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Rudolf Haag: Eur. Phys. J. H 35, 263307 (2010)

...but what are the basic observables? Obviously the essential
instruments in high energy physics are detectors. The task of a
detector is to give a signal from a specified region in space at
some time. . . . My conclusion was that the theory must give us
for each region of space-time an algebra corresponding to the
set of all observables or operations pertaining to the region.
This correspondence between space-time regions and algebras is
the content of the theory; nothing more nor less. . . . In the case
of a field theory the algebra of a region is generated by the
fields smeared out by test functions with support in the region.
But there may be other possibilities of construction.”
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First surprise - Quantization is not needed

The work I will present today is formulated in a purely operator
algebraic language. The observales generate a net of local von
Neumann algebras, and the physically relevant information can
be obtained from the net of local algebras, without ever talking
of Lagrangians, classical fields, differential equations, specific
observables, quantization methods or quantum fields.

Second surprise - New two-dimensional models

Many well-known models can be identified within our
framework, but in addition we encounter an enormous variety
of new two dimensional quantum theories. We currently do
not know if the new quantum theories have classical limits,
nor if they can be constructed from (yet unknown) Lagrangian
(using conventional methods).
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Geometry: Two-dimensional de Sitter space

De Sitter space

dSr
.
=
{
x ∈ R1+2 | x · x = x2

0 − x2
1 − x2

2 = −r
}
, dS = dS1,

Wedges: set W1
.
=
{
x ∈ dS | x2 > |x0|

}
,

W = ΛW1 ⊂ dS, Λ ∈ SO0(1, 2).

The set of all wedges is denoted by W.

Boosts

ΛW (t) = ΛΛ1(t)Λ−1, Λ1(t)
.
=

cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

 .
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Wedge

Figure : Wedge

Figures in this talk are reproduced from a talk by Hugo Moschella.
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ΛW (t)W = W , t ∈ R, and, for all t ∈ R,

ΛΛ′W (t) =

{
Λ′ΛW (t)Λ′−1 if Λ′ ∈ SO0(1, 2) ,

Λ′ΛW (−t)Λ′−1 if Λ′ ∈ O↓+(1, 2) .

Rotations

α 7→ R0(α)
.
=

1 0 0
0 cosα − sinα
0 sinα cosα

 , α ∈ [0, 2π) .

Horospheric Translations

q 7→ D(q)
.
=

1 + q2

2 q q2

2
q 1 q

− q2

2 −q 1− q2

2

 , q ∈ R .
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Rotations and Horospheric Translations

Cauchy Surfaces Horospheres

Figure : dS
.
=
{
x ∈ R1+2 | x20 − x21 − x22 = −r2

}
, r > 0.
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Time and Space Reflections

T
.
=

−1 0 0
0 1 0
0 0 1

 , P1
.
=

1 0 0
0 1 0
0 0 −1

 ∈ O(1, 2).

Reflection at the Edge of the Wedge

ΘΛW1 = Λ(P1T )Λ−1, W = ΛW1, Λ ∈ SO0(1, 2).

We have
ΘWW = W ′, ΘWW =W.

by Christian Jäkel 8/41
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Part I : Free Quantum Theories on dS

(work by Brunetti, Guido and Longo)
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Modular Localization

Let Λ 7→ u(Λ) be a unitary irreducible representations of the
Lorentz group O(1, 2) on some Hilbert space H. Let `W be the
self-adjoint generator of the one-parameter subgroup

t 7→ u
(
ΛW

(
t
r

))
.

Set
δW

.
= e−2πr`W , jW

.
= u(ΘW ).

δW is a densely defined, closed, positive non-singular linear
operator on H; jW is an anti-unitary operator on H.
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These properties allow one to introduce the operator

sW
.
= jW δ

1/2
W ,

sW is a densely defined, antilinear, closed operator on H with
R(sW ) = D(sW ) and s2

W ⊂ 1. Moreover,

u(Λ)sWu(Λ)−1 = sΛW , Λ ∈ SO0(1, 2).

