On the Mechanics of Crystalline Solids with a Continuous Distribution of Dislocations

> Ivo Kaelin (ETH Zurich) joint work with Demetrios Christodoulou

Workshop Analytical Aspects of Mathematical Physics Zurich, May 28th, 2013

Outline

- 1. Motivation
- 2. The General Setting
- 3. The Static Case
- 4. The Analysis of Equilibrium Configurations

5. Outlook

Motivation

- importance of understanding the mechanics of elastic materials, not only perfect crystals
- classical description using a relaxed reference state is *not* valid in the presence of dislocations
- complete dislocation theory only in linear approximation (Kröner, Nabarro), nonlinear concepts are missing

Motivation

- importance of understanding the mechanics of elastic materials, not only perfect crystals
- classical description using a relaxed reference state is *not* valid in the presence of dislocations
- complete dislocation theory only in linear approximation (Kröner, Nabarro), nonlinear concepts are missing
- goal: configurations of minimal energy for crystalline solids with a uniform distribution of elementary dislocations

References

- [CK] D. Christodoulou and I. Kaelin, On the mechanics of crystalline solids with a continuous distribution of dislocations. http://arxiv.org/abs/1212.5125, to appear in Advances in Theoretical and Mathematical Physics (ATMP).
- [C1] D. Christodoulou, On the geometry and dynamics of crystalline continua. Ann. Inst. Henri Poincaré 69 (1998), 335-358.

(ロ) (同) (E) (E) (E) (O)

The General Setting

- introduce the basic concepts to describe a crystalline solid containing dislocations as in [C1]
- uniform distribution of elementary dislocations and Lie group structure
- examples of the two elementary dislocations: edge and screw dislocations in 2 and 3 dimensions, respectively
- thermodynamic state space and state function

Basic Definitions

- ► *N*: material manifold (oriented, *n*-dimensional)
- evaluation map

$$egin{array}{rcl} \epsilon_y : \chi(\mathcal{N}) & o & T_y \mathcal{N} \ X & \mapsto & \epsilon_y(X) = X(y) \end{array}$$

 $\chi(\mathcal{N})$: C^{∞} -vectorfields on \mathcal{N}

Basic Definitions

- ► *N*: material manifold (oriented, *n*-dimensional)
- evaluation map

$$egin{array}{rcl} \epsilon_y : \chi(\mathcal{N}) & o & T_y \mathcal{N} \ X & \mapsto & \epsilon_y(X) = X(y) \end{array}$$

 $\chi(\mathcal{N})$: \mathcal{C}^∞ -vectorfields on \mathcal{N}

Definition

A crystalline structure on \mathcal{N} : linear subspace $\mathcal{V} \subset \chi(\mathcal{N})$ such that $\epsilon_y|_{\mathcal{V}}$ is an isomorphism for each $y \in \mathcal{N}$.

Remark

 \mathcal{V} on \mathcal{N} is **complete** if each $X \in \mathcal{V}$ is complete.

Basic Concepts

Definition

Given a complete crystalline structure \mathcal{V} on \mathcal{N} , we define the **dislocation density** Λ by:

$$\Lambda(y)(X,Y)=\epsilon_y^{-1}\left([X,Y](y)
ight)\in\mathcal{V}\,,\,orall y\in\mathcal{N},X,Y\in\mathcal{V}\,.$$

Basic Concepts

Definition

Given a complete crystalline structure \mathcal{V} on \mathcal{N} , we define the **dislocation density** Λ by:

$$\Lambda(y)(X,Y)=\epsilon_y^{-1}\left([X,Y](y)
ight)\in\mathcal{V}\,,\,orall y\in\mathcal{N},X,Y\in\mathcal{V}\,.$$

Remark

If Λ is constant on $\mathcal N$ then, for all $X,Y\in\mathcal V,$ there is a $Z\in\mathcal V$ such that

$$[X,Y]=Z.$$

Thus \mathcal{V} is a Lie algebra and \mathcal{N} is the corresponding Lie group.

Examples

i) Edge Dislocation

Figure 1: Elementary edge dislocation in a two dimensional crystal lattice. Burger's vector *b* points in the direction of the 1st axis. (Sonde Atomique et Microstructures, Université de Rouen)

Examples

i) Edge Dislocation

Figure 1: Elementary edge dislocation in a two dimensional crystal lattice. Burger's vector *b* points in the direction of the 1st axis. (Sonde Atomique et Microstructures, Université de Rouen)

Edge Dislocation

in the continuum limit, this phenomenon is mathematically represented by the commutation relation

$$[E_1, E_2] = E_1 \,, \tag{1}$$

where E_1, E_2 are the vectorfields along the coordinate axes

Edge Dislocation

in the continuum limit, this phenomenon is mathematically represented by the commutation relation

$$[E_1, E_2] = E_1 \,, \tag{1}$$

where *E*₁, *E*₂ are the vectorfields along the coordinate axes ► affine group: characterized by transformations of ℝ

$$x \mapsto e^{y^1}x + y^2$$

generated by $E_1 = \frac{\partial}{\partial y^1}, E_2 = e^{y^1} \frac{\partial}{\partial y^2}$, satisfying (1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Edge Dislocation

in the continuum limit, this phenomenon is mathematically represented by the commutation relation

$$[E_1, E_2] = E_1 , (1)$$

where *E*₁, *E*₂ are the vectorfields along the coordinate axes ► affine group: characterized by transformations of ℝ

$$x\mapsto e^{y^1}x+y^2,$$

generated by $E_1 = \frac{\partial}{\partial y^1}, E_2 = e^{y^1} \frac{\partial}{\partial y^2}$, satisfying (1) • corresponding metric

$$\overset{\circ}{n} = (\omega^1)^2 + (\omega^2)^2 = (dy^1)^2 + e^{-2y^1} (dy^2)^2$$

{E₁, E₂} basis of V, dual basis {ω¹, ω²} for V*
 (N, n) is isometric to the hyperbolic plane H

