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Overview

Diagonalizing the Hamiltonian is a goal in quantum theory.

I would like to discuss a method for doing it in the context of two
problems:

localization in the Anderson model
and

many-body localization for a quantum Ising model with disorder.

This will be a good opportunity to develop and discuss a mixture
of perturbative and nonperturbative arguments in a multiscale
setting.

Joint work with Tom Spencer.



Anderson Model

The Hamiltonian on Zd is H = H0 + J or:

Hij =


vi , i = j ;

J0, |i − j | = 1;

0, otherwise.

where vi is a random potential.

Localization: Eigenfunctions concentrated at centers with
exponential tails. They are occasionally spread out a bit when
resonances occur.



Many-body Hamiltonian

Start with a simple 2 by 2 Hamiltonian on each site:

H0 =
⊗
i∈Λ

(
hi J
J −hi

)
=
⊗
i∈Λ

(hiσ
z
i + Jσx

i )

where hi is a random field. Then let

H = H0 +
∑
〈i ,j〉

J0σ
z
i σ

z
j

This is a quantum Ising model with a random magnetic field.

Many-body localization: Eigenfunctions are approximately product
states, with exponentially decaying entanglement. Occasional
longer-range entanglement can happen when resonances occur.



Many-body localization

We would like to diagonalize this Hamiltonian and understand the
nature of the eigenfunctions for small J and/or small J0. What
does localization mean in this context?

I In the Anderson model, localization means that the
eigenfunctions closely resemble the J = 0 eigenfunctions,
which are δ-functions at the sites in Λ.

I In the many-body context, it should mean that the spin
variables should (with rare exceptions) resemble those of the
J = 0 states. That is, a prescribed set of 1’s and -1’s in the
lattice. Let’s call the state-labeling spin configuration σlabel

i .

I The many-body wave function should be “concentrated” on
configurations “close to” σlabel

i . This means in particular that
each wave function is approximately a product state, with very
little entanglement.
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Background on many-body localization:
A special kind of quantum phase transition

Basko, Aleiner & Altschuler: Annals of Physics 321, 1126 (2006)
Pal & Huse: Phys. Rev. B 82, 174411 (2010), arxiv:1010:1992

Weak Randomness: Strong randomness:

ergodic localized
long-range entanglement short range entanglement

thermalized non-thermalized

Thermalized means an eigenstate at energy E would look locally
like a statistical ensemble of states in thermal equilibrium.
Localized means one bare state σlabel (plus rare localized variations
of it) predominates.



Desired Result
We would like to diagonalize H with a set of eigenfunctions given
by graphical expansions with explicit bounds, including bounds on
probabilities of rare events. Then, because of the smallness or
rarity of deviations from σlabel, one should be able to show that

Avh Avσlabel |〈σz
0〉ψσlabel

| is close to 1,

which shows that for most h’s and for most states the state follows
the label. In the thermalized case, this would be a mixture of many
(unperturbed) states and hence presumably 0.

This is analogous to the situation for the mixed-state classical Ising
model at low temperature:

〈·〉mixed =
1

2
〈·〉+ +

1

2
〈·〉−

with
〈σ0〉mixed = 0, |〈σ0〉±| close to 1.



A very simple example: One spin

(
h J
J −h

)
= hσz + Jσx

Here h is random, and J is small.

Perturbation theory for eigenvalues and eigenfunctions converges,
provided |h| is larger than some cutoff ε.

So with high probability, the eigenfunctions are close to
(1

0

)
&
(0

1

)
.

We seek analogous control over the eigenfunctions of the
many-body Hamiltonian H.



Resonances

For a warm-up, consider the Anderson Model.

Perturbation theory works if there are gaps between eigenvalues.
This is a problem because the eigenvalues become dense as
Λ→ Zd . Luckily, J couples nearest neighbors only, so we only need
to worry about nearest neighbor resonances (for the moment):

〈i , j〉 resonant if |∆E | < ε

for some transition involving the spins at i , j . (Energies are the
diagonal matrix elements of H0.)

I Resonant bonds form a dilute set of regions where
perturbation theory breaks down.

I For the spin chain, J0σ
z
i σ

z
j transitions the state only on

< i , j >. The bond is resonant if some ∆E is small.
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Perturbation Theory

Let us stay away from resonant bonds and put

Aij =
Jij

Ei − Ej
.

