Newton's Method and Localization Workshop on Analytical Aspects of Mathematical Physics

John Imbrie

May 30, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview

Diagonalizing the Hamiltonian is a goal in quantum theory.

I would like to discuss a method for doing it in the context of two problems:

localization in the Anderson model and many-body localization for a quantum Ising model with disorder.

This will be a good opportunity to develop and discuss a mixture of perturbative and nonperturbative arguments in a multiscale setting.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Joint work with Tom Spencer.

Anderson Model

The Hamiltonian on Z^d is $H = H_0 + J$ or:

$$\mathcal{H}_{ij}=\left\{egin{array}{cc} v_i, & i=j;\ J_0, & |i-j|=1;\ 0, & ext{otherwise}. \end{array}
ight.$$

where v_i is a random potential.

Localization: Eigenfunctions concentrated at centers with exponential tails. They are occasionally spread out a bit when resonances occur.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Many-body Hamiltonian

Start with a simple 2 by 2 Hamiltonian on each site:

$$H_0 = \bigotimes_{i \in \Lambda} \begin{pmatrix} h_i & J \\ J & -h_i \end{pmatrix} = \bigotimes_{i \in \Lambda} (h_i \sigma_i^z + J \sigma_i^x)$$

where h_i is a random field. Then let

$$H = H_0 + \sum_{\langle i,j\rangle} J_0 \sigma_i^z \sigma_j^z$$

This is a quantum Ising model with a random magnetic field.

Many-body localization: Eigenfunctions are approximately product states, with exponentially decaying entanglement. Occasional longer-range entanglement can happen when resonances occur.

Many-body localization

We would like to diagonalize this Hamiltonian and understand the nature of the eigenfunctions for small J and/or small J_0 . What does localization mean in this context?

In the Anderson model, localization means that the eigenfunctions closely resemble the J = 0 eigenfunctions, which are δ-functions at the sites in Λ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Many-body localization

We would like to diagonalize this Hamiltonian and understand the nature of the eigenfunctions for small J and/or small J_0 . What does localization mean in this context?

- In the Anderson model, localization means that the eigenfunctions closely resemble the J = 0 eigenfunctions, which are δ-functions at the sites in Λ.
- In the many-body context, it should mean that the spin variables should (with rare exceptions) resemble those of the J = 0 states. That is, a prescribed set of 1's and -1's in the lattice. Let's call the state-labeling spin configuration σ_i^{label}.

Many-body localization

We would like to diagonalize this Hamiltonian and understand the nature of the eigenfunctions for small J and/or small J_0 . What does localization mean in this context?

- In the Anderson model, localization means that the eigenfunctions closely resemble the J = 0 eigenfunctions, which are δ-functions at the sites in Λ.
- In the many-body context, it should mean that the spin variables should (with rare exceptions) resemble those of the J = 0 states. That is, a prescribed set of 1's and -1's in the lattice. Let's call the state-labeling spin configuration σ_i^{label}.
- The many-body wave function should be "concentrated" on configurations "close to" σ_i^{label}. This means in particular that each wave function is approximately a product state, with very little entanglement.

Background on many-body localization: A special kind of quantum phase transition

Basko, Aleiner & Altschuler: Annals of Physics 321, 1126 (2006) Pal & Huse: Phys. Rev. B 82, 174411 (2010), arxiv:1010:1992

Weak Randomness:	Strong randomness:
ergodic	localized
long-range entanglement	short range entanglement
thermalized	non-thermalized

Thermalized means an eigenstate at energy E would look locally like a statistical ensemble of states in thermal equilibrium. Localized means one bare state σ^{label} (plus rare localized variations of it) predominates.

Desired Result

We would like to diagonalize H with a set of eigenfunctions given by graphical expansions with explicit bounds, including bounds on probabilities of rare events. Then, because of the smallness or rarity of deviations from σ^{label} , one should be able to show that

$$\operatorname{Av}_{h} \operatorname{Av}_{\sigma^{\operatorname{label}}} |\langle \sigma_{0}^{z} \rangle_{\psi_{\sigma^{\operatorname{label}}}}|$$
 is close to 1,

which shows that for most h's and for most states the state follows the label. In the thermalized case, this would be a mixture of many (unperturbed) states and hence presumably 0.

This is analogous to the situation for the mixed-state classical lsing model at low temperature:

$$\langle \cdot \rangle_{\mathrm{mixed}} = \frac{1}{2} \langle \cdot \rangle_{+} + \frac{1}{2} \langle \cdot \rangle_{-}$$

with

$$\langle \sigma_0 \rangle_{\text{mixed}} = 0, \quad |\langle \sigma_0 \rangle_{\pm}| \text{ close to } 1.$$

A very simple example: One spin

$$\left(\begin{array}{cc}h&J\\J&-h\end{array}\right)=h\sigma^{z}+J\sigma^{x}$$

Here h is random, and J is small.

Perturbation theory for eigenvalues and eigenfunctions converges, provided |h| is larger than some cutoff ε .

So with high probability, the eigenfunctions are close to $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \& \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

We seek analogous control over the eigenfunctions of the many-body Hamiltonian H.

