Newton's Method and Localization
 Workshop on Analytical Aspects of Mathematical Physics

John Imbrie

May 30, 2013

Overview

Diagonalizing the Hamiltonian is a goal in quantum theory.
I would like to discuss a method for doing it in the context of two problems:

> localization in the Anderson model and
many-body localization for a quantum Ising model with disorder.

This will be a good opportunity to develop and discuss a mixture of perturbative and nonperturbative arguments in a multiscale setting.

Joint work with Tom Spencer.

Anderson Model

The Hamiltonian on Z^{d} is $H=H_{0}+J$ or:

$$
H_{i j}= \begin{cases}v_{i}, & i=j ; \\ J_{0}, & |i-j|=1 ; \\ 0, & \text { otherwise. }\end{cases}
$$

where v_{i} is a random potential.
Localization: Eigenfunctions concentrated at centers with exponential tails. They are occasionally spread out a bit when resonances occur.

Many-body Hamiltonian

Start with a simple 2 by 2 Hamiltonian on each site:

$$
H_{0}=\bigotimes_{i \in \Lambda}\left(\begin{array}{cc}
h_{i} & J \\
J & -h_{i}
\end{array}\right)=\bigotimes_{i \in \Lambda}\left(h_{i} \sigma_{i}^{z}+J \sigma_{i}^{x}\right)
$$

where h_{i} is a random field. Then let

$$
H=H_{0}+\sum_{\langle i, j\rangle} J_{0} \sigma_{i}^{z} \sigma_{j}^{z}
$$

This is a quantum Ising model with a random magnetic field.
Many-body localization: Eigenfunctions are approximately product states, with exponentially decaying entanglement. Occasional longer-range entanglement can happen when resonances occur.

Many-body localization

We would like to diagonalize this Hamiltonian and understand the nature of the eigenfunctions for small J and/or small J_{0}. What does localization mean in this context?

- In the Anderson model, localization means that the eigenfunctions closely resemble the $J=0$ eigenfunctions, which are δ-functions at the sites in Λ.

Many-body localization

We would like to diagonalize this Hamiltonian and understand the nature of the eigenfunctions for small J and/or small J_{0}. What does localization mean in this context?

- In the Anderson model, localization means that the eigenfunctions closely resemble the $J=0$ eigenfunctions, which are δ-functions at the sites in Λ.
- In the many-body context, it should mean that the spin variables should (with rare exceptions) resemble those of the $J=0$ states. That is, a prescribed set of 1 's and -1 's in the lattice. Let's call the state-labeling spin configuration $\sigma_{i}^{\text {label }}$.

Many-body localization

We would like to diagonalize this Hamiltonian and understand the nature of the eigenfunctions for small J and/or small J_{0}. What does localization mean in this context?

- In the Anderson model, localization means that the eigenfunctions closely resemble the $J=0$ eigenfunctions, which are δ-functions at the sites in Λ.
- In the many-body context, it should mean that the spin variables should (with rare exceptions) resemble those of the $J=0$ states. That is, a prescribed set of 1's and -1 's in the lattice. Let's call the state-labeling spin configuration $\sigma_{i}^{\text {label }}$.
- The many-body wave function should be "concentrated" on configurations "close to" $\sigma_{i}^{\text {label. This means in particular that }}$ each wave function is approximately a product state, with very little entanglement.

Background on many-body localization:
 A special kind of quantum phase transition

Basko, Aleiner \& Altschuler: Annals of Physics 321, 1126 (2006) Pal \& Huse: Phys. Rev. B 82, 174411 (2010), arxiv:1010:1992

> Weak Randomness: Strong randomness: ergodic localized
> long-range entanglement short range entanglement thermalized non-thermalized

Thermalized means an eigenstate at energy E would look locally like a statistical ensemble of states in thermal equilibrium. Localized means one bare state $\sigma^{\text {label }}$ (plus rare localized variations of it) predominates.