Examples

ii) Screw Dislocation

Figure 2: Elementary screw dislocation in a crystal lattice. Burger's vector *b* in the direction of the 3rd axis. (Sonde Atomique et Microstructures, Université de Rouen)

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへの

Screw Dislocation

in the continuum limit, this phenomenon is mathematically represented by the commutation relations

$$[E_1, E_2] = E_3, [E_1, E_3] = 0, [E_2, E_3] = 0,$$
 (2)

where E_1, E_2, E_3 are the vector fields along the coordinate axes

Screw Dislocation

in the continuum limit, this phenomenon is mathematically represented by the commutation relations

$$[E_1, E_2] = E_3, [E_1, E_3] = 0, [E_2, E_3] = 0,$$
 (2)

where E_1, E_2, E_3 are the vector fields along the coordinate axes

► Heisenberg group: characterized by unitary transformations of L²(ℝ, ℂ)

$$\begin{split} \Psi(x) \mapsto \Psi'(x) &= e^{i(y^2 x + y^3)} \Psi(x + y^1), \\ \text{generated by } E_1 &= \frac{\partial}{\partial y^1}, E_2 &= \frac{\partial}{\partial y^2} + y^1 \frac{\partial}{\partial y^3}, E_3 &= \frac{\partial}{\partial y^3}, \text{ satisfying} \\ (2) \end{split}$$

◆□> <□> < □> < □> < □> < □</p>

Screw Dislocation

in the continuum limit, this phenomenon is mathematically represented by the commutation relations

$$[E_1, E_2] = E_3, [E_1, E_3] = 0, [E_2, E_3] = 0,$$
 (2)

where $\textit{E}_{1},\textit{E}_{2},\textit{E}_{3}$ are the vector fields along the coordinate axes

► Heisenberg group: characterized by unitary transformations of L²(ℝ, ℂ)

$$\Psi(x) \mapsto \Psi'(x) = e^{i(y^2 x + y^3)} \Psi(x + y^1),$$

generated by $E_1 = \frac{\partial}{\partial y^1}, E_2 = \frac{\partial}{\partial y^2} + y^1 \frac{\partial}{\partial y^3}, E_3 = \frac{\partial}{\partial y^3},$ satisfying (2)

corresponding metric (homogeneous space)

$$\overset{\circ}{n} = (\omega^{1})^{2} + (\omega^{2})^{2} + (\omega^{3})^{2} = (dy^{1})^{2} + (dy^{2})^{2} + (dy^{3} - y^{1}dy^{2})^{2} ,$$

$$\{E_{1}, E_{2}, E_{3}\} \text{ basis of } \mathcal{V}, \text{ dual basis } \{\omega^{1}, \omega^{2}, \omega^{3}\} \text{ for } \mathcal{V}^{*}$$

Thermodynamic State Space

- $S_2^+(\mathcal{V})$: inner products on \mathcal{V}
- ▶ thermodynamic state space: $S_2^+(\mathcal{V}) \times \mathbb{R}^+ \ni (\gamma, \sigma)$
- $\gamma \in S_2^+(\mathcal{V})$: thermodynamic configuration
- $\sigma \in \mathbb{R}^+$: entropy per particle
- $V(\gamma)$: thermodynamic volume corresponding to γ
- a thermodynamic state function κ is a real-valued function on the thermodynamic state space

Thermodynamic Variables

• thermodynamic stress corresponding to (γ, σ) is $\pi(\gamma, \sigma) \in (S_2(\mathcal{V}))^*$ defined by

$$-\frac{1}{2}\pi(\gamma,\sigma)V(\gamma) = \frac{\partial\left(\kappa(\gamma,\sigma)V(\gamma)\right)}{\partial\gamma}$$

Thermodynamic Variables

• thermodynamic stress corresponding to (γ, σ) is $\pi(\gamma, \sigma) \in (S_2(\mathcal{V}))^*$ defined by

$$-\frac{1}{2}\pi(\gamma,\sigma)V(\gamma) = \frac{\partial\left(\kappa(\gamma,\sigma)V(\gamma)\right)}{\partial\gamma}$$

▶ thermodynamic temperature corresponding to (γ, σ) is $\vartheta(\gamma, \sigma) \in \mathbb{R}$ given by

$$\vartheta(\gamma,\sigma) = \frac{\partial \left(\kappa(\gamma,\sigma)V(\gamma)\right)}{\partial\sigma},$$

11/34

with $\vartheta(\gamma, \sigma) \searrow 0$, for $\sigma \to 0$

•
$$\mathcal{N} = \Omega \stackrel{\text{cpt.}}{\subset} \mathbb{R}^n$$
, $\mathcal{M} = \mathcal{E}^n$ Euclidean space $(n = 2, 3)$

material picture

$$egin{array}{cccc} \phi : \mathcal{N} &
ightarrow & \mathcal{M} \ y & \mapsto & \phi(y) = x \end{array}$$

•
$$\mathcal{N} = \Omega \stackrel{\text{cpt.}}{\subset} \mathbb{R}^n$$
, $\mathcal{M} = \mathcal{E}^n$ Euclidean space $(n = 2, 3)$

material picture

$$\phi: \mathcal{N} \rightarrow \mathcal{M}$$

 $y \mapsto \phi(y) = x$

thermodynamic configuration

$$\gamma(\mathbf{y}) = \mathbf{i}_{\phi,\mathbf{y}}^* \mathbf{g} \ ,$$

12/34

where $i_{\phi,y} = d\phi(y) \circ \epsilon_y : \mathcal{V} \to \mathcal{T}_x \mathcal{M}$

