In memory of Walter Hunziker (1935-2012)

Analytical Aspects of Mathematical Physics
May 29, 2013, ETH Zürich

A few milestones in Walter's life

1935	Born on the 9th of November
1954	Student of physics at ETH
1961	PhD under the advice of Res Jost
1963-65	Time in Princeton
1965/69/72	Assistant/Associate/Full Professor at ETH
2001	Retirement
2012	Died on the 9th of September

Students

Alex Schtalheim (1970)
Rolf Bodmer (1972)
Charles-Edouard Pfister (1974)
Egon Vock (1980)
Michael Loss (1982)
Gian Michele Graf (1990)
Volker Bach (1992)
Marcel Griesemer (1996)
Laura Cattaneo (2003)

Research interests

Mainly quantum mechanics, but also statistical mechanics
Scattering theory (quantum and classical) Singular perturbation theory
Resonances

Hunziker's Theorem (aka HVZ)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

Hunziker's Theorem (aka HVZ)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

- Hamiltonian of N particles

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i<j} V_{i j}\left(x_{i}-x_{j}\right)
$$

Hunziker's Theorem (aka HVZ)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

- Hamiltonian of N particles

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i<j} V_{i j}\left(x_{i}-x_{j}\right)
$$

- of independent clusters $C_{1}, \ldots C_{k}$ of particles

$$
H_{a}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{\substack{i \widetilde{a}}} V_{i j}\left(x_{i}-x_{j}\right)
$$

where $a=\left(C_{1}, \ldots C_{k}\right)$ is a cluster decomposition.

Hunziker's Theorem (aka HVZ)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

- Hamiltonian of N particles

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i<j} V_{i j}\left(x_{i}-x_{j}\right)
$$

- of independent clusters $C_{1}, \ldots C_{k}$ of particles

$$
H_{a}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{\substack{i \widetilde{a} j}} V_{i j}\left(x_{i}-x_{j}\right)
$$

where $a=\left(C_{1}, \ldots C_{k}\right)$ is a cluster decomposition.
E.g. $N=5, a=(13)(24)(5)$.

Hunziker's Theorem (aka HVZ)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

- Hamiltonian of N particles

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i<j} V_{i j}\left(x_{i}-x_{j}\right)
$$

- of independent clusters $C_{1}, \ldots C_{k}$ of particles

$$
H_{a}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{\substack{i \widetilde{a} \\ a}} V_{i j}\left(x_{i}-x_{j}\right)
$$

where $a=\left(C_{1}, \ldots C_{k}\right)$ is a cluster decomposition.

Spectrum of H

Hunziker's Theorem (aka HVZ)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

- Hamiltonian of N particles

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{i<j} V_{i j}\left(x_{i}-x_{j}\right)
$$

- of independent clusters $C_{1}, \ldots C_{k}$ of particles

$$
H_{a}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\sum_{\substack{i \sim j \\ a}} V_{i j}\left(x_{i}-x_{j}\right)
$$

where $a=\left(C_{1}, \ldots C_{k}\right)$ is a cluster decomposition.
Theorem For pair potentials decaying in $x_{i}-x_{j}$, the essential spectrum of H is

$$
\begin{aligned}
\sigma_{\mathrm{ess}}(H) & =\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right) \\
& =[\Sigma,+\infty) \quad(\Sigma:=\inf \text { R.H.S. })
\end{aligned}
$$

Hunziker’s Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

Hunziker’s Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard

Hunziker's Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard
- $N=2, H=p^{2} / 2 m+V(x), H_{0}=p^{2} / 2 m$, $\sigma_{\text {ess }}(H)=\sigma\left(H_{0}\right)=[0,+\infty)$

Hunziker's Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard
- $N=2, H=p^{2} / 2 m+V(x), H_{0}=p^{2} / 2 m$, $\sigma_{\text {ess }}(H)=\sigma\left(H_{0}\right)=[0,+\infty)$
- Proof of \subset for $N=2$:

Hunziker's Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard
- $N=2, H=p^{2} / 2 m+V(x), H_{0}=p^{2} / 2 m$, $\sigma_{\text {ess }}(H)=\sigma\left(H_{0}\right)=[0,+\infty)$
- Proof of \subset for $N=2$: Resolvents $G(z)=(z-H)^{-1}$, $G_{0}(z)=\left(z-H_{0}\right)^{-1}$

$$
G(z)=G_{0}(z)+G_{0}(z) V G(z) \quad \text { i.e. } \quad\left(1-G_{0}(z) V\right) G(z)=G_{0}(z)
$$

