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Let f(z) = Y n>0anZ" be a holomorphic function in the unit difc

Further assume thatis injective.Thena; # 0 andBieberbachproved in
1916 thatay| < 2|a;1|. In the same paper, he famously conjectured that
Vn > 2, |an| < njaz|, guided by the intuition that th&oebe function

Z - Y4
&1 (l-l-Z)Z’

which is a holomorphic bijection betweénhandC\[1/4, +), should be
extremal This conjecture was finally proven in 1984 bg BrangesThe
earliest important contribution to the proof of Bieberbaawonjecture is
that by Loewnerin 1923 thatas| < 3|a;|. Oded Schrammevived
Loewner’s method in 1999, introducingndomnesmto it, as driven by
standard Brownian motion.



Whole-Plane SLE & LLE

a_ft _Zaft )\(t)—|—Z
ot Az A(t)-2

ze D,

A(t) = ViB @il
The characteristic function oflagvy process.: has the form
E(éELt) _ —“1(5)’
wherern the Levy symbol. The function
(&) =xl&|"/2, a € (0,2

IS the Levy symbol of thex —stable processThe normalization here is
chosen so that it ISLE, for a = 2.



Whole-Plane SLED — C\ y|0, «))

ft
A1) /
NOSANG)

1 R

sy(0)=f(1

Z; = ft_](oo) O( )
. f(0)=0

Loewner map &> f;(z) from the unit diskD to the slit domain
Qi =C\Y([t,»)). One has{(0) =0,vt > 0. Att=0, A(0) =1, so that
the image of z 1 s at the tipy(0) = fo(1) of the curve.



Series expansions
Let f; be the whole-plane evolution generated by tkgy processL ;)
with Levy symbot). We write

(0]

e fi(2) =z+ ) an(t)Z; e 2h(z) = z+ Y bonia(t)Z"

n=2 n>1

Then theconjugatewhole-plane LLE €'t f; (€LtZ) has the same law as

fo(2), i.e., éN~Dleg,(t) an(O) Similarly, the conjugate of the
oddifiedwhole-plane LLEY () := z\/f(22) /22, e (/2thy (ell/2LZ), has

(Iaw) bn(O)

(Iaw)

the same law aBy(2), i.e., é”Lt bn(t)



Loewner’s method

Recall that
ft(2) = €(z+ Y an(t)2").

n>2
By expanding both sides of Loewner’s equation as power Seaiel
identifying coefficients, leads one to the setefursion equations for
n>=2

n—1 _
an(t) — (n—D)an(t) =2y ka(®HA"X(t),
k=1

with a; = 1; the dot means &derivative and\ (t) = 1/A(t), with
A(t) = VKB (il



Expected coefficients

Theorem 1. Setting @ := an(0) and b1 := bon1(0), we have

E(an) = k2 s,
Do +k+1
n—1 Nk—k—1

E(bony1) =

, h>1.
k=0 nk+1‘|‘k‘|‘1

Corollary 1. 1fn1=3,E(f{(2)) =1—z SLE);
if Ny =1andn; =4, E(f}(2)) = (1-2)? (SLB);
if N1 =2, E(hy(2)) = 1—Z° (SLE,).

[See alsakemppainen '1dor expectations of SLE coefficient moments.]



Corollary 2. The expected conformal m&@jfo(z)| of the whole-plane
Léevy-Loewner evolution isolynomial of degree & 1 if there exists a
positive k such thaty = k+ 2, and has radius of convergenédor an
a-stableLévy process of symbgh = kn®/2, a € (0, 2], except for the
Cauchy process = 1,k = 2, whereE|fo(z)] = ze ™~

Corollary 3. The expected conformal mé@phy(z)| of the oddified
whole-plane Evy-Loewner evolution igolynomial of degre@k + 1 if
there exists a positive k such that= k-+ 1, and has radius of
convergencé for an a-stableLévy process of symbgj = kn“ /2,

a € (0,2], except for the Cauchy process= 1,k = 2, where
Elho(2)] = ze Z/2.



The Surprise: Expected Square Coefficients
Example: For SLE

2.6




Expected Square Coefficients
Example:For SLE
E(|an|?) = 1, K = 6,¥n

8 K° 4+ 104«* + 45763 + 18288~ + 22896« -+ 8640

E(|a4|2)= 9 (K+10)(3k+2)(K+6) (K + 1)(k +2)?

[Recursionn < 4; Computer assisteak < 8 (formal),n < 19 (num.)]

Theorem 2.
(i) if N1 =3,E(|la)|?) =1,Vn> 1 (SLE);
i) if ni=1N2=4,E(|ay|?) =n,n> 1 (SLB);
(i) if N1 =2 E(lbzn1]?) = 1/(2n+1),n > 1 (SLEy).