•
$$\mathcal{N} = \Omega \stackrel{\text{cpt.}}{\subset} \mathbb{R}^n$$
, $\mathcal{M} = \mathcal{E}^n$ Euclidean space $(n = 2, 3)$

material picture

$$\phi: \mathcal{N} \rightarrow \mathcal{M}$$

 $y \mapsto \phi(y) = x$

thermodynamic configuration

$$\gamma(\mathbf{y}) = \mathbf{i}_{\phi,\mathbf{y}}^* \mathbf{g}$$

where $i_{\phi,y} = d\phi(y) \circ \epsilon_y : \mathcal{V} \to T_x \mathcal{M}$

energy per particle e(γ) (a state function) defines the thermodynamic stress π

$$-\frac{1}{2}\pi V = \frac{\partial e}{\partial \gamma}$$

・ロト (日) (ヨ) (ヨ) (ヨ) (コ)

• given a volume form ω on \mathcal{V} , pick a basis E_1, \ldots, E_n of \mathcal{V} s.t. $\omega(E_1, \ldots, E_n) = 1$. Dual basis $\omega^1, \ldots, \omega^n$,

$$\omega^A E_B = \delta^A_B, \quad A, B = 1, \dots, n$$

• m_{ab} metric induced on \mathcal{N} by the Euclidean metric g on \mathcal{M} , $m = \phi^* g$,

$$m_{ab} = g_{ij} \frac{\partial x^{i}}{\partial y^{a}} \frac{\partial x^{j}}{\partial y^{b}} \qquad [x^{i} = \phi^{i}(y)],$$

$$\gamma_{AB} = E^{a}_{A} E^{b}_{B} m_{ab}$$

・ロ> <回> <目> <目> <目> <回>

• given a volume form ω on \mathcal{V} , pick a basis E_1, \ldots, E_n of \mathcal{V} s.t. $\omega(E_1, \ldots, E_n) = 1$. Dual basis $\omega^1, \ldots, \omega^n$,

$$\omega^A E_B = \delta^A_B, \quad A, B = 1, \dots, n$$

m_{ab} metric induced on *N* by the Euclidean metric *g* on *M*, *m* = φ^{*}g,

$$m_{ab} = g_{ij} \frac{\partial x^{i}}{\partial y^{a}} \frac{\partial x^{j}}{\partial y^{b}} \qquad [x^{i} = \phi^{i}(y)],$$

$$\gamma_{AB} = E^{a}_{A} E^{b}_{B} m_{ab}$$

▶ thermodynamic stresses S on $\mathcal N$ and $T = \phi_*S$ on $\mathcal M$

$$\begin{split} S^{ab} &= \pi^{AB} E^a_A E^b_B \,, \\ T^{ij} &= S^{ab} \frac{\partial x^i}{\partial y^a} \frac{\partial x^j}{\partial y^b} \end{split}$$

13/34

Euler-Lagrange Equations

• total energy of a domain Ω in the material manifold $\mathcal N$

$$E = \int_{\Omega} e(\gamma) d\mu_{\omega} , \qquad (3)$$

where $d\mu_\omega$ is the volume form on ${\cal N}$ induced by ω

first variation of the energy (3) is

$$\dot{E} = \left. \frac{\partial}{\partial \lambda} \right|_{\lambda=0} E(\gamma + \lambda \dot{\gamma}) = \int_{\Omega} \frac{\partial e(\gamma)}{\partial \gamma} \cdot \dot{\gamma} \, d\mu_{\omega}$$

by definition of the thermodynamic stress,

$$\dot{E} = -\int\limits_{\Omega} rac{1}{2} \pi^{AB} \dot{\gamma}_{AB} \sqrt{\det \gamma} \det \omega(y) \, d^n y$$

Boundary Value Problem

Finally, the Euler-Lagrange equations for the static case read

$$\nabla^m_a S^{ab} = 0 \quad \text{in } \Omega,$$

a system of elliptic PDE. Or, equivalently, ($T=\phi_*S$ and $m=\phi^*g$)

$$\overset{\circ}{\nabla}_{i}T^{ij} = 0 \quad \text{in } \phi(\Omega).$$

Boundary Value Problem

Finally, the Euler-Lagrange equations for the static case read

$$\nabla^m_a S^{ab} = 0 \quad \text{in } \Omega,$$

a system of elliptic PDE. Or, equivalently, $(T = \phi_* S \text{ and } m = \phi^* g)$ $\nabla_i T^{ij} = 0 \quad \text{in } \phi(\Omega).$

The (free) boundary conditions are

$$S^{ab}M_b = 0 \quad \text{on } \partial\Omega$$
,

where $M_b Y^b = 0$ for all $Y \in T_y \partial \Omega$. Or, equivalently,

$$T^{ij}N_j = 0 \quad \text{on } \partial\phi(\Omega) \,,$$

where $N_j X^j = 0$ for all $X \in T_{\phi(y)} \phi(\partial \Omega)$.

Assumptions

Postulate We stipulate that e has a strict minimum at a certain inner product $\mathring{\gamma}$.

Assumptions

Postulate

We stipulate that e has a strict minimum at a certain inner product $\overset{\circ}{\gamma}$.

Choose (E_1, \ldots, E_n) to be an orthonormal basis relative to $\overset{\circ}{\gamma}$, so $\overset{\circ}{\gamma}_{AB} = \delta_{AB}$. $\overset{\circ}{\gamma}$ induces a metric $\overset{\circ}{n}$ on \mathcal{N} by

$$\stackrel{\circ}{n} = \sum_{A,B=1}^{n} \stackrel{\circ}{\gamma}_{AB} \omega^{A} \otimes \omega^{B} = \sum_{A=1}^{n} \omega^{A} \otimes \omega^{A}$$

In the following, we make use of the volume form ω_0 on \mathcal{V} corresponding to $\stackrel{\circ}{\gamma}$, $\omega_0(E_1, \ldots, E_n) = 1$.

Assumptions

Postulate

We stipulate that e has a strict minimum at a certain inner product $\overset{\circ}{\gamma}$.