Definition (Brunetti, Guido, Longo, 2002)

The modular localisation map W 7→ H(W ) associates an
R-linear subspace

H(W )
.
= {h ∈ D(sW ) | sWh = h}

of H to a wedge W ∈ W.
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Theorem (Brunetti, Guido, Longo, 2002)

Each H(W ) is an R-linear, closed, standard subspace in H.
Moreover, sW is the Tomita operator of H(W ), i.e.,

sW : H(W ) + iH(W )→ H(W ) + iH(W )

h+ ik 7→ h− ik.

In particular,

δitWH(W ) = H(W ) and jWH(W ) = H(W )′,

with H(W )′ the symplectic complement of H(W ) in H.
Moreover,

u(Λ)H(W ) = H(ΛW ), Λ ∈ SO0(1, 2).
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Fock space

Fock space eH
.
= ⊕∞n=0H⊗

n
s ,

Coherent vectors

eh = ⊕∞n=0 h⊗s · · · ⊗s h︸ ︷︷ ︸
n−times

Exponentiation of operators: A a closed densely defined
linear operator on H. Then

eA : H →H

is the closure of the linear operator acting on the linear
combinations of coherent vectors with exponent in D(A)
such that:

eAeh = eAh.

Exponentiation preserves self-adjointness, positivity and
unitarity.
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Weyl algebra

For h, g ∈ H, the relations

V (h)V (g) = e−i=〈h,g〉V (h+ g),

V (h)Ω◦ = e−
1
2
||f ||2eih,

define unitary operators, called the Weyl operators .

They satisfy V ∗(h) = V (−h) and V (0) = 1. The one-parameter
group Λ 7→ u(Λ) induces a group of automorphisms

α◦Λ(V (h))
.
= V

(
u(Λ)h

)
, h ∈ H, Λ ∈ SO0(1, 2),

representing the free dynamics.
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Introduction Geometry Modular Localization Quantum Theories on dS

Definition (The Net of Local Algebras)

We associate v. Neumann algebras to space-time regions in dS:

i.) for the wedge W1,

A◦(W1)
.
= {V (h) | h ∈ H(W1)}′′;

ii.) for an arbitrary wedge W , set

A◦(W )
.
= α◦Λ

(
A◦
(
W1

))
, W = ΛW1;

iii.) for an arbitrary bounded, causally complete, convex region
O ⊂ dS, set

A◦(O) =
⋂
O⊂W

A◦
(
W
)
.

The map O 7→ A◦(O) preserves inclusions, the algebras A◦(O)
are hyperfinite type III1 factors, and α◦Λ (A◦(O)) = A◦(ΛO).
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Abelian von Neumann Algebras for S1

The time-reflection T on dS induces a conjugation ϑ on H. The
R-linear subspace

Hϑ = {h ∈ H(dS) | ϑh = h}

is standard. It consists of time-reflection invariant functions.

Lemma

The weak closure U of the C∗-algebra U generated by the Weyl
operators {V (h) | h ∈ Hϑ} is a maximal abelian von Neumann
algebra on H with cyclic and separating vector e0 = Ω◦.
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The spectrum K of U is a (weak∗) compact Hausdorff space
and C(K) ∼= U . The vector Ω◦ ∼= 1K ,

L∞(K,dν) ∼= U and L2(K,dν) ∼= U Ω◦ = H .

A normal state ω defines an element ω�U in U +
∗ , represented by

the square of a unique positive function in L2(K,dν).

Lemma

Let ω be a normal, rotation invariant state. Then there exists a
rotation invariant, positive operator A ∈ L2(U ,Ω0), such that

ω�U ( . ) = 〈Ω, .Ω〉, Ω
.
= AΩ◦ ∈H , Ã ∈ L2(K,dν).

If ω�U is faithful, Ã > 0 a.e. and Ω is cyclic & separating for U .
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Part II: Interacting Quantum Theories on dS
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Lemma

Let ω = ω ◦ α◦R0(γ), γ ∈ [0, 2π), with ω�U ( . ) = 〈Ω, .Ω〉 faithful.