Derivative Moments
Theorem 3. The whole-plane SLEmap t(z) has derivative moments

E[(§@)°?] = (1-2°
, (1-2°(1-2°
BI6@P) = S

for the special set of exponents=pp(K) := (6+K)(2+K)/8k, with
0= (6+K)/2k andB = (64 K)?/8k. [See alsd_outsenko &
Yermolayeva '1»

Corollary 4. p = 2 case:for kK = 6:

(1-2(1-3
i-zp

E(fy(2) =1~z E(|f(2)]*) =

for k = 2

N2/ 32
B(13(2) = (1-2° Blf@R = &



m-fold version
Theorem 4. The m-fold whole-plane SikEnap

hém)(z) = [fo(z™)]Y™ has derivative moments

E[((h™)(2)"%] = (@-2"°,

(M) o (A=-ZM%a-Z")"
BINY@7 = S

for the special set of exponents

P= pm(K) = m(2m+4+K)(2+K)/2(m+ 1)%k, with
a=(2m+4+K)/(m+ 1)k and

B= (2m+4+K)?/2(m+ 1)%K.

Form=2



The BS Equation

Beliaev and Smirnov (200®9btained by martingale arguments the
following equation for theexterior whole-planease
(F(2)=F(re®),r>1,0=+1)

44 4r’(1—rcosB) —1 21
. r*+4r“(1—rcoso) o) F4 r(r ) F
(r2—2rcosf+ 1)2 r2—2rcosb+1

2r sin@
- Fo-+/\F = 0.
r2—2rcosb+1 6+

Proposition 1. For theinterior whole-planéchramm (or Bvy)-Loewner
evolution, the moments of the derivative modulug) & E(|f}(2)|P),
satisfy the same BS equation, but wite: —1, andA = (k/2)8%/98% the
generator of the driving Brownian process (or of thevly process).



Holomorphic Coordinates
Switch toz z variables, instead of polar coordinates, and wkite) above

as
F(2.2) := E(1f(2)|") = E[(f5(2))**(f5(2) "7,

Usingd := d;, 0 := 05, the equation then becomes

Koo omoe Z+1 . 241 1 1 B
5 (@—)F g @F + 0 —p| o+ o+ (0- )| F =0

Exterior/Interior whole-planes = +1.



The action of the differential operaten D) above on a function of the
factorized fornt-(z,z) = §(2)0(z)P(z z) is, by Leibniz’s rule, given by

?(D)OFP| = — 08(0—20)°P— k(@ 2)(49) (D~ D)P

+ K(zaq))(zaqs)wq)qsgzapqug—zép

K o, K, ., => z+1 z+1 =
+ [—55(25) ¢—§¢(Za) E|5+$ﬁ20¢+¢ﬁza$ P

1 1
o [ras =t L

e FFor the the particular choice of a rotationally invari&fz, z) := P(zz),
the first line above vanishes.

e Study the algebra generated by the actiom (D) on

0(2) = dq(2) := (1—2)%, andP(zz) := (1—zz) B, va, B.



Integral means spectrum

Definition 1. The integral means spectrum of a conformal
mapping f is the function defined @by

B(p) := mrﬁl")g(fafé‘gf</(f>‘p‘dj)
1-—r

In the stochasticsetting, one defines thwseragantegral
means spectrum

Definition 2.




Corollary 5. For a Levy-Loewner evolution withy = 1,02 =4, or
N1 = 3 (thus including SLE fok = 2, 6), and for an oddified LLE with
N1 = 2 (thus including SLE fok = 4), one has, respectively:

21T _ 2 4 2 4
E i/ (1) 2d0 :1+4r +r ; 1+t ; 1+r |
211 Jo (1—r2)4% " (1—r2)3" (1—r4)?

This gives the values of the average integral means spefi= 4,3
for whole-plane LLE withn, = 1,12 = 4 orn1 = 3 (thuswhole-plane
SLEwith k = 2, 6) respectively. For the oddified LLE with; = 2 (thus
theoddified whole-plane SLJ, B2(2) = 2.

e They differ from the corresponding valuespat 2 of the SLE integral
mean spectrum ddeliaev and Smirnov '05.



Define

Bo(p:K) = —p+%(4+K—\/(4+K)2—8Kp>,
. N (4+K)?
BO(p7K) = P— 16K

This is theaveragantegral means spectru[;@( p,K) of the
bulk of SLE,, as obtalned iBeliaev & Smirnov '05:

Bo(p,K) = Bo(P.K), 0< < Ph(K),
= Bo(p,K), P= Po(K),
3(4+K)?
3K

po(K) =



Integral means spectra
The whole-plane SLE fi_o(2),z< D, and itsm-fold transforms,

h(()m)(z) = 2| fo(Z") /2" Y™ m> 1, have average integral means spectra

Bm(p, k) that exhibit aphase transitioand are given, fop > 0, by

Bi(p,k) = max{Bo(p.K) 3p—}——¢1+2l<p}

B2(p,k) = max{Bo(p.K) 2p————\/1+Kp}

Bm(p,K) = max{Bo(p.K) (1+2/m)p—}——\/1+2Kp/m}.

The first spectrunf8; has its transition point at

P (K) = 1;( ((4—|—K) —4—2\/4+2(4+K)2> < Po(K).