Choose (E_1, \ldots, E_n) to be an orthonormal basis relative to $\overset{\circ}{\gamma}$, so $\overset{\circ}{\gamma}_{AB} = \delta_{AB}$. $\overset{\circ}{\gamma}$ induces a metric $\overset{\circ}{n}$ on \mathcal{N} by

$$\overset{\circ}{n} = \sum_{A,B=1}^{n} \overset{\circ}{\gamma}_{AB} \ \omega^{A} \otimes \omega^{B} = \sum_{A=1}^{n} \omega^{A} \otimes \omega^{A}$$

In the following, we make use of the volume form ω_0 on \mathcal{V} corresponding to $\stackrel{\circ}{\gamma}$, $\omega_0(E_1, \ldots, E_n) = 1$.

Remark

 $\stackrel{\circ}{n}$ has curvature except when \mathcal{V} is Abelian (no dislocations). On the other hand, m is flat, being the pullback of the flat Euclidean metric. Thus, unless \mathcal{V} is Abelian, $\stackrel{\circ}{n}$ is not isometric to m.

The Analysis of Equilibrium Configurations Uniform Distribution of Dislocations

- choice of isotropic energy and elimination of the crystalline structure
- setup of the boundary value problem (in 2d)
- method of the solution for the 2-dimensional case
- strategy for the 3-dimensional case

Toy Energy

Note that $\overset{\circ}{n}$ and $m = \phi^* g$ (g: the Euclidean metric on \mathcal{M}) on \mathcal{N} relate to $\overset{\circ}{\gamma}$ and γ via:

$$\overset{\circ}{\gamma} = \epsilon_y^* \overset{\circ}{n} \Big|_{T_y \mathcal{N}} \quad , \quad \gamma = \epsilon_y^* m |_{T_y \mathcal{N}} \; .$$

Proposition

The eigenvalues $\lambda_i : i = 1, ..., n$ of γ relative to $\overset{\circ}{\gamma}$ coincide with the eigenvalues of m relative to $\overset{\circ}{n}$.

Toy Energy

Note that $\overset{\circ}{n}$ and $m = \phi^* g$ (g: the Euclidean metric on \mathcal{M}) on \mathcal{N} relate to $\overset{\circ}{\gamma}$ and γ via:

$$\overset{\circ}{\gamma} = \epsilon_y^* \overset{\circ}{n} \Big|_{T_y \mathcal{N}} \quad , \quad \gamma = \epsilon_y^* m |_{T_y \mathcal{N}} \; .$$

Proposition

The eigenvalues $\lambda_i : i = 1, ..., n$ of γ relative to $\overset{\circ}{\gamma}$ coincide with the eigenvalues of m relative to $\overset{\circ}{n}$.

Remark

If our energy per particle were to depend only on the eigenvalues of γ relative to $\mathring{\gamma}$, then the crystalline structure \mathcal{V} on \mathcal{N} would be eliminated in favor of the Riemannian metric \mathring{n} .

Toy Energy

isotropic energy density: e is a symmetric function of the eigenvalues λ_k of γ relative to [°]γ (or m relative to [°]n),

$$e(\gamma) = e(\lambda_1, \ldots, \lambda_n)$$

basic choice:

$$e(\gamma) = e(\lambda_1,\ldots,\lambda_n) = \frac{1}{2}\sum_{k=1}^n (\lambda_k - 1)^2 \ge 0,$$

that satisfies $e(\lambda_1 = 1, \dots, \lambda_n = 1) = 0$, strict minimum of the energy density at $\gamma = \overset{\circ}{\gamma}$, $\overset{\circ}{\gamma}_{AB} = \delta_{AB}$

► finally,

$$e(\gamma) = \frac{1}{2} \sum_{k=1}^{n} \left(\lambda_k^2 - 2\lambda_k + 1 \right) = \frac{1}{2} \operatorname{tr} \gamma^2 - \operatorname{tr} \gamma + \frac{n}{2}$$

Stress Tensor

 \blacktriangleright from the definition of the thermodynamic stress on ${\cal V}$

$$\sqrt{rac{\det m}{\det \stackrel{\circ}{n}}}S^{ab}=-2rac{\partial e}{\partial m_{ab}}$$

• according to our choice of energy $(h = \stackrel{\circ}{n})$

$$e(\lambda_1, \lambda_2) = \frac{1}{2} \left((\lambda_1 - 1)^2 + (\lambda_2 - 1)^2 \right) = \frac{1}{2} \operatorname{tr}_h(m^2) - \operatorname{tr}_h m + 1$$

= $\frac{1}{2} (h^{-1})^{ac} (h^{-1})^{bd} m_{ab} m_{cd} - (h^{-1})^{ab} m_{ab} + 1$

therefore,

$$S^{ab} = 2\sqrt{\frac{\det h}{\det m}} \left(h^{-1}\right)^{ac} \left(h^{-1}\right)^{bd} \left(h_{cd} - m_{cd}\right)$$
(4)

S is nonzero even for m = δ (i.e. for φ = id), which reflects the fact that there are internal stresses due to dislocations

Setup and Method in 2d

- $\mathcal{N} = \mathcal{H}_{\varepsilon}$: hyperbolic plane (curvature: $-\varepsilon^2$).
- expansion of the hyperbolic metric h in terms of the curvature:

$$h_{ab} = \delta_{ab} + \varepsilon^2 f_{ab} \,,$$

where f_{ab} are analytic functions in (y^1, y^2) and ε^2

Setup and Method in 2d

- $\mathcal{N} = \mathcal{H}_{\varepsilon}$: hyperbolic plane (curvature: $-\varepsilon^2$).
- expansion of the hyperbolic metric h in terms of the curvature:

$$h_{ab} = \delta_{ab} + \varepsilon^2 f_{ab} \,,$$

where f_{ab} are analytic functions in (y^1, y^2) and ε^2

Consider mappings

$$\phi: \mathcal{H}_{\varepsilon} \to \mathcal{E} ,$$

where $\ensuremath{\mathcal{E}}$ is Euclidean space

identity map

$$egin{array}{rcl} {\it id}: \mathcal{H}_arepsilon & & \mathcal{E} \ (y^1,y^2) & \mapsto & (x^1,x^2) = (y^1,y^2) \end{array}$$

 (y^1, y^2) : Riemannian normal coordinates in $\mathcal{H}_{\varepsilon}$, (x^1, x^2) : rectangular coordinates in \mathcal{E} .