Then there exists a self-adjoint operator V (0) affiliated to
U (W1) such that Ω◦ ∈ D(u− i

2
) and

Ω = u− i
2
Ω◦ = u− i

4
JW1

u− i
4
Ω◦,

with u− i
4

affiliated to A◦(W1) and

uiθ = 1 +
∑
n≥1

(−1)n
∫ θ

0
dθ1 · · ·

∫ θn−1

0
dθn σ

◦
iθn(V (0)) · · ·σ◦iθ1(V (0)).

t 7→ σ◦t ( . ) denotes the modular group for the pair (A◦(W1),Ω◦).
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Theorem

The vector Ω ∈P
1/2
Ω◦

(
A◦(W1)

)
in the natural positive cone for

the pair
(
A◦(W1),Ω◦

)
is cyclic and separating for A◦(W1).

The modular ∆W1
operator for the pair (A◦(W1),Ω) gives rise

to a one-parameter group

t 7→ ∆it
W1
, t ∈ R ,

which leaves A◦(W1) and Ω invariant. Since Ω is an element of
the positive cone P]

(
A◦(W1),Ω◦

)
we have JW1

= J◦W1
.
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Connes cocycle (non-comm. Lp spaces, Araki & Masuda)

Since H = L2(A◦(W1),Ω◦), Ω = ∆
1/2
Ω,Ω◦

Ω◦ ∈P
1/2
Ω◦

(A◦(W1)).

The relative modular operator ∆Ω,Ω◦ = S∗Ω,Ω◦SΩ,Ω◦ arises from
the polar decomposition of the anti-linear map

SΩ,Ω◦MΩ◦ = M∗Ω , M ∈ A◦(W1) .

∃ strongly continuous one-parameter family of unitaries

ut = [Dω : Dω◦]t = ∆it
Ω,Ω◦∆

−it
◦ ∈ A◦(W1) , t ∈ R ,

which intertwines the modular groups for ω and ω◦, i.e.,

σt(M) = utσ
◦
t (M)u∗t , ∀M ∈ A◦(W1),

and satisfies the cocycle relation ut+s = utσ
◦
t (us), t, s ∈ R.
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Interacting Automorphisms

Theorem (inspired by Osterwalder, Fröhlich and Seiler)

The boost t 7→ ∆it
W1

and the (free) rotations U◦(R0(α)),
α ∈ [0, 2π), generate a representation U(Λ) of SO0(1, 2).

Definition

The unitary representation Λ 7→ U(Λ) induces a group of
automorphisms

αΛ(V (h))
.
= U(Λ)V (h)U(Λ)−1 , h ∈ H , Λ ∈ O(1, 2) ,

representing the interacting dynamics.
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Introduction Geometry Modular Localization Quantum Theories on dS

Definition (The Net of Local Algebras)

We proceed just as for the free theory:

i.) for the wedge W1, set A (W1)
.
= A◦(W1) ;

ii.) for an arbitrary wedge W , set

A (W )
.
= αΛ

(
A
(
W1

))
, W = ΛW1 ;

iii.) for a causally complete, convex region O ⊂ dS, set

A (O) =
⋂
O⊂W

A
(
W
)
.

The map O 7→ A (O) is the net of local von Neumann algebras
for the interacting theory.
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Theorem (Verification of the Haag-Kastler Axioms)

The representation α : Λ 7→ αΛ of the Lorentz group SO0(1, 2)
is covariant:

αΛ

(
A (O)

)
= A (ΛO) , Λ ∈ SO0(1, 2) .

The local algebras satisfy micro-causality, i.e.,

A (O1) ⊂ A (O2)′ if O1 ⊂ O′2 .

Here O′ denotes the space-like complement of O in dS and
A (O)′ is the commutant of A (O) in B(H).
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Theorem (continued; Barata, Mund & J. (2013))

The unit vector Ω ∈ H, describing the de Sitter vacuum, is the
unique (up to a phase) vector, which

— is invariant under the action of U(SO0(1, 2));

— satisfies the geodesic KMS condition of Borchers and
Buchholz: for every wedge W

ω�A (W )(A)
.
= 〈Ω, AΩ〉 , A ∈ A (W ) ,

satisfies the KMS-condition at inverse temperature 2πr
with respect to the group t 7→ αΛW (t), t ∈ R.
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Theorem (Borchers & Buchholz)

For any open region O ⊂ dS there holds

A (O)Ω = H.

Theorem (Barata, Mund & J. (2013))

Let
I(α, t)

.
= S1 ∩

( ⋃
y∈Λ(α)(t)I

Γ−(y) ∪ Γ+(y)
)
.

