,κ) = max
{

β̄0(p,κ),(1+2/m) p− 1
2
− 1

2

√

1+2κp/m
}

.

The first spectrumβ1 has its transition point at

p∗(κ) :=
1

16κ

(

(4+κ)2−4−2
√

4+2(4+κ)2

)

< p∗0(κ).



Koebe function
limκ→0 β0(p,κ) = 0, and the spectra (forp> 0):

β(t,κ = 0) = max{0,3p−1},
β2(t,κ = 0) = max{0,2p−1},
βm(t,κ = 0) = max{0,(1+2/m)p−1},

cöıncide with with those directly derived for theKoebe function. Also

β1(p,κ) 6 3p−1,

β2(t,κ) 6 2p−1,

βm(t,κ) 6 (1+2/m)p−1,

in agreement withFeng and McGregor (1976)andMakarov (1998)for f

holomorphic and injective in the unit disk, and itsm-fold transforms.



Theorem 5. The average integral means spectrumβ(p,κ) of the
unbounded whole-plane SLEκ has a phase transition atp∗(κ) and a

special point atp(κ) := (6+κ)(2+κ)/8κ, such that

β(p,κ) = β0(p,κ), 06 p6 p∗(κ);

β(p,κ) > 3p− 1
2
− 1

2

√

1+2κp> β0(p,κ), p∗(κ)< p< p(κ);

β(p(κ),κ) =
(6+κ)2

8κ
;

β(p,κ) 6 3p− 1
2
− 1

2

√

1+2κp, p(κ)< p.

• For p> p∗(κ) the BS solution ceases to be uniformly positive.
• Existence of asubsolution/supersolutionfor the parabolic operator
P (D)[ψ(z, z̄)ℓδ(zz̄)] S 0 in some annulus ofD whose boundary includes

∂D, corresponding respectively topS p∗(κ). Trial functions:

ψ(z, z̄) := (1−zz̄)−β|1−z|2α, ℓδ(zz̄) := [− log(1−zz̄)]δ.



Integral means spectrum:Innerwhole-plane SLE
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Integral means spectrum:Outer whole-plane SLE
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Figure 2:β(p) = −p− 1
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1−2κp, p∗(κ) = (4+κ)2(8+

κ)/128(Beliaev, B.D., Zinsmeister ’13)



Packing Spectrum
Thepacking spectrum[Makarov] is defined as

s(p) := β(p)− p+1.

For the unbounded whole-plane SLEκ, we have forp> p∗(κ)

s(p,κ) = β(p,κ)− p+1

= 2p+
1
2
− 1

2

√

1+2κp.

Consider itsinverse function

p= p(s,κ) :=
s
2
+

κ
8
U

−1
κ (s),

U
−1
κ (s) :=

1
2κ

(

κ−4+
√

(4−κ)2+16κs

)

(KPZ formula)



Relation to Tip & Derivative Exponents

(Non-standard) tip multifractal exponentsobtained by
quantum gravity[D. ’00], corresponding geometrically to the
extremity of an SLEκ path avoiding a packet ofs independent
Brownian motions.
Differ from the ones associated to thestandard SLE tip
multifractal spectrum[Hastings ’02, Beliaev & Smirnov ’05,
Johansson & Lawler ’09].
Identical to thederivative exponentsobtained for radial SLEκ
[Lawler, Schramm & Werner ’01].



(Inverse) Radial SLE Map
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f0(z)
(law)
= lim

t→+∞
[etg−1

t (z) =: f̃t(z)].



Derivative exponents

Lemma 1. (Lawler, Schramm, Werner ’01)Let

At := ∂D\Kt ,

which is either an arc on∂D or At = /0. Lets> 0, and set

p= p(s,κ) :=
s
2
+

1
16

(

κ−4+
√

(4−κ)2+16κs

)

.

LetH (θ, t) denote the event{w= exp(iθ) ∈ At}, and set

F (θ, t) := E

[

∣

∣g′t
(

exp(iθ)
)∣

∣

s
1H (θ,t)

]

,

q= q(s,κ) := U −1
κ (s) =

κ−4+
√

(4−κ)2+16κs
2κ

,

F (θ, t) ≍ exp(−pt)
(

sin(θ/2)
)q
, ∀t > 1, ∀θ ∈ (0,2π).



Harmonic measure
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Figure 3: f0(z)
(law)
= limt→+∞ etg−1

t (z), wherez 7→ g−1
t (z) mapsD to the

slit domainD\Kt (Kt SLE hull). The lengthLt := |gt(At)| of the image of

the boundary setAt := ∂D\Kt is the(2π)× theharmonic measureof At as

seen from0 in D\Kt , with E[Ls
t ]≍ e−p(s,κ)t for t →+∞ [LSW ’01].



Packing spectrum & derivative exponents
The average integral means spectrum involves evaluating, for the

whole-plane SLE mapf0(z), the integral

Ip(r) :=
∫

∂D
E
[

| f ′0(rz)|p
]

|dz|,

on a circle of radiusr < 1 concentric to∂D, and looking for the smallest

β(p) such that

(1− r)β(p)
Ip(r)

r→1
< +∞.

For p> p∗(κ), the integrand behaves like a distribution and the circle

integral concentrates in the vicinity of the pre-image point of infinity by

the whole-plane map,z0 := f−1
0 (∞) ∈ ∂D. In the large-t approximation to

f0, that is theneighborhood ofgt(At).



Condensation
The circle integral there is therestrictedintegral in the imagew-unit circle

Ip(t) :=
∫

At

ept|g′t(w)|s|dw|; s= s(p) = β(p)+1− p,

FromLSW’s Lemma above

E
[

I p(t)
]

≍
∫ 2π

0
sinq(θ/2)dθ <+∞.

By defining thestochastic radiusrt := 1−Lt → 0, this can be recast as

E

[

(1− rt)
β(p)

∫
∂D

| f̃ ′t (rtz)|p|dz||
]

≍ 1, t →+∞,

where f0(z)
(law)
= limt→+∞[ f̃t(z) := etg−1

t (z)]. This is(formally)
reminiscent of the definition of the average integral means spectrum,
hinting at whythe derivative exponentp= p(s,κ) is the inverse function
of the unbounded whole-plane packing spectrums(p,κ).