Boundary Value Problem in 2d

- fix a smooth bounded domain Ω in \mathcal{N} containing 0.
- Identity map *id* : H₀ = E² → E² is *unique* minimizer of our toy energy for parameter ε = 0
- restriction to ensure uniqueness of *id*

i)
$$0 \in \mathcal{H}_{\varepsilon} \mapsto 0 \in \mathcal{E}$$
,
ii) $\frac{\partial}{\partial y^{1}}\Big|_{0} \mapsto d\phi \cdot \frac{\partial}{\partial y^{1}}\Big|_{0} = I \frac{\partial}{\partial x^{1}}\Big|_{0} , I > 0.$

Boundary Value Problem in 2d

- fix a smooth bounded domain Ω in \mathcal{N} containing 0.
- Identity map *id* : H₀ = E² → E² is *unique* minimizer of our toy energy for parameter ε = 0
- restriction to ensure uniqueness of id

$$\begin{array}{ll} \textbf{i)} & 0 \in \mathcal{H}_{\varepsilon} \mapsto 0 \in \mathcal{E}, \\ \textbf{ii)} & \left. \frac{\partial}{\partial y^1} \right|_0 \mapsto d\phi \cdot \left. \frac{\partial}{\partial y^1} \right|_0 = I \left. \frac{\partial}{\partial x^1} \right|_0 \quad , \, I > 0. \end{array}$$

boundary value problem (static equations):

$$F_{\varepsilon}[\phi] = \begin{pmatrix} m \\ \nabla_b S^{ab} \\ S^{ab} M_b \end{pmatrix} = 0 \quad \begin{pmatrix} \text{in } \Omega \\ \text{on } \partial\Omega \end{pmatrix}, \quad (5)$$

a system of elliptic PDEs with free boundary conditions

(ロ) (同) (E) (E) (E) (E) (O)

Method of the Solution (in 2d)

Step 0: linearization of (5) at the identity $\phi = id + \psi$,

$$egin{aligned} &F_arepsilon\left[\phi
ight]=F_arepsilon\left[id
ight]+D_{id}F_arepsilon\cdot\psi+N_arepsilon(\psi)=0\,, \end{aligned}$$
 where $N_arepsilon(\psi)\sim\psi^2+O(\psi^3)$

くりと 本国 ・ 本田・ 本国・ 人口・

23/34

Method of the Solution (in 2d)

Step 0: linearization of (5) at the identity $\phi = id + \psi$,

$$F_{\varepsilon}\left[\phi\right] = F_{\varepsilon}\left[id\right] + D_{id}F_{\varepsilon} \cdot \psi + N_{\varepsilon}(\psi) = 0\,,$$

where $N_arepsilon(\psi)\sim\psi^2+{\it O}(\psi^3)$

- **Step 1:** solution of the linear problem (Lax-Milgram)
- **Step 2:** iteration scheme for solution of the nonlinear problem (for ε sufficiently small)
- **Step 3:** scaling argument yields solution of the actual problem with curvature -1 and rescaled (smaller) domain

(ロ) (個) (E) (E) (E) (E) (000)

Step 1: Linear Problem

▶ iteration starting at $\psi_0 = 0$ corresponding to the linearized problem

$$L_0 \cdot \psi_1 = -F_{\varepsilon} [id]$$

 L_{ε} : linearized operator $D_{id}F_{\varepsilon}$

►
$$S^{ab}(id) = 2\varepsilon^2 |f_{ab}|_{\varepsilon=0} + O(\varepsilon^4) \Rightarrow \psi_1 = O(\varepsilon^2)$$

Step 1: Linear Problem

▶ iteration starting at $\psi_0 = 0$ corresponding to the linearized problem

$$L_0 \cdot \psi_1 = -F_{\varepsilon} [id] ,$$

 L_{ε} : linearized operator $D_{id}F_{\varepsilon}$

- ► $S^{ab}(id) = 2\varepsilon^2 f_{ab}|_{\varepsilon=0} + O(\varepsilon^4) \Rightarrow \psi_1 = O(\varepsilon^2)$
- \blacktriangleright linearizing m at the trivial solution, $\phi^i = y^i + \psi^i$ for nonlinear ψ

$$m_{ab} = \delta_{ab} + \dot{m}_{ab} + O(\psi^2)$$
 , where $\dot{m}_{ab} = \left(\frac{\partial \psi^b}{\partial y^a} + \frac{\partial \psi^a}{\partial y^b}\right)$

(ロ) (同) (E) (E) (E) (E) (0)

Step 1: Linear Problem

▶ iteration starting at $\psi_0 = 0$ corresponding to the linearized problem

$$L_0 \cdot \psi_1 = -F_{\varepsilon} \left[id \right] \,,$$

 L_{ε} : linearized operator $D_{id}F_{\varepsilon}$

- \blacktriangleright linearizing m at the trivial solution, $\phi^i = \mathbf{y}^i + \psi^i$ for nonlinear ψ

$$m_{ab} = \delta_{ab} + \dot{m}_{ab} + O(\psi^2)$$
 , where $\dot{m}_{ab} = \left(\frac{\partial \psi^b}{\partial y^a} + \frac{\partial \psi^a}{\partial y^b}\right)$