It follows that for t 6= 0, one has the embedding

α
Λ(α)(t)

(A (OI)) ↪→ A◦
(
Λ(α)(t)OI(α,t)

)
.

This result is related to Borcher’s notion of relative locality .
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The P (ϕ)2 model (Glimm & Jaffe; Figari, Høegh-Krohn &
Nappi; Klein & Landau; Gérard & J. ; Barata, Mund & J.)

can be reconstructed from Markov
processes on the Euclidean sphere.

Ω =
V
(
e−V (S+))

||V
(
e−V (S+))||

=
T e−

∫ 1/2
0 dθ σ◦iθ(V0(cosψ))Ω◦

||T e−
∫ 1/2
0 dθ σ◦iθ(V0(cosψ))Ω◦||

,

with

V0(h) =

∫ π

0
dψ h(ψ) :P(Φ(0, ψ)):C0 .

by Christian Jäkel 27/41
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Geometry

Consider the mapping

R1+1 3 (t, x) 7→ ξr(t, x)
.
= D

(
x
r

)
Λ1

(
t
r

)0
0
r

−
0

0
r

 .

The points ξr(t, x) +

0
0
r

 are in the interior of Γ+(W1) ⊂ dSr.

Clearly,

ξr(t, x)→

tx
0


uniformly (in the Euclidean norm on R3) on compact sets
containing the origin, as r →∞.
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Next approximate the Poincaré group by the Lorentz group in
one dimension more.

Lemma (Takahashi-Hannabus)

Almost every element g ∈ SO0(1, 2) can be written uniquely in
the form of a product

g = Λ2(s)P kΛ1(t)D(q)

with s, t, q ∈ R, k = {0, 1} and P = R0(π) the spatial reflection.

The spatial reflection is necessary to account for rotations
R0(α), π

2 < α < 3π
2 , in the Iwasawa decomposition.
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Lemma

Let N ⊂ SO0(1, 2) be a neighbourhood of the unit. The map
Πr : N → E0(1, 1) given by

Λ2

(
s
r

)
P 0Λ1

(
t
r

)
D
(
x
r

)
7→ Λ2(s)T (t, x),

with T (t, x) a translation on R1+1, defines a contraction of the
group SO0(1, 2) to E0(1, 1). In particular,

g ◦ g′ = lim
r→∞

Πr

(
Π−1
r (g) ◦Π−1

r (g′)
)
, ∀g, g′ ∈ E0(1, 1).

By construction, g · x = limr→∞ ξ
−1
r

(
Π−1
r (g) · ξr(x)

)
for

g ∈ E0(1, 1) and x ∈ R1+1.
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The unitary irreducible representations uν of SO0(1, 2) within
the principle series all act on the Hilbert space

H ∼= L2
(
R, dk

2
√
k2+m2

)
⊕ L2

(
R, dk

2
√
k2+m2

)
≡ H+ ⊕H− .

Moreover, each component in this direct sum carries a unitary
irreducible representation Dm of the Poincaré group for mass m
given by(

Dm(Λ2(s)T (t, q))h
)
(k) = ei(t,q)·(

√
k2+m2,k)h(k + k′),

with (t, q) ∈ R1+1 and m sinh s = k′.
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Theorem (related to work of Mickelsson and Niederle)

Consider a unitary irreducible representation uν of SO0(1, 2),
ν = mr. Let g ∈ H. Then

lim
r→∞

||
(
umr

(
Λ2

(
s
r

)
Λ1

(
t
r

)
D
( q
r

))
−Dm (Λ2(s)T (t, q))

)
g||H = 0 .