- $G_{0}(z) V$ compact $\left(z \notin \sigma\left(H_{0}\right)\right), \rightarrow 0,(\operatorname{Re} z \rightarrow-\infty)$

Hunziker's Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard
- $N=2, H=p^{2} / 2 m+V(x), H_{0}=p^{2} / 2 m$,

$$
\sigma_{\mathrm{ess}}(H)=\sigma\left(H_{0}\right)=[0,+\infty)
$$

- Proof of \subset for $N=2$: Resolvents $G(z)=(z-H)^{-1}$,

$$
G_{0}(z)=\left(z-H_{0}\right)^{-1}
$$

$$
G(z)=G_{0}(z)+G_{0}(z) V G(z) \text { i.e. } \quad\left(1-G_{0}(z) V\right) G(z)=G_{0}(z)
$$

- $G_{0}(z) V$ compact $\left(z \notin \sigma\left(H_{0}\right)\right), \rightarrow 0,(\operatorname{Re} z \rightarrow-\infty)$
- Analytic Fredholm theorem: $\left(1-G_{0}(z) V\right)^{-1}$ is meromorphic in $z \notin \sigma\left(H_{0}\right)$ with poles of finite rank.

Hunziker's Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard
- $N=2, H=p^{2} / 2 m+V(x), H_{0}=p^{2} / 2 m$,

$$
\sigma_{\mathrm{ess}}(H)=\sigma\left(H_{0}\right)=[0,+\infty)
$$

- Proof of \subset for $N=2$: Resolvents $G(z)=(z-H)^{-1}$,

$$
G_{0}(z)=\left(z-H_{0}\right)^{-1}
$$

$$
G(z)=G_{0}(z)+G_{0}(z) V G(z) \text { i.e. } \quad\left(1-G_{0}(z) V\right) G(z)=G_{0}(z)
$$

- $G_{0}(z) V$ compact $\left(z \notin \sigma\left(H_{0}\right)\right), \rightarrow 0,(\operatorname{Re} z \rightarrow-\infty)$
- Analytic Fredholm theorem: $\left(1-G_{0}(z) V\right)^{-1}$ is meromorphic in $z \notin \sigma\left(H_{0}\right)$ with poles of finite rank.
- Hence $G(z)$ defined in $z \notin \sigma\left(H_{0}\right) \cup\{$ poles $\}$

Hunziker's Theorem (aka HVZ)

Theorem. The essential spectrum of H is

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)
$$

Remarks:

- \supset easy; \subset hard
- $N=2, H=p^{2} / 2 m+V(x), H_{0}=p^{2} / 2 m$,

$$
\sigma_{\mathrm{ess}}(H)=\sigma\left(H_{0}\right)=[0,+\infty)
$$

- Proof of \subset for $N=2$: Resolvents $G(z)=(z-H)^{-1}$,

$$
G_{0}(z)=\left(z-H_{0}\right)^{-1}
$$

$$
G(z)=G_{0}(z)+G_{0}(z) V G(z) \text { i.e. } \quad\left(1-G_{0}(z) V\right) G(z)=G_{0}(z)
$$

- $G_{0}(z) V$ compact $\left(z \notin \sigma\left(H_{0}\right)\right), \rightarrow 0,(\operatorname{Re} z \rightarrow-\infty)$
- Analytic Fredholm theorem: $\left(1-G_{0}(z) V\right)^{-1}$ is meromorphic in $z \notin \sigma\left(H_{0}\right)$ with poles of finite rank.
- Hence $G(z)$ defined in $z \notin \sigma\left(H_{0}\right) \cup\{$ poles $\}$, i.e., $\sigma_{\text {ess }}(H) \subset \sigma\left(H_{0}\right)$.