► linear boundary value problem $L_0 \cdot \psi + F_{\varepsilon} [id] = 0$

$$\begin{cases} \frac{\partial}{\partial y^{b}} \left(\dot{m}^{ab} - \varepsilon^{2} I^{ab} \right) = 0 \quad : \quad \text{in} \quad \Omega ,\\ \left(\dot{m}^{ab} - \varepsilon^{2} I^{ab} \right) M_{b} = 0 \quad : \quad \text{on} \quad \partial \Omega \end{cases}$$
$$\dot{m}^{ab} = \left(h^{-1} \right)^{ac} \left(h^{-1} \right)^{bd} \dot{m}_{cd}, \ I^{ab} = \left(h^{-1} \right)^{ac} \left(h^{-1} \right)^{bd} f_{cd}|_{\varepsilon=0}.$$

Generalized Linear Problem

(M,g) a compact Riemannian manifold with boundary ∂M and X a vectorfield on M. Set

$$\pi = \mathcal{L}_X g$$
, $\pi_{ij} = \nabla_i X_j + \nabla_j X_i = \pi_{ji}$, $X_i = g_{ij} X^j$,

Lie derivative of the metric g along X.

action integral

$$A = \int_{\mathcal{M}} \left(\frac{1}{4} |\pi|_{g}^{2} + \rho^{i} X_{i} \right) d\mu_{g} - \int_{\partial \mathcal{M}} \tau^{i} X_{i} d\mu_{g}|_{\partial \mathcal{M}}$$

• Euler-Lagrange equations $\dot{A} = 0$ and boundary conditions read

$$\begin{cases} \nabla_j \pi^{ij} = \rho^i & : \text{ in } M \\ \pi^{ij} N_j = \tau^i & : \text{ on } \partial M \end{cases}$$
(6)

• identification: $(\Omega, \dot{m}, id^*\delta)$ with (M, π, g)

Generalized Linear Problem

•
$$\sigma = \mathcal{L}_Y g$$
, i.e. $\sigma_{ij} = \nabla_i Y_j + \nabla_j Y_i = \sigma_{ji}$, $Y_i = g_{ij} Y^j$

► suppose now that Y is a Killing field, i.e. $\sigma = \mathcal{L}_Y g = 0$ ⇒ integrability condition

$$\int_{M} Y_{i} \rho^{i} = \int_{\partial M} Y_{i} \tau^{i}$$

guarantees existence of a solution X for the boundary value problem (6) (Lax-Milgram)

Generalized Linear Problem

•
$$\sigma = \mathcal{L}_Y g$$
, i.e. $\sigma_{ij} = \nabla_i Y_j + \nabla_j Y_i = \sigma_{ji}$, $Y_i = g_{ij} Y^j$

► suppose now that Y is a Killing field, i.e. $\sigma = \mathcal{L}_Y g = 0$ ⇒ integrability condition

$$\int_{M} Y_{i} \rho^{i} = \int_{\partial M} Y_{i} \tau^{i}$$

guarantees existence of a solution X for the boundary value problem (6) (Lax-Milgram)

- ► estimate (p = 2): $||X||_{H^{s}(M)} \leq C \left(||\rho||_{H^{s}(M)} + ||\tau||_{H^{s-1/2}(\partial M)} \right)$
- two solutions differ by a Killing field (uniqueness up to rotation and translation), elimination of Euclidean Killing fields by fixing a point and a direction

(ロ) (同) (E) (E) (E) (O)

Step 2: Nonlinear Case

- solution of $F_{\varepsilon}[\phi] = 0$ provided ε is sufficiently small
- ► Strategy: iteration scheme for ψ_n = φ_n − id, where the first step is the linearized problem
- ► Iteration: L₀ · ψ_{n+1} = (L_ε L₀) · ψ_n F_ε[id] N_ε[ψ_n] requires integrability condition, satisfied by applying a doping technique

Step 2: Nonlinear Case

- solution of $F_{\varepsilon}[\phi] = 0$ provided ε is sufficiently small
- ► Strategy: iteration scheme for ψ_n = φ_n − id, where the first step is the linearized problem
- ► Iteration: L₀ · ψ_{n+1} = (L_ε L₀) · ψ_n F_ε[id] N_ε[ψ_n] requires integrability condition, satisfied by applying a doping technique
- coordinates y^a on Ω , and π denoting the linearized metric \dot{m}

$$(AP) \begin{cases} \frac{\partial \pi_{n+1}^{ab}}{\partial y^b} = \rho_n^a : \text{ in } \Omega, \\ \left(\pi_{n+1}^{ab} - \sigma_n^{ab}\right) M_b = 0 : \text{ on } \partial\Omega, \end{cases}$$
(7)
where $\pi_{n+1}^{ab} = \frac{\partial \psi_{n+1}^b}{\partial y^a} + \frac{\partial \psi_{n+1}^a}{\partial y^b}.$

Step 2: Nonlinear Case

- solution of $F_{\varepsilon}[\phi] = 0$ provided ε is sufficiently small
- ► Strategy: iteration scheme for ψ_n = φ_n − id, where the first step is the linearized problem
- ► Iteration: L₀ · ψ_{n+1} = (L_ε L₀) · ψ_n F_ε[id] N_ε[ψ_n] requires integrability condition, satisfied by applying a doping technique
- coordinates y^a on Ω , and π denoting the linearized metric \dot{m}

$$(AP) \begin{cases} \frac{\partial \pi_{n+1}^{ab}}{\partial y^b} = \rho_n^a : \text{ in } \Omega, \\ \left(\pi_{n+1}^{ab} - \sigma_n^{ab}\right) M_b = 0 : \text{ on } \partial\Omega, \end{cases}$$
(7)

where $\pi_{n+1}^{ab} = \frac{\partial \psi_{n+1}^b}{\partial y^a} + \frac{\partial \psi_{n+1}^a}{\partial y^b}$. • integrability condition

$$\int_{\Omega} \xi^{a} \rho_{n}^{a} - \int_{\partial \Omega} \xi^{a} \sigma_{n}^{ab} M_{b} = 0 \,,$$

for every Killing field $\xi^a = \alpha_b^a y^b + \beta^a$, $\alpha_b^a = -\alpha_a^b$ of a background Euclidean metric $id^*\delta$.