Desired Result

We would like to diagonalize H with a set of eigenfunctions given by graphical expansions with explicit bounds, including bounds on probabilities of rare events. Then, because of the smallness or rarity of deviations from $\sigma^{\text {label }}$, one should be able to show that

$$
\mathrm{Av}_{h} \mathrm{Av}_{\sigma^{\text {label }}}\left|\left\langle\sigma_{0}^{z}\right\rangle_{\psi_{\sigma^{\text {label }}} \mid}\right| \text { is close to } 1
$$

which shows that for most h 's and for most states the state follows the label. In the thermalized case, this would be a mixture of many (unperturbed) states and hence presumably 0.

This is analogous to the situation for the mixed-state classical Ising model at low temperature:

$$
\langle\cdot\rangle_{\text {mixed }}=\frac{1}{2}\langle\cdot\rangle_{+}+\frac{1}{2}\langle\cdot\rangle_{-}
$$

with

$$
\left\langle\sigma_{0}\right\rangle_{\text {mixed }}=0, \quad\left|\left\langle\sigma_{0}\right\rangle_{ \pm}\right| \text {close to } 1
$$

A very simple example: One spin

$$
\left(\begin{array}{cc}
h & J \\
J & -h
\end{array}\right)=h \sigma^{z}+J \sigma^{x}
$$

Here h is random, and J is small.
Perturbation theory for eigenvalues and eigenfunctions converges, provided $|h|$ is larger than some cutoff ε.

So with high probability, the eigenfunctions are close to $\binom{1}{0} \&\binom{0}{1}$.
We seek analogous control over the eigenfunctions of the many-body Hamiltonian H.

Resonances

For a warm-up, consider the Anderson Model.
Perturbation theory works if there are gaps between eigenvalues. This is a problem because the eigenvalues become dense as $\Lambda \rightarrow Z^{d}$. Luckily, J couples nearest neighbors only, so we only need to worry about nearest neighbor resonances (for the moment):

$$
\langle i, j\rangle \text { resonant if }|\Delta E|<\varepsilon
$$

for some transition involving the spins at i, j. (Energies are the diagonal matrix elements of H_{0}.)

- Resonant bonds form a dilute set of regions where perturbation theory breaks down.

Resonances

For a warm-up, consider the Anderson Model.
Perturbation theory works if there are gaps between eigenvalues. This is a problem because the eigenvalues become dense as $\Lambda \rightarrow Z^{d}$. Luckily, J couples nearest neighbors only, so we only need to worry about nearest neighbor resonances (for the moment):

$$
\langle i, j\rangle \text { resonant if }|\Delta E|<\varepsilon
$$

for some transition involving the spins at i, j. (Energies are the diagonal matrix elements of H_{0}.)

- Resonant bonds form a dilute set of regions where perturbation theory breaks down.
- For the spin chain, $J_{0} \sigma_{i}^{z} \sigma_{j}^{z}$ transitions the state only on $<i, j\rangle$. The bond is resonant if some ΔE is small.

Perturbation Theory

Let us stay away from resonant bonds and put

$$
A_{i j}=\frac{J_{i j}}{E_{i}-E_{j}}
$$

First order perturbation theory:

$$
\begin{aligned}
\psi_{i}^{(1)} & =\psi_{i}+\sum_{j} \frac{J_{i j}}{E_{i}-E_{j}} \psi_{j} \\
& =\sum_{j}(I+A)_{i j} \psi_{j}
\end{aligned}
$$

Here $\psi_{i}(j)=\delta_{i j}$ are the unperturbed eigenvectors.

Effective Hamiltonian

Instead, use $\Omega=e^{-A}$ for the basis change (preserves norm).

$$
\psi_{i}^{(1)}=\sum_{j} \Omega_{i j}^{\operatorname{tr}} \psi_{j}
$$

Renormalized Hamiltonian:

$$
H^{(1)}=\Omega^{\operatorname{tr}} H \Omega
$$

Related Ideas: Similarity Renormalization

Brockett-Wegner Flow
Brockett: Lin. Alg. Appl. 1991
Wegner: Ann. Phys. 1994
Similarity Renormalization
Glazek \& Wilson: Phys. Rev. D48, 5863 (1993)

Block diagonalization methods for quasiperiodic Schroedinger operators
Eliasson: Acta Math. 1997

Observe that $\left[A, H_{0}\right]=-J$:

$$
\left[A, H_{0}\right]_{i j}=\frac{J_{i j} E_{j}-E_{i} J_{i j}}{E_{i}-E_{j}}=-J_{i j}
$$