Resonances

For a warm-up, consider the Anderson Model.

Perturbation theory works if there are gaps between eigenvalues. This is a problem because the eigenvalues become dense as $\Lambda \rightarrow Z^d$. Luckily, *J* couples nearest neighbors only, so we only need to worry about nearest neighbor resonances (for the moment):

 $\langle i,j \rangle$ resonant if $|\Delta E| < \varepsilon$

for some transition involving the spins at i, j. (Energies are the diagonal matrix elements of $H_{0.}$)

Resonant bonds form a dilute set of regions where perturbation theory breaks down.

Resonances

For a warm-up, consider the Anderson Model.

Perturbation theory works if there are gaps between eigenvalues. This is a problem because the eigenvalues become dense as $\Lambda \rightarrow Z^d$. Luckily, *J* couples nearest neighbors only, so we only need to worry about nearest neighbor resonances (for the moment):

 $\langle i,j \rangle$ resonant if $|\Delta E| < \varepsilon$

for some transition involving the spins at i, j. (Energies are the diagonal matrix elements of $H_{0.}$)

- Resonant bonds form a dilute set of regions where perturbation theory breaks down.
- For the spin chain, $J_0 \sigma_i^z \sigma_j^z$ transitions the state only on $\langle i, j \rangle$. The bond is resonant if some ΔE is small.

Perturbation Theory

Let us stay away from resonant bonds and put

$$A_{ij}=\frac{J_{ij}}{E_i-E_j}.$$

First order perturbation theory:

$$\psi_i^{(1)} = \psi_i + \sum_j \frac{J_{ij}}{E_i - E_j} \psi_j$$
$$= \sum_j (I + A)_{ij} \psi_j.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Here $\psi_i(j) = \delta_{ij}$ are the unperturbed eigenvectors.

Effective Hamiltonian

Instead, use $\Omega = e^{-A}$ for the basis change (preserves norm).

$$\psi_i^{(1)} = \sum_j \Omega_{ij}^{\mathrm{tr}} \psi_j.$$

Renormalized Hamiltonian:

$$H^{(1)} = \Omega^{\mathrm{tr}} H \Omega$$

Related Ideas: Similarity Renormalization

Brockett-Wegner Flow Brockett: Lin. Alg. Appl. 1991 Wegner: Ann. Phys. 1994

Similarity Renormalization Glazek & Wilson: Phys. Rev. D48, 5863 (1993)

Block diagonalization methods for quasiperiodic Schroedinger operators Eliasson: Acta Math. 1997

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$[A, H_0]_{ij} = \frac{J_{ij}E_j - E_iJ_{ij}}{E_i - E_j} = -J_{ij}.$$

<□ > < @ > < E > < E > E のQ @

$$[A, H_0]_{ij} = \frac{J_{ij}E_j - E_iJ_{ij}}{E_i - E_j} = -J_{ij}.$$

Then, using $H = H_0 + J$, we have [A, H] = -J + [A, J], and so

$$H^{(1)} = e^{A}He^{-A} = H + [A, H] + \frac{[A, [A, H]]}{2!} + \dots$$

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

$$[A, H_0]_{ij} = \frac{J_{ij}E_j - E_iJ_{ij}}{E_i - E_j} = -J_{ij}.$$

Then, using $H = H_0 + J$, we have [A, H] = -J + [A, J], and so

$$H^{(1)} = e^{A}He^{-A} = H + [A, H] + \frac{[A, [A, H]]}{2!} + \dots$$
$$= H_{0} + J - J + [A, J] + \frac{[A, -J + [A, J]]}{2!} + \dots$$

・ロト < 団ト < 三ト < 三ト ・ 三 ・ のへの

$$[A, H_0]_{ij} = \frac{J_{ij}E_j - E_iJ_{ij}}{E_i - E_j} = -J_{ij}.$$

Then, using $H = H_0 + J$, we have [A, H] = -J + [A, J], and so

$$H^{(1)} = e^{A}He^{-A} = H + [A, H] + \frac{[A, [A, H]]}{2!} + \dots$$

$$= H_0 + J - J + [A, J] + \frac{[A, -J + [A, J]]}{2!} + \dots$$

$$= H_0 + \sum_{n=1}^{\infty} \frac{n}{(n+1)!} (\operatorname{ad} A)^n J$$

 $= H_0 + J^{(1)}.$

After the change of basis:

► *J* is gone.

After the change of basis:

- J is gone.
- ▶ J⁽¹⁾ is quadratic and higher order in J₀, containing terms of the form AJ, JA, AJA, AAJ, etc.

・ロト・日本・モート モー うへぐ

After the change of basis:

- J is gone.
- ► J⁽¹⁾ is quadratic and higher order in J₀, containing terms of the form AJ, JA, AJA, AAJ, etc.
- J⁽¹⁾ is now long-range. In the many-body case it remains a sum of local terms J⁽¹⁾(X) because commutators vanish otherwise.

