In memory of Walter Hunziker (1935 - 2012)

Analytical Aspects of Mathematical Physics May 29, 2013, ETH Zürich

A few milestones in Walter's life

1935	Born on the 9th of November
1954	Student of physics at ETH

1961 PhD under the advice of Res Jost

1963-65 Time in Princeton

1965/69/72 Assistant/Associate/Full Professor at ETH

2001 Retirement

2012 Died on the 9th of September

Students

Alex Schtalheim (1970)
Rolf Bodmer (1972)
Charles-Edouard Pfister (1974)
Egon Vock (1980)
Michael Loss (1982)
Gian Michele Graf (1990)
Volker Bach (1992)
Marcel Griesemer (1996)
Laura Cattaneo (2003)

Research interests

Mainly quantum mechanics, but also statistical mechanics Scattering theory (quantum and classical) Singular perturbation theory Resonances

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

Hamiltonian of N particles

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(x_i - x_j)$$

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

Hamiltonian of N particles

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(x_i - x_j)$$

• of independent clusters $C_1, \ldots C_k$ of particles

$$H_a = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{\substack{i \sim j \ a}} V_{ij}(x_i - x_j)$$

where $a = (C_1, \dots C_k)$ is a cluster decomposition.

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

Hamiltonian of N particles

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(x_i - x_j)$$

• of independent clusters $C_1, \ldots C_k$ of particles

$$H_a = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{\substack{i \geq j \\ a}} V_{ij}(x_i - x_j)$$

where $a = (C_1, \dots C_k)$ is a cluster decomposition. E.g. N = 5, a = (13)(24)(5).

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

Hamiltonian of N particles

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(x_i - x_j)$$

• of independent clusters $C_1, \ldots C_k$ of particles

$$H_a = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{\substack{i \geq j \\ a}} V_{ij}(x_i - x_j)$$

where $a = (C_1, \dots C_k)$ is a cluster decomposition.

Spectrum of H

On the continuous spectrum of many-body Hamiltonians (in center of mass frame)

► Hamiltonian of N particles

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(x_i - x_j)$$

• of independent clusters $C_1, \ldots C_k$ of particles

$$H_a = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i \sim j} V_{ij}(x_i - x_j)$$

where $a = (C_1, \dots C_k)$ is a cluster decomposition.

 $\sigma_{\rm ess}(H) = \bigcup \sigma(H_a)$

Theorem For pair potentials decaying in $x_i - x_j$, the essential spectrum of H is

$$a
eq (1...N)$$
 = $[\Sigma, +\infty)$ $(\Sigma := \inf R.H.S.)$

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

Remarks:

▶ \supset easy; \subset hard

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

- → ⊃ easy; ⊂ hard
- ► N = 2, $H = p^2/2m + V(x)$, $H_0 = p^2/2m$, $\sigma_{\rm ess}(H) = \sigma(H_0) = [0, +\infty)$

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

- → ⊃ easy; ⊂ hard
- ► N = 2, $H = p^2/2m + V(x)$, $H_0 = p^2/2m$, $\sigma_{\rm ess}(H) = \sigma(H_0) = [0, +\infty)$
- ▶ Proof of \subset for N = 2:

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

Remarks:

- → ⊃ easy; ⊂ hard
- ► N = 2, $H = p^2/2m + V(x)$, $H_0 = p^2/2m$, $\sigma_{\rm ess}(H) = \sigma(H_0) = [0, +\infty)$
- ▶ Proof of \subset for N = 2: Resolvents $G(z) = (z H)^{-1}$, $G_0(z) = (z H_0)^{-1}$

$$G(z) = G_0(z) + G_0(z)VG(z)$$
 i.e. $(1 - G_0(z)V)G(z) = G_0(z)$

▶ $G_0(z)V$ compact $(z \notin \sigma(H_0))$, $\to 0$, $(\text{Re } z \to -\infty)$

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

- → ⊃ easy; ⊂ hard
- ► N = 2, $H = p^2/2m + V(x)$, $H_0 = p^2/2m$, $\sigma_{\rm ess}(H) = \sigma(H_0) = [0, +\infty)$
- ▶ Proof of \subset for N = 2: Resolvents $G(z) = (z H)^{-1}$, $G_0(z) = (z H_0)^{-1}$

$$G(z) = G_0(z) + G_0(z)VG(z)$$
 i.e. $(1 - G_0(z)V)G(z) = G_0(z)$

- ▶ $G_0(z)V$ compact $(z \notin \sigma(H_0))$, $\to 0$, $(\text{Re } z \to -\infty)$
- ▶ Analytic Fredholm theorem: $(1 G_0(z)V)^{-1}$ is meromorphic in $z \notin \sigma(H_0)$ with poles of finite rank.