Doping Technique

- $N = \frac{n(n+1)}{2}$ Killing fields ξ_A (A: 1, ..., N) in Euclidean space
- Doping (Kapouleas 1990): replace ρ by

$$\rho' = \rho + \sum_{A} c_{A} \xi_{A}$$

Doping Technique

- $N = \frac{n(n+1)}{2}$ Killing fields ξ_A (A: 1, ..., N) in Euclidean space
- Doping (Kapouleas 1990): replace ρ by

$$\rho' = \rho + \sum_{A} c_{A} \xi_{A}$$

Integrability condition

$$\int_{\Omega} \xi_A \cdot \rho' = \int_{\partial \Omega} \xi_A \cdot \sigma_M \,,$$

where $\sigma_M = \sigma^{ab} M_b$.

• reformulate problem (7) using $\psi_{n+1}^a = X^a$

$$(AP) \begin{cases} \frac{\partial}{\partial y^{b}} \left(\frac{\partial X^{b}}{\partial y^{a}} + \frac{\partial X^{a}}{\partial y^{b}} \right) &= \rho'^{a} = \rho'^{a}_{n} \quad : \quad \text{in} \quad \Omega ,\\ \left(\frac{\partial X^{b}}{\partial y^{a}} + \frac{\partial X^{a}}{\partial y^{b}} \right) M_{b} &= \tau^{a} = \sigma^{ab}_{n} M_{b} \quad : \quad \text{on} \quad \partial\Omega , \end{cases}$$

$$(8)$$

<□> <□> <□> <三> <三> <三> <三> <三> の

System in the limit $n \to \infty$

estimate:

$$||\mathbf{X}||_{H^{s+2}(\Omega)} \leq C(\Omega) \left(||\rho'||_{H^{s}(\Omega)} + ||\tau||_{H^{s+1/2}(\partial\Omega)} \right)$$

Apply to (8)(n) with ε ≪ 1 we prove contraction of ψ_n in H^{s+2}(Ω) for s > n/2, therefore limits n → ∞ can be taken in the corresponding Sobolev spaces

$$(AP) \begin{cases} \frac{\partial \pi^{ab}}{\partial y^b} &= \rho'^a &: \text{ in } \Omega, \\ \pi^{ab} M_b &= \sigma^{ab} M_b = \tau^a &: \text{ on } \partial\Omega, \end{cases}$$

System in the limit $n \to \infty$

estimate:

$$||\mathbf{X}||_{H^{s+2}(\Omega)} \leq C(\Omega) \left(||\rho'||_{H^{s}(\Omega)} + ||\tau||_{H^{s+1/2}(\partial\Omega)} \right)$$

• Apply to (8)(n) with $\varepsilon \ll 1$ we prove contraction of ψ_n in $H^{s+2}(\Omega)$ for $s > \frac{n}{2}$, therefore limits $n \to \infty$ can be taken in the corresponding Sobolev spaces

$$(AP) \begin{cases} \frac{\partial \pi^{ab}}{\partial y^b} &= \rho'^a &: \text{ in } \Omega, \\ \pi^{ab} M_b &= \sigma^{ab} M_b = \tau^a &: \text{ on } \partial\Omega, \end{cases}$$

Proposition

For $\rho' = \rho + \sum_A c_A \xi_A$, where $c_A = \sum_B (M^{-1})_{AB} \sigma_B$ we have $X^a := \sum_A c_A \xi^a_A \stackrel{!}{=} 0 \quad , (a = 1, \dots, n)$

for ε sufficiently small.

Step 3: Scaling

Figure 3: Mapping ϕ from Ω to $\phi(\Omega)$ and scaled version $\tilde{\phi}: \tilde{\Omega} = I\Omega \rightarrow \tilde{\phi}(\tilde{\Omega}) = I\phi(\Omega).$

Isotropic Case

metrics (not isometric, different curvatures)

$$\widetilde{m}_{ab}(y) = m_{ab}\left(\frac{y}{l}\right) \quad , \quad \widetilde{h}_{ab}(y) = h_{ab}\left(\frac{y}{l}\right)$$

stresses

$$\tilde{S}^{ab}(y) = S^{ab}\left(\frac{y}{l}\right) \quad , \quad T^{ij}\left(\phi(y)\right) = T^{ij}\left(\phi\left(\frac{y}{l}\right)\right)$$

equations

$$\tilde{\nabla}_{b}\tilde{S}^{ab}(y) = \frac{1}{l} \left(\tilde{\nabla}_{b}S^{ab} \right) \left(\frac{y}{l} \right)$$

 \Rightarrow If $\tilde{\phi}$ is a solution relative to $(\tilde{h}, \tilde{\Omega})$ then ϕ is a solution relative to (h, Ω) .

Strategy for the 3d case: choice of anisotropic energy

- ► preferred direction of dislocations lines breaks isotropy ⇒ crystalline structure V enters the problem
- ► $\gamma \in S_2^+(\mathcal{V}),$ $\gamma = \begin{pmatrix} \bar{\gamma}_{AB} & \theta_A \\ \theta_A^T & \rho \end{pmatrix}$
- anisotropic energy (O: rotation around dislocation line)

$$e(\bar{\gamma}, \theta, \rho) = e(O\bar{\gamma}\widetilde{O}, O\theta, \rho),$$

 \Rightarrow invariants ${\rm tr}\,\bar{\gamma}\,,\,{\rm tr}\,\bar{\gamma}^2\,,\,|\theta|^2\,,\,\rho$

choice of anisotropic energy

$$e=rac{1}{2}\left((\mu_1-1)^2+(\mu_2-1)^2
ight)+rac{lpha}{2}| heta|^2+rac{eta}{2}(
ho-1)^2\,,$$

where $\mu_{1,2}$ are the eigenvalues of $\bar{\gamma}_{AB}$ with respect to $\check{\bar{\gamma}}$.