Observe that $\left[A, H_{0}\right]=-J$:

$$
\left[A, H_{0}\right]_{i j}=\frac{J_{i j} E_{j}-E_{i} J_{i j}}{E_{i}-E_{j}}=-J_{i j}
$$

Then, using $H=H_{0}+J$, we have $[A, H]=-J+[A, J]$, and so

$$
H^{(1)}=e^{A} H e^{-A}=H+[A, H]+\frac{[A,[A, H]]}{2!}+\ldots
$$

Observe that $\left[A, H_{0}\right]=-J$:

$$
\left[A, H_{0}\right]_{i j}=\frac{J_{i j} E_{j}-E_{i} J_{i j}}{E_{i}-E_{j}}=-J_{i j}
$$

Then, using $H=H_{0}+J$, we have $[A, H]=-J+[A, J]$, and so

$$
\begin{aligned}
H^{(1)} & =e^{A} H e^{-A}=H+[A, H]+\frac{[A,[A, H]]}{2!}+\ldots \\
& =H_{0}+J-J+[A, J]+\frac{[A,-J+[A, J]]}{2!}+\ldots
\end{aligned}
$$

Observe that $\left[A, H_{0}\right]=-J$:

$$
\left[A, H_{0}\right]_{i j}=\frac{J_{i j} E_{j}-E_{i} J_{i j}}{E_{i}-E_{j}}=-J_{i j}
$$

Then, using $H=H_{0}+J$, we have $[A, H]=-J+[A, J]$, and so

$$
\begin{aligned}
H^{(1)} & =e^{A} H e^{-A}=H+[A, H]+\frac{[A,[A, H]]}{2!}+\ldots \\
& =H_{0}+J-J+[A, J]+\frac{[A,-J+[A, J]]}{2!}+\ldots \\
& =H_{0}+\sum_{n=1}^{\infty} \frac{n}{(n+1)!}(\operatorname{ad} A)^{n} J \\
& =H_{0}+J^{(1)} .
\end{aligned}
$$

Properties of new Hamiltonian:

After the change of basis:

- J is gone.

Properties of new Hamiltonian:

After the change of basis:

- J is gone.
- $J^{(1)}$ is quadratic and higher order in J_{0}, containing terms of the form $A J, J A, A J A, A A J$, etc.

Properties of new Hamiltonian:

After the change of basis:

- J is gone.
- $J^{(1)}$ is quadratic and higher order in J_{0}, containing terms of the form $A J, J A, A J A, A A J$, etc.
- $J^{(1)}$ is now long-range. In the many-body case it remains a sum of local terms $J^{(1)}(X)$ because commutators vanish otherwise.

Properties of new Hamiltonian:

After the change of basis:

- J is gone.
- $J^{(1)}$ is quadratic and higher order in J_{0}, containing terms of the form $A J, J A, A J A, A A J$, etc.
- $J^{(1)}$ is now long-range. In the many-body case it remains a sum of local terms $J^{(1)}(X)$ because commutators vanish otherwise.
- The diagonal part of $J^{(1)}$ is absorbed into H_{0} as energy corrections.

Properties of new Hamiltonian:

After the change of basis:

- J is gone.
- $J^{(1)}$ is quadratic and higher order in J_{0}, containing terms of the form $A J, J A, A J A, A A J$, etc.
- $J^{(1)}$ is now long-range. In the many-body case it remains a sum of local terms $J^{(1)}(X)$ because commutators vanish otherwise.
- The diagonal part of $J^{(1)}$ is absorbed into H_{0} as energy corrections.
- The columns of $\Omega=e^{-A}$ are the eigenstates to leading order.

Properties of new Hamiltonian:

After the change of basis:

- J is gone.
- $J^{(1)}$ is quadratic and higher order in J_{0}, containing terms of the form $A J, J A, A J A, A A J$, etc.
- $J^{(1)}$ is now long-range. In the many-body case it remains a sum of local terms $J^{(1)}(X)$ because commutators vanish otherwise.
- The diagonal part of $J^{(1)}$ is absorbed into H_{0} as energy corrections.
- The columns of $\Omega=e^{-A}$ are the eigenstates to leading order.
- Expand the exponential to get a graphical expansion for the eigenfunctions: Graphs are connected (Anderson) or disconnected (many-body)-forms polymer expansions.