Koebe function
limy_0Po(p,K) = 0, and the spectra (fqo > 0):

B(t,k=0) = max{0,3p—1},
B2(t,k=0) = max{0,2p—1},
Bm(th :O) — maX{O,(l—l—Z/m)p—l},

caincide with with those directly derived for thé&ebe function Also

Bl(p7K> < 3p_17
Bz(th) < 2p—1,
Bm(t,k) < (1+2/mp-1,

In agreement withFeng and McGregor (197@nhdMakarov (1998for f
holomorphic and injective in the unit disk, and msfold transforms.



Theorem 5. The average integral means spectr@3gp, k) of the
unbounded whole-plane Sk Bas a phase transition gi* (k) and a
special point app(k) := (6+K)(2+ K) /8K, such that

B(p,k) = PBo(p,K), 0K p<p (K);

B(p,k) = 3p—%—%x/1+2l<p> Bo(p,K), P*(K) < p< p(K);

2
B(p(k),K) = (6;:();

1 1
B(p,K) < 3p—§—§x/1+2k,p(*<)<p-

e Forp > p*(K) the BS solution ceases to be uniformly positive.
e EXxistence of aubsolution/supersolutidor the parabolic operator
?(D)[W(z,2)l5(22)] § 0 in some annulus db whose boundary includes

0D, corresponding respectively ¢D§ p*(K). Trial functions:
W(z2) = (1-2) P|1-7*, (5(Z2) = [~ log(1 - Z)]°.



Integral means spectrunmnerwhole-plane SLE




Integral means spectrumuter whole-plane SLE

Figure 2:B(p) = —p— 3 — 3v/1— 2K, p*(K) = (4+K)*(8+
K)/128 (Beliaev, B.D., Zinsmeister '13)



Packing Spectrum
The packing spectrunfiMakarov]is defined as

s(p) :=B(p) —p+1
For the unbounded whole-plane SLEve have fop > p*(K)

s(p,k) = B(p,k)—p+1
1 1

Consider itsnverse function
S K 4

p=Pp(sK) = §+§UK (S),

Uugt(s) = 2—1K<K—4+\/(4—K)2+16Ks>

(KPZ formula)



Relation to Tip & Derivative Exponents

(Non-standard) tip multifractal exponermistained by
quantum gravityD. '00], corresponding geometrically to the
extremity of an SLEk path avoiding a packet afindependent
Brownian motions.

Differ from the ones associated to tekEndard SLE tip
multifractal spectrunfHastings '02, Beliaev & Smirnov '05,
Johansson & Lawler '09]

|dentical to thederivative exponentsbtained for radial SLE
[Lawler, Schramm & Werner '01]



(Inverse) Radial SLE Map

gr(w)




Derivative exponents

Lemma 1. (Lawler, Schramm, Werner '01)et
AI = aD\E)

which is either an arc o@D or A, = 0. Lets > 0, and set

s 1
P=p(S,K) = §—|—1—6<K—4—|—\/(4—K)2—|—16KS).

Let# (0,t) denote the everdiw = exi0) € A}, and set

7(0) = E[|g(exp(i0))| Ligy).

- K—4+4+/(4—K)2+16KS
a=dsk) = gl KAVE W16

F(6,t) = exp(—pt)(sin6/2))", vt =1, V8¢ (0,2m).




Harmonic measure

Figure 3: fo(2) () limi_ o €0 1(2), wherez — g *(z) mapsD to the

slit domainD \ K; (K SLE hull). The length.; := |g:(A:)| of the image of
the boundary sée%; := 0D \ K; is the(2m) x theharmonic measuref A; as
seen fronD in D\ Ky, with E[LY] < e P(SK fort — oo [LSW '01].



Packing spectrum & derivative exponents
The average integral means spectrum involves evaluatnghé
whole-plane SLE mayy(z), the integral

() = | E[f5(r2|"] a2,

on a circle of radiugs < 1 concentric t@D, and looking for the smallest
B(p) such that

1

(1-r)PP T (r) < +oo.
Forp > p*(K), the integrand behaves like a distribution and the circle
Integral concentrates in the vicinity of the pre-image poiinfinity by
the whole-plane mapy := fy (o) € 0D. In the larget approximation to
fo, that is theneighborhood o (A;).



Condensation

The circle integral there is thestrictedntegral in the imagev-unit circle

p(t) = A &® g (w) |5 |dw

FromLSW’'s Lemma above

, s=5s(p) =B(p)+1-p,

21
E|1p(t)] x/o sinf(6/2)d6 < +oo.

By defining thestochastic radius := 1— L; — 0O, this can be recast as

B|@-rP® [ [fraPi| <1t 1o,
oD

wherefo(2) "2 lime_, [ fi(2) := €0 1(2)]. This is(formally)

reminiscent of the definition of the average integral meaestsum,

hinting at whythe derivative exponemt= p(s,K) is the inverse function
of the unbounded whole-plane packing spectaipik). []