The general case: arbitrary N

- $G_{0}(z) V$ is not compact for $V=\sum_{i<j} V_{i j},(N \geq 3)$

Configuration space for $N=3$

The general case: arbitrary N

- $G_{0}(z) V$ is not compact for $V=\sum_{i<j} V_{i j},(N \geq 3)$
- Iteration of $G(z)=G_{0}(z)+G_{0}(z) V G(z)$ yields diagrams ($N=5$)

with

$$
\left.\overline{\overline{\bar{\Xi}}} G_{0}(z) \quad\right|_{j} ^{i} v_{i j}
$$

$$
G(z)=D(z)+C(z)
$$

(sums of disconnected/connected diagrams; convergent for large $\operatorname{Re} z<0$)

The Weinberg-van Winter equation

$$
G(z)=D(z)+C(z)
$$

The Weinberg-van Winter equation

$$
G(z)=D(z)+C(z) \quad C(z)=I(z) G(z)
$$

$(I(z)$ sum of barely connected diagrams)
Conjecture (Weinberg, 1964). I(z) compact where convergent.

The Weinberg-van Winter equation

$$
G(z)=D(z)+C(z) \quad C(z)=I(z) G(z)
$$

$(I(z)$ sum of barely connected diagrams)
Conjecture (Weinberg, 1964). I(z) compact where convergent. But where?

Hunziker's resummation (1964)

$$
G(z)=D(z)+C(z) \quad C(z)=I(z) G(z)
$$

String $S=\left(a_{N}, \ldots a_{1}\right)$: a sequence of cluster decompositions a_{k} having k clusters proceeding by mergers of two clusters.

Hunziker's resummation (1964)

$$
G(z)=D(z)+C(z) \quad C(z)=I(z) G(z)
$$

String $S=\left(a_{N}, \ldots a_{1}\right)$: a sequence of cluster decompositions a_{k} having k clusters proceeding by mergers of two clusters.

$$
C(z)=\sum_{S} G_{a_{N}}(z) V_{a_{N} a_{N-1}} G_{a_{N-1}}(z) \ldots G_{a_{2}}(z) V_{a_{2} a_{1}} G_{\Re_{1}}(z)
$$

with $G_{a}(z)=\left(z-H_{a}\right)^{-1}$ and $V_{a_{k} a_{k-1}}$ potentials linking clusters of a_{k} but not of a_{k-1}.

Hunziker's resummation (1964)

$$
G(z)=D(z)+C(z) \quad C(z)=I(z) G(z)
$$

String $S=\left(a_{N}, \ldots a_{1}\right)$: a sequence of cluster decompositions a_{k} having k clusters proceeding by mergers of two clusters.

$$
I(z) G(z)=\sum_{S} G_{a_{N}}(z) V_{a_{N} a_{N-1}} G_{a_{N-1}}(z) \ldots G_{a_{2}}(z) V_{a_{2} a_{1}} G(z)
$$

with $G_{a}(z)=\left(z-H_{a}\right)^{-1}$ and $V_{a_{k} a_{k-1}}$ potentials linking clusters of a_{k} but not of a_{k-1}. Alike formulae for $I(z), D(z)$.

Hunziker's resummation (continued)

$$
\begin{gathered}
(1-I(z)) G(z)=D(z) \\
I(z)=\sum_{S} G_{a_{N}}(z) V_{a_{N} a_{N-1}} G_{a_{N-1}}(z) \ldots G_{a_{2}}(z) V_{a_{2} a_{1}} \\
D(z)=\sum_{S ; k>1} G_{a_{N}}(z) V_{a_{N} a_{N-1}} G_{a_{N-1}}(z) \ldots G_{a_{k+1}}(z) V_{a_{k+1} a_{k}} G_{a_{k}}(z)
\end{gathered}
$$

- finite sums defined for $z \notin \bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)$
- I(z) compact there

Hunziker's resummation (continued)

$$
\begin{gathered}
(1-I(z)) G(z)=D(z) \\
I(z)=\sum_{S} G_{a_{N}}(z) V_{a_{N} a_{N-1}} G_{a_{N-1}}(z) \ldots G_{a_{2}}(z) V_{a_{2} a_{1}} \\
D(z)=\sum_{S ; k>1} G_{a_{N}}(z) V_{a_{N} a_{N-1}} G_{a_{N-1}}(z) \ldots G_{a_{k+1}}(z) V_{a_{k+1} a_{k}} G_{a_{k}}(z)
\end{gathered}
$$

- finite sums defined for $z \notin \bigcup_{a \neq(1 \ldots N)} \sigma\left(H_{a}\right)$
- I(z) compact there
- hence $G(z)=(z-H)^{-1}$ meromorphic there \square

