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Motivation

◮ importance of understanding the mechanics of elastic
materials, not only perfect crystals

◮ classical description using a relaxed reference state is not valid
in the presence of dislocations

◮ complete dislocation theory only in linear approximation
(Kröner, Nabarro), nonlinear concepts are missing
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Motivation

◮ importance of understanding the mechanics of elastic
materials, not only perfect crystals

◮ classical description using a relaxed reference state is not valid
in the presence of dislocations

◮ complete dislocation theory only in linear approximation
(Kröner, Nabarro), nonlinear concepts are missing

◮ goal: configurations of minimal energy for crystalline solids
with a uniform distribution of elementary dislocations
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The General Setting

◮ introduce the basic concepts to describe a crystalline solid
containing dislocations as in [C1]

◮ uniform distribution of elementary dislocations and Lie group
structure

◮ examples of the two elementary dislocations: edge and screw
dislocations in 2 and 3 dimensions, respectively

◮ thermodynamic state space and state function
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Basic Definitions

◮ N : material manifold (oriented, n-dimensional)

◮ evaluation map

ǫy : χ(N ) → TyN
X 7→ ǫy (X ) = X (y)

χ(N ): C∞-vectorfields on N
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Basic Definitions

◮ N : material manifold (oriented, n-dimensional)

◮ evaluation map

ǫy : χ(N ) → TyN
X 7→ ǫy (X ) = X (y)

χ(N ): C∞-vectorfields on N

Definition
A crystalline structure on N : linear subspace V ⊂ χ(N ) such
that ǫy |V is an isomorphism for each y ∈ N .

Remark
V on N is complete if each X ∈ V is complete.
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Basic Concepts

Definition
Given a complete crystalline structure V on N , we define the
dislocation density Λ by:

Λ(y)(X ,Y ) = ǫ−1
y ([X ,Y ](y)) ∈ V , ∀y ∈ N ,X ,Y ∈ V .
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Basic Concepts

Definition
Given a complete crystalline structure V on N , we define the
dislocation density Λ by:

Λ(y)(X ,Y ) = ǫ−1
y ([X ,Y ](y)) ∈ V , ∀y ∈ N ,X ,Y ∈ V .

Remark
If Λ is constant on N then, for all X ,Y ∈ V, there is a Z ∈ V such
that

[X ,Y ] = Z .

Thus V is a Lie algebra and N is the corresponding Lie group.
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Examples

i) Edge Dislocation

Figure 1: Elementary edge dislocation in a two dimensional crystal

lattice. Burger’s vector b points in the direction of the 1st axis.

(Sonde Atomique et Microstructures, Université de Rouen)
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Edge Dislocation

◮ in the continuum limit, this phenomenon is mathematically
represented by the commutation relation

[E1,E2] = E1 , (1)

where E1,E2 are the vectorfields along the coordinate axes
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represented by the commutation relation

[E1,E2] = E1 , (1)

where E1,E2 are the vectorfields along the coordinate axes
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x 7→ ey
1
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generated by E1 =
∂
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Edge Dislocation

◮ in the continuum limit, this phenomenon is mathematically
represented by the commutation relation

[E1,E2] = E1 , (1)

where E1,E2 are the vectorfields along the coordinate axes

◮ affine group: characterized by transformations of R

x 7→ ey
1
x + y2,

generated by E1 =
∂
∂y1 ,E2 = ey

1 ∂
∂y2 , satisfying (1)

◮ corresponding metric

◦
n= (ω1)2 + (ω2)2 = (dy1)2 + e−2y1

(dy2)2 ,

{E1,E2} basis of V, dual basis {ω1, ω2} for V∗

◮ (N ,
◦
n) is isometric to the hyperbolic plane H
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Examples

ii) Screw Dislocation

Figure 2: Elementary screw dislocation in a crystal lattice. Burger’s

vector b in the direction of the 3rd axis.

(Sonde Atomique et Microstructures, Université de Rouen)
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Screw Dislocation

◮ in the continuum limit, this phenomenon is mathematically
represented by the commutation relations

[E1,E2] = E3 , [E1,E3] = 0 , [E2,E3] = 0 , (2)

where E1,E2,E3 are the vectorfields along the coordinate axes
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Screw Dislocation

◮ in the continuum limit, this phenomenon is mathematically
represented by the commutation relations

[E1,E2] = E3 , [E1,E3] = 0 , [E2,E3] = 0 , (2)

where E1,E2,E3 are the vectorfields along the coordinate axes

◮ Heisenberg group: characterized by unitary transformations
of L2(R,C)

Ψ(x) 7→ Ψ′(x) = e i(y
2x+y3)Ψ(x + y1),

generated by E1 =
∂
∂y1 ,E2 =

∂
∂y2 + y1 ∂

∂y3 ,E3 =
∂
∂y3 , satisfying

(2)
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Screw Dislocation

◮ in the continuum limit, this phenomenon is mathematically
represented by the commutation relations

[E1,E2] = E3 , [E1,E3] = 0 , [E2,E3] = 0 , (2)

where E1,E2,E3 are the vectorfields along the coordinate axes

◮ Heisenberg group: characterized by unitary transformations
of L2(R,C)