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

- → ⊃ easy; ⊂ hard
- ► N = 2, $H = p^2/2m + V(x)$, $H_0 = p^2/2m$, $\sigma_{\rm ess}(H) = \sigma(H_0) = [0, +\infty)$
- ▶ Proof of \subset for N = 2: Resolvents $G(z) = (z H)^{-1}$, $G_0(z) = (z H_0)^{-1}$

$$G(z) = G_0(z) + G_0(z)VG(z)$$
 i.e. $(1 - G_0(z)V)G(z) = G_0(z)$

- $G_0(z)V$ compact $(z \notin \sigma(H_0)), \to 0$, $(\text{Re } z \to -\infty)$
- ► Analytic Fredholm theorem: $(1 G_0(z)V)^{-1}$ is meromorphic in $z \notin \sigma(H_0)$ with poles of finite rank.
- ▶ Hence G(z) defined in $z \notin \sigma(H_0) \cup \{\text{poles}\}$

Theorem. The essential spectrum of *H* is

$$\sigma_{\rm ess}(H) = \bigcup_{a \neq (1...N)} \sigma(H_a)$$

- → ⊃ easy; ⊂ hard
- ► N = 2, $H = p^2/2m + V(x)$, $H_0 = p^2/2m$, $\sigma_{\rm ess}(H) = \sigma(H_0) = [0, +\infty)$
- ▶ Proof of \subset for N = 2: Resolvents $G(z) = (z H)^{-1}$, $G_0(z) = (z H_0)^{-1}$

$$G(z) = G_0(z) + G_0(z)VG(z)$$
 i.e. $(1 - G_0(z)V)G(z) = G_0(z)$

- $G_0(z)V$ compact $(z \notin \sigma(H_0)), \to 0$, $(\text{Re } z \to -\infty)$
- ▶ Analytic Fredholm theorem: $(1 G_0(z)V)^{-1}$ is meromorphic in $z \notin \sigma(H_0)$ with poles of finite rank.
- ▶ Hence G(z) defined in $z \notin \sigma(H_0) \cup \{\text{poles}\}$, i.e., $\sigma_{\text{ess}}(H) \subset \sigma(H_0)$.

The general case: arbitrary N

▶ $G_0(z)V$ is not compact for $V = \sum_{i < j} V_{ij}$, $(N \ge 3)$

Configuration space for N=3

The general case: arbitrary N

- ▶ $G_0(z)V$ is not compact for $V = \sum_{i < j} V_{ij}$, $(N \ge 3)$
- ▶ Iteration of $G(z) = G_0(z) + G_0(z)VG(z)$ yields diagrams (N = 5)

with

G(z) = D(z) + C(z)

(sums of disconnected/connected diagrams; convergent for large Re z<0)

The Weinberg-van Winter equation

$$G(z)=D(z)+C(z)$$

The Weinberg-van Winter equation

$$G(z) = D(z) + C(z)$$
 $C(z) = I(z)G(z)$

(I(z)) sum of barely connected diagrams)

Conjecture (Weinberg, 1964). I(z) compact where convergent.

The Weinberg-van Winter equation

$$G(z) = D(z) + C(z)$$
 $C(z) = I(z)G(z)$

(I(z)) sum of barely connected diagrams)

Conjecture (Weinberg, 1964). I(z) compact where convergent. But where?

Hunziker's resummation (1964)

String $S = (a_N, \dots a_1)$: a sequence of cluster decompositions a_k having k clusters proceeding by mergers of two clusters.

Hunziker's resummation (1964)

String $S = (a_N, \dots a_1)$: a sequence of cluster decompositions a_k having k clusters proceeding by mergers of two clusters.

$$C(z) = \sum_{S} G_{a_N}(z) V_{a_N a_{N-1}} G_{a_{N-1}}(z) \dots G_{a_2}(z) V_{a_2 a_1} G_{a_1}(z)$$

with $G_a(z) = (z - H_a)^{-1}$ and $V_{a_k a_{k-1}}$ potentials linking clusters of a_k but not of a_{k-1} .

Hunziker's resummation (1964)

String $S = (a_N, \dots a_1)$: a sequence of cluster decompositions a_k having k clusters proceeding by mergers of two clusters.

$$I(z)G(z) = \sum_{S} G_{a_{N}}(z) V_{a_{N}a_{N-1}} G_{a_{N-1}}(z) \dots G_{a_{2}}(z) V_{a_{2}a_{1}} G(z)$$

with $G_a(z)=(z-H_a)^{-1}$ and $V_{a_ka_{k-1}}$ potentials linking clusters of a_k but not of a_{k-1} . Alike formulae for I(z), D(z), and D(z) are small D(z).

Hunziker's resummation (continued)

$$I(z) = \sum_{S} G_{a_N}(z) V_{a_N a_{N-1}} G_{a_{N-1}}(z) \dots G_{a_2}(z) V_{a_2 a_1}$$

$$D(z) = \sum_{S:k>1} G_{a_N}(z) V_{a_N a_{N-1}} G_{a_{N-1}}(z) \dots G_{a_{k+1}}(z) V_{a_{k+1} a_k} G_{a_k}(z)$$

- ▶ finite sums defined for $z \notin \bigcup_{a \neq (1...N)} \sigma(H_a)$
- ► I(z) compact there

Hunziker's resummation (continued)

$$I(z) = \sum_{S} G_{a_N}(z) V_{a_N a_{N-1}} G_{a_{N-1}}(z) \dots G_{a_2}(z) V_{a_2 a_1}$$

$$D(z) = \sum_{S:k>1} G_{a_N}(z) V_{a_N a_{N-1}} G_{a_{N-1}}(z) \dots G_{a_{k+1}}(z) V_{a_{k+1} a_k} G_{a_k}(z)$$

- ▶ finite sums defined for $z \notin \bigcup_{a \neq (1...N)} \sigma(H_a)$
- ► I(z) compact there
- ▶ hence $G(z) = (z H)^{-1}$ meromorphic there \Box