After the change of basis:

- J is gone.
- ► J⁽¹⁾ is quadratic and higher order in J₀, containing terms of the form AJ, JA, AJA, AAJ, etc.
- J⁽¹⁾ is now long-range. In the many-body case it remains a sum of local terms J⁽¹⁾(X) because commutators vanish otherwise.

► The diagonal part of J⁽¹⁾ is absorbed into H₀ as energy corrections.

After the change of basis:

- J is gone.
- ► J⁽¹⁾ is quadratic and higher order in J₀, containing terms of the form AJ, JA, AJA, AAJ, etc.
- J⁽¹⁾ is now long-range. In the many-body case it remains a sum of local terms J⁽¹⁾(X) because commutators vanish otherwise.
- ► The diagonal part of J⁽¹⁾ is absorbed into H₀ as energy corrections.
- The columns of $\Omega = e^{-A}$ are the eigenstates to leading order.

After the change of basis:

- J is gone.
- ► J⁽¹⁾ is quadratic and higher order in J₀, containing terms of the form AJ, JA, AJA, AAJ, etc.
- J⁽¹⁾ is now long-range. In the many-body case it remains a sum of local terms J⁽¹⁾(X) because commutators vanish otherwise.
- ► The diagonal part of J⁽¹⁾ is absorbed into H₀ as energy corrections.
- The columns of $\Omega = e^{-A}$ are the eigenstates to leading order.
- Expand the exponential to get a graphical expansion for the eigenfunctions: Graphs are connected (Anderson) or disconnected (many-body)-forms polymer expansions.

KAM scheme (Newton's method)

We would like to continue the procedure, perturbing in the off-diagonal part of $H^{(1)}$, which is now $O(J_0^2)$.

• After k steps, the couplings will be $O(J_0^{2^k})$

KAM scheme (Newton's method)

We would like to continue the procedure, perturbing in the off-diagonal part of $H^{(1)}$, which is now $O(J_0^2)$.

- After k steps, the couplings will be $O(J_0^{2^k})$
- Exception: terms associated with resonant blocks.

Solution is to diagonalize $H_0 + J^{int}$ within (small) resonant blocks, using a matrix O.

► No nontrivial bounds available for *O*: wavefunctions may involve a high degree of entanglement within a block.

Solution is to diagonalize $H_0 + J^{int}$ within (small) resonant blocks, using a matrix O.

- ► No nontrivial bounds available for *O*: wavefunctions may involve a high degree of entanglement within a block.
- ► H^(1') = O^{tr}H⁽¹⁾O now has no O(J₀) terms at all (except for some really large blocks, which have to wait until the couplings are small enough).

Quasidegenerate perturbation theory and higher order diagrams

Sum over the 2^{2^k} states in a block of size 2^k controlled by smallness of couplings J₀^{2^k}.

Quasidegenerate perturbation theory and higher order diagrams

- Sum over the 2^{2^k} states in a block of size 2^k controlled by smallness of couplings J₀^{2^k}.
- Energy denominators $\sim \varepsilon^{|i-j|}$ match up against couplings $J_0^{|i-j|}.$

Quasidegenerate perturbation theory and higher order diagrams

- Sum over the 2^{2^k} states in a block of size 2^k controlled by smallness of couplings J₀^{2^k}.
- Energy denominators $\sim \varepsilon^{|i-j|}$ match up against couplings $\int_{0}^{|i-j|}$.
- Higher order diagrams have many energy denominators which are individually OK but one has to show they are OK in combination.

Controlling the Basis Change Generator A

The basis change matrix is $\Omega = e^{-A}$ with $A = \sum_{g} A(g)$, where g is a connected multiscale graph.

If g has no loops, then $\operatorname{Av}_h|A(g)| \leq (J_0 \log \varepsilon)^{|g|}$ away from resonant regions from previous scales (from $\int_{|h|>\varepsilon} \frac{1}{h} d\lambda(h) \leq \log \varepsilon$).

Average behavior much better than worse case, so define new resonances by the condition $|A(g)| \ge (J_0/\varepsilon)^{|g|}$. Then by the Markov inequality,

$$P\left(|A(g)| \geq (J_0/arepsilon)^{|g|}
ight) \leq rac{(J_0\logarepsilon)^{|g|}}{(J_0/arepsilon)^{|g|}} = (arepsilon\logarepsilon)^{|g|}$$

Block-Block Resonances

How to control the probability of resonance between blocks? This is a density of states issue.

No Wegner bound available.

Do energy differences within a block vary with the randomness?

Interaction with block's neighbors creates enough width in the distribution of ΔE to control the probability of resonance.

Loops

If g has loops, then there are duplicated or non-independent denominators, so we have integrals like $\int_{|h| \ge \varepsilon} \frac{1}{h^2} d\lambda(h) \le \varepsilon^{-1}$ which lead to negative powers of ε . This weakens the bound on the probability of the resonance to tree decay:

$$P\left(|A(g)| \geq (J_0/arepsilon)^{|g|}
ight) \leq (arepsilon \log arepsilon)^{|\mathcal{T}(g)|}.$$

But this is sufficient to control the sum over pairs of (potentially) resonant states in X = T(g) (which are no more than $4^{|X|}$ in number).