First order perturbation theory:

ψ
(1)
i = ψi +

∑
j

Jij

Ei − Ej
ψj

=
∑

j

(I + A)ijψj .

Here ψi (j) = δij are the unperturbed eigenvectors.



Effective Hamiltonian

Instead, use Ω = e−A for the basis change (preserves norm).

ψ
(1)
i =

∑
j

Ωtr
ij ψj .

Renormalized Hamiltonian:

H(1) = ΩtrHΩ



Related Ideas: Similarity Renormalization

Brockett-Wegner Flow
Brockett: Lin. Alg. Appl. 1991
Wegner: Ann. Phys. 1994

Similarity Renormalization
Glazek & Wilson: Phys. Rev. D48, 5863 (1993)

Block diagonalization methods for quasiperiodic Schroedinger
operators
Eliasson: Acta Math. 1997



Observe that [A,H0] = −J:

[A,H0]ij =
JijEj − EiJij

Ei − Ej
= −Jij .

Then, using H = H0 + J, we have [A,H] = −J + [A, J], and so

H(1) = eAHe−A = H + [A,H] +
[A, [A,H]]

2!
+ . . .

= H0 + J − J + [A, J] +
[A,−J + [A, J]]

2!
+ . . .

= H0 +
∞∑

n=1

n

(n + 1)!
(ad A)nJ

= H0 + J(1).
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Properties of new Hamiltonian:

After the change of basis:

I J is gone.

I J(1) is quadratic and higher order in J0, containing terms of
the form AJ, JA,AJA,AAJ, etc.

I J(1) is now long-range. In the many-body case it remains a
sum of local terms J(1)(X ) because commutators vanish
otherwise.

I The diagonal part of J(1) is absorbed into H0 as energy
corrections.

I The columns of Ω = e−A are the eigenstates to leading order.

I Expand the exponential to get a graphical expansion for the
eigenfunctions: Graphs are connected (Anderson) or
disconnected (many-body)–forms polymer expansions.
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KAM scheme (Newton’s method)

We would like to continue the procedure, perturbing in the
off-diagonal part of H(1), which is now O(J2

0 ).

I After k steps, the couplings will be O(J2k

0 )

I Exception: terms associated with resonant blocks.
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Diagonalization within blocks

Solution is to diagonalize H0 + J int within (small) resonant blocks,
using a matrix O.

I No nontrivial bounds available for O: wavefunctions may
involve a high degree of entanglement within a block.

I H(1′) = OtrH(1)O now has no O(J0) terms at all (except for
some really large blocks, which have to wait until the
couplings are small enough).
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Quasidegenerate perturbation theory and higher order
diagrams

I Sum over the 22k
states in a block of size 2k controlled by

smallness of couplings J2k

0 .

I Energy denominators ∼ ε|i−j | match up against couplings

J
|i−j |
0 .

I Higher order diagrams have many energy denominators which
are individually OK but one has to show they are OK in
combination.
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Controlling the Basis Change Generator A

The basis change matrix is Ω = e−A with A =
∑

g A(g), where g
is a connected multiscale graph.

If g has no loops, then Avh|A(g)| ≤ (J0 log ε)|g | away from
resonant regions from previous scales (from

∫
|h|≥ε

1
hdλ(h) ≤ log ε).

Average behavior much better than worse case, so define new
resonances by the condition |A(g)| ≥ (J0/ε)|g |. Then by the
Markov inequality,

P
(
|A(g)| ≥ (J0/ε)|g |

)
≤ (J0 log ε)|g |

(J0/ε)|g |
= (ε log ε)|g |



Block-Block Resonances

&%
'$

&%
'$

6 ?∆E ∆E-�

How to control the probability of resonance between blocks? This
is a density of states issue.

No Wegner bound available.

Do energy differences within a block vary with the randomness?

Interaction with block’s neighbors creates enough width in the
distribution of ∆E to control the probability of resonance.



Loops

If g has loops, then there are duplicated or non-independent
denominators, so we have integrals like

∫
|h|≥ε

1
h2 dλ(h) ≤ ε−1 which

lead to negative powers of ε. This weakens the bound on the
probability of the resonance to tree decay:

P
(
|A(g)| ≥ (J0/ε)|g |

)
≤ (ε log ε)|T (g)|.

But this is sufficient to control the sum over pairs of (potentially)
resonant states in X = T (g) (which are no more than 4|X | in
number).

i k

j

i ′
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