Dm is a reducible representation of the Poincaré group E0(1, 1),
given by

Dm = Dm ⊕D−m .
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Convergence of Weyl operators

Let h̃∞ ∈ C∞0 (R1+1) with support of h̃∞ in some double
cone O. Define

h̃r(ξr(t, x))
.
= h̃∞(t, x)

with compact support in dSr. It follows that

s- lim
r→∞

V (hr) = V (h∞) ,

as

lim
r→∞

||
∫
dS

dµdS(ξr) h̃(ξr)
(
ξr
r ·

p
m

)− 1
2

+imr

−
∫

dtdx h̃∞(t, x) ei(t,x)·(
√
k2+m2,k)|| = 0 , p =


√
k2 +m2

k
m

.
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Lemma (Convergence of Vacuum States)

The weak∗-limit of the net {ω◦r}r>0 as r →∞ coincides with the
restriction of the Fock vacuum ω◦ to B(H+)⊗ 1. It is invariant
under the action of the Poincaré group, i.e.,

ω◦∞ ◦ α◦(∞)
g = ω◦∞, g ∈ E0(1, 1),

and satisfies the spectrum condition, i.e., for two strictly local
elements A,B the function

(t, q) 7→ ω∞
(
Aα
◦(∞)
T (t,q)(B)

)
allows an analytic continuation into the tube

T+ = {(t, q) ∈ C2 | =|q| < =t}.
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In summary, we have reconstructed the scalar free field of
mass m on Minkowski space starting from free quantum
theories on de Sitter spaces of increasing radius r.

Theorem (Verification of the Haag-Kastler Axioms)

Let

a.) A
(∞)
◦ (O) be the weak limit of A

(r)
◦
(
(ξ−1
r O)′′

)
;

b.) α
◦(∞)
g be a weak limit of α

◦(r)
Π−1
r (g)

, g ∈ E0(1, 1);

c.) ω◦∞ be a weak∗ limit of {ω◦r} 1
r
>0

as the radius r →∞.
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Theorem (continued)

It follows that

i.) (Isotony). The map O → A
(∞)
◦ (O) from the set of open,

bounded, contractible regions O ⊂ R1+1 to unital von
Neumann algebras

A
(∞)
◦ (O) ∈ B(H+)⊗ 1

preserves inclusions;

ii.) (Microcausality). A
(∞)
◦ (O1) ⊂ A

(∞)
◦ (O2)′ if O1 ⊂ O′2.

O′ is the space-like complement of O in dS;

A
(∞)
◦ (O)′ is the commutant of A

(∞)
◦ (O) in B(H+)⊗ 1;
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Theorem (continued)

iii.) (Covariance). The automorphisms α◦(∞) : g 7→ α
◦(∞)
g

provides a representation of E0(1, 1)

g → α◦(∞)
g .

Moreover, they act geometrically, i.e.,

α◦(∞)
g

(
A

(∞)
◦ (O)

)
= A

(∞)
◦ (gO) , g ∈ E0(1, 1) .

iv.) (Existence of vacuum states). The weak∗ accumulation
point ω◦∞

— is invariant under the action of E(1, 1), i.e.,

ω◦∞ ◦ α◦(∞)
g = ω◦∞ , g ∈ E(1, 1) ,
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Theorem (continued)

iv.) — satisfies the spectral condition: for two strictly local

elements A,B ∈ A
(∞)
◦ (O), O ⊂ R1+1, the function

(t, q) 7→ ω◦∞
(
Aα
◦(∞)
T (t,q)(B)

)
allows an analytic continuation to the tube

T+ = {(t, q) ∈ C2 | =|q| < =t} .

But what about the interacting cases?
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Lemma (Convergence of time-zero Double Cones)

Let OI be a double cone with base I on the time-zero line.
Then

A(∞)(OI) = A
(∞)
◦ (OI).

Theorem (Convergence of Vacuum States)

The weak∗ accumulation point ω∞ satisfies the spectral
condition: for every two elements A,B ∈ A∞(R1+1), the
function

(t, q) 7→ ω∞
(
Aα

(∞)
T (t,q)(B)

)
allows an analytic continuation to the tube

T+ = {(t, q) ∈ C2 | =|q| < =t} .
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But what about the automorphisms?

In case of the P(ϕ)2 model explicit computations (using
finite speed of light) show the existence of the limit for a
fixed automorphism and a strictly local element as r →∞,
following the work of Glimm and Jaffe.

In the abstract case, the scaling algebras of Buchholz and Verch
should provide a general framework, which hopefully will allow
us to demonstrate that the modular localisation on the de Sitter
space goes over to the modular localisation on Minkowski space.
(This final part is work in progress.)
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	Introduction
	Geometry
	Modular Localization
	Quantum Theories on dS
	From de Sitter to Minkowski space