Strategy for the 3d case: choice of coordinates

▶ left-invariant metric on Heisenberg group (homogeneous space, not isotropic, $\beta \in \mathbb{R}$)

$$\stackrel{\circ}{n}\equiv h=dx^2+dy^2+e^{2\beta}(dz-xdy)^2$$

- ▶ *h* with respect to $E_1 = X, E_2 = Y, E_3 = e^{-\beta}Z$ is orthonormal $h = \sum_{A=1}^{3} \omega^A \otimes \omega^A$
- ▶ local coordinate system (y^a : a = 1, 2, 3) on N (origin: given point)
- ▶ change to Riemannian normal coordinates on N satisfying h_{ab}(y) = δ_{ab} + O(|y|²)
- show that

$$\gamma_{AB}(y) = \delta_{AB} + O(|y|^2)$$

and the same arguments apply as in the case of a uniform distribution of edge dislocations

 main difference to the 2-dimensional case: stress is more complicated due to anisotropic energy

Outlook

▶ generalization to isotropic energy of the type (|b| < a, a > 0)

$$egin{aligned} e(\lambda_1,\lambda_2) &=& rac{a}{2}\left((\lambda_1-1)^2+(\lambda_2-1)^2
ight)+b(\lambda_1-1)(\lambda_2-1)\ &+O((\lambda_{1,2}-1)^3) \end{aligned}$$

- confront theory with experiments, e.g. scaling properties, internal stress distribution, predict nonlinear phenomena
- static solution for general energy, arbitrary dislocation density
- piezoelectric effect: internal stresses due to electric field

(ロ) (同) (E) (E) (E) (E)

Thank you!

Legendre-Hadamard Conditions

- part of the hyperbolicity condition discussed in [C2]
- formulated in terms of $\frac{\partial \phi^i}{\partial y^a}(y) = v_a^i$
- ► requires for $\xi_a, \xi_b \in T_y^* \mathcal{N}, \eta^i, \eta^j \in T_{\phi(y)} \mathcal{M}$

$$\frac{1}{4} \frac{\partial^2 e}{\partial v_a^i \partial v_b^j} \xi_a \xi_b \eta^i \eta^j \quad : \quad \text{positive for } \xi, \eta \neq 0$$

Legendre-Hadamard Conditions

w

- part of the hyperbolicity condition discussed in [C2]
- formulated in terms of $\frac{\partial \phi'}{\partial y^a}(y) = v_a^i$
- ► requires for $\xi_a, \xi_b \in T_y^* \mathcal{N}, \eta^i, \eta^j \in T_{\phi(y)} \mathcal{M}$

$$\frac{1}{4} \frac{\partial^2 e}{\partial v_a^i \partial v_b^j} \xi_a \xi_b \eta^i \eta^j \quad : \quad \text{positive for } \xi, \eta \neq 0$$

Legendre-Hadamard condition in the static case reads:

$$\frac{\partial^2 e}{\partial \gamma_{AB} \partial \gamma_{CD}} \eta_C \eta_A \xi_B \xi_D + \frac{1}{2} \frac{\partial e}{\partial \gamma_{AB}} |\eta|^2 \xi_A \xi_B > 0 \quad (\eta, \xi \neq 0)$$

here $\xi_A = E_A^a \xi_a$ and $\eta_C = E_C^c v_c^{\,\prime} g_{Ii} \eta^i$.

Equivalences

Definition

Two crystalline structures \mathcal{V} and \mathcal{V}' on \mathcal{N} are equivalent if there is a diffeomorphism ψ of \mathcal{N} onto itself such that ψ_* induces an isomorphism of \mathcal{V} onto \mathcal{V}' .

 $A: \mathcal{V} \to \mathcal{V}'$: linear isomorphism, $A^*: S_2^+(\mathcal{V}') \to S_2^+(\mathcal{V})$ induced isomorphism defined by $\gamma = A^*\gamma'$, where

$$\gamma(X, Y) = \gamma'(AX, AY) \quad , \forall X, Y \in \mathcal{V}.$$

Equivalences

Definition

Two crystalline structures \mathcal{V} and \mathcal{V}' on \mathcal{N} are equivalent if there is a diffeomorphism ψ of \mathcal{N} onto itself such that ψ_* induces an isomorphism of \mathcal{V} onto \mathcal{V}' .

 $A: \mathcal{V} \to \mathcal{V}'$: linear isomorphism, $A^*: S_2^+(\mathcal{V}') \to S_2^+(\mathcal{V})$ induced isomorphism defined by $\gamma = A^*\gamma'$, where

$$\gamma(X, Y) = \gamma'(AX, AY) \quad , \forall X, Y \in \mathcal{V}.$$

Corresponding energy functions on $S_2^+(\mathcal{V})$ and $S_2^+(\mathcal{V}')$ denoted by e and e'

Definition

Two materials are said to be mechanically equivalent if $e'(\gamma') = e(\gamma)$, where $\gamma = A^* \gamma'$.

Equivalences

To capture the same substance in the same phase, we must have the same equilibrium mass density. e is defined on $S_2^+(\mathcal{V})$ and has a strict minimum at $\mathring{\gamma}$. Denote by $\omega_{\mathring{\gamma}}$ its corresponding volume form on \mathcal{V} . Pick a positive basis (E_1, \ldots, E_n) for \mathcal{V} which is orthonormal relative to $\mathring{\gamma}$. Then

$$\omega_{\stackrel{\circ}{\gamma}}(E_1,\ldots,E_n)=1.$$

Equilibrium mass density μ_0 (of small portions)

$$\omega(E_1,\ldots,E_n)=\mu_0>0 \quad , \quad \omega=\mu_0\omega_{\stackrel{\circ}{\gamma}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

and $\mu'_0 = \mu_0$.