KAM scheme (Newton's method)

We would like to continue the procedure, perturbing in the off-diagonal part of $H^{(1)}$, which is now $O\left(J_{0}^{2}\right)$.

- After k steps, the couplings will be $O\left(J_{0}^{k}\right)$

KAM scheme (Newton's method)

We would like to continue the procedure, perturbing in the off-diagonal part of $H^{(1)}$, which is now $O\left(J_{0}^{2}\right)$.

- After k steps, the couplings will be $O\left(J_{0}^{k}\right)$
- Exception: terms associated with resonant blocks.

Diagonalization within blocks

Solution is to diagonalize $H_{0}+J^{\text {int }}$ within (small) resonant blocks, using a matrix O.

- No nontrivial bounds available for O : wavefunctions may involve a high degree of entanglement within a block.

Diagonalization within blocks

Solution is to diagonalize $H_{0}+J^{\text {int }}$ within (small) resonant blocks, using a matrix O.

- No nontrivial bounds available for O : wavefunctions may involve a high degree of entanglement within a block.
- $H^{\left(1^{\prime}\right)}=O^{\text {tr }} H^{(1)} O$ now has no $O\left(J_{0}\right)$ terms at all (except for some really large blocks, which have to wait until the couplings are small enough).

Quasidegenerate perturbation theory and higher order diagrams

- Sum over the $2^{2^{k}}$ states in a block of size 2^{k} controlled by smallness of couplings $J_{0}^{2^{k}}$.

Quasidegenerate perturbation theory and higher order diagrams

- Sum over the $2^{2^{k}}$ states in a block of size 2^{k} controlled by smallness of couplings $J_{0}^{2^{k}}$.
- Energy denominators $\sim \varepsilon^{|i-j|}$ match up against couplings $J_{0}^{|i-j|}$.

Quasidegenerate perturbation theory and higher order diagrams

- Sum over the $2^{2^{k}}$ states in a block of size 2^{k} controlled by smallness of couplings $J_{0}^{2^{k}}$.
- Energy denominators $\sim \varepsilon^{|i-j|}$ match up against couplings $J_{0}^{|i-j|}$.
- Higher order diagrams have many energy denominators which are individually OK but one has to show they are OK in combination.

Controlling the Basis Change Generator A

The basis change matrix is $\Omega=e^{-A}$ with $A=\sum_{g} A(g)$, where g is a connected multiscale graph.

If g has no loops, then $\mathrm{Av}_{h}|A(g)| \leq\left(J_{0} \log \varepsilon\right)^{|g|}$ away from resonant regions from previous scales (from $\int_{|h| \geq \varepsilon} \frac{1}{h} d \lambda(h) \leq \log \varepsilon$).
Average behavior much better than worse case, so define new resonances by the condition $|A(g)| \geq\left(J_{0} / \varepsilon\right)^{|g|}$. Then by the Markov inequality,

$$
P\left(|A(g)| \geq\left(J_{0} / \varepsilon\right)^{|g|}\right) \leq \frac{\left(J_{0} \log \varepsilon\right)^{|g|}}{\left(J_{0} / \varepsilon\right)^{|g|}}=(\varepsilon \log \varepsilon)^{|g|}
$$

Block-Block Resonances

How to control the probability of resonance between blocks? This is a density of states issue.

No Wegner bound available.
Do energy differences within a block vary with the randomness?
Interaction with block's neighbors creates enough width in the distribution of ΔE to control the probability of resonance.

Loops

If g has loops, then there are duplicated or non-independent denominators, so we have integrals like $\int_{|h| \geq \varepsilon} \frac{1}{h^{2}} d \lambda(h) \leq \varepsilon^{-1}$ which lead to negative powers of ε. This weakens the bound on the probability of the resonance to tree decay:

$$
P\left(|A(g)| \geq\left(J_{0} / \varepsilon\right)^{|g|}\right) \leq(\varepsilon \log \varepsilon)^{|T(g)|}
$$

But this is sufficient to control the sum over pairs of (potentially) resonant states in $X=T(g)$ (which are no more than $4^{|X|}$ in number).