Ψ(x) 7→ Ψ′(x) = e i(y
2x+y3)Ψ(x + y1),

generated by E1 =
∂
∂y1 ,E2 =

∂
∂y2 + y1 ∂

∂y3 ,E3 =
∂
∂y3 , satisfying

(2)

◮ corresponding metric (homogeneous space)

◦
n= (ω1)2+(ω2)2+(ω3)2 = (dy1)2+(dy2)2+(dy3−y1dy2)2 ,

{E1,E2,E3} basis of V, dual basis {ω1, ω2, ω3} for V∗
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Thermodynamic State Space

◮ S+
2 (V): inner products on V

◮ thermodynamic state space: S+
2 (V)× R

+ ∋ (γ, σ)

◮ γ ∈ S+
2 (V): thermodynamic configuration

◮ σ ∈ R
+: entropy per particle

◮ V (γ): thermodynamic volume corresponding to γ

◮ a thermodynamic state function κ is a real-valued function
on the thermodynamic state space
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Thermodynamic Variables

◮ thermodynamic stress corresponding to (γ, σ) is
π(γ, σ) ∈ (S2(V))

∗ defined by

−
1

2
π(γ, σ)V (γ) =

∂ (κ(γ, σ)V (γ))

∂γ
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Thermodynamic Variables

◮ thermodynamic stress corresponding to (γ, σ) is
π(γ, σ) ∈ (S2(V))

∗ defined by

−
1

2
π(γ, σ)V (γ) =

∂ (κ(γ, σ)V (γ))

∂γ

◮ thermodynamic temperature corresponding to (γ, σ) is
ϑ(γ, σ) ∈ R given by

ϑ(γ, σ) =
∂ (κ(γ, σ)V (γ))

∂σ
,

with ϑ(γ, σ) ց 0, for σ → 0
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Static Case

◮ N = Ω
cpt.

⊂ Rn, M = En Euclidean space (n = 2, 3)

◮ material picture

φ : N → M
y 7→ φ(y) = x
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◮ material picture

φ : N → M
y 7→ φ(y) = x

◮ thermodynamic configuration

γ(y) = i∗φ,yg ,

where iφ,y = dφ(y) ◦ ǫy : V → TxM
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Static Case

◮ N = Ω
cpt.

⊂ Rn, M = En Euclidean space (n = 2, 3)

◮ material picture

φ : N → M
y 7→ φ(y) = x

◮ thermodynamic configuration

γ(y) = i∗φ,yg ,

where iφ,y = dφ(y) ◦ ǫy : V → TxM

◮ energy per particle e(γ) (a state function) defines the
thermodynamic stress π

−
1

2
πV =

∂e

∂γ
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Static Case
◮ given a volume form ω on V, pick a basis E1, . . . ,En of V

s.t. ω(E1, . . . ,En) = 1. Dual basis ω1, . . . , ωn,

ωAEB = δAB , A,B = 1, . . . , n

◮ mab metric induced on N by the Euclidean metric g on M,
m = φ∗g ,

mab = gij
∂x i

∂ya
∂x j

∂yb
[x i = φi (y)] ,

γAB = E a
AE

b
Bmab
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Static Case
◮ given a volume form ω on V, pick a basis E1, . . . ,En of V

s.t. ω(E1, . . . ,En) = 1. Dual basis ω1, . . . , ωn,

ωAEB = δAB , A,B = 1, . . . , n

◮ mab metric induced on N by the Euclidean metric g on M,
m = φ∗g ,

mab = gij
∂x i

∂ya
∂x j

∂yb
[x i = φi (y)] ,

γAB = E a
AE

b
Bmab

◮ thermodynamic stresses S on N and T = φ∗S on M

Sab = πABE a
AE

b
B ,

T ij = Sab ∂x
i

∂ya
∂x j

∂yb

13/34



Euler-Lagrange Equations

◮ total energy of a domain Ω in the material manifold N

E =

∫

Ω

e(γ)dµω , (3)

where dµω is the volume form on N induced by ω

◮ first variation of the energy (3) is

Ė =
∂

∂λ

∣∣∣∣
λ=0

E (γ + λγ̇) =

∫

Ω

∂e(γ)

∂γ
· γ̇ dµω

◮ by definition of the thermodynamic stress,

Ė = −

∫

Ω

1

2
πAB γ̇AB

√
det γ detω(y) dny
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Boundary Value Problem

Finally, the Euler-Lagrange equations for the static case read

m

∇aS
ab = 0 in Ω ,

a system of elliptic PDE. Or, equivalently, (T = φ∗S and
m = φ∗g)

g

∇iT
ij = 0 in φ(Ω) .
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Boundary Value Problem

Finally, the Euler-Lagrange equations for the static case read

m

∇aS
ab = 0 in Ω ,

a system of elliptic PDE. Or, equivalently, (T = φ∗S and
m = φ∗g)

g

∇iT
ij = 0 in φ(Ω) .

The (free) boundary conditions are

SabMb = 0 on ∂Ω ,

where MbY
b = 0 for all Y ∈ Ty∂Ω. Or, equivalently,

T ijNj = 0 on ∂φ(Ω) ,

where NjX
j = 0 for all X ∈ Tφ(y)φ(∂Ω).
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Assumptions

Postulate
We stipulate that e has a strict minimum at a certain inner

product
◦
γ.
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Assumptions

Postulate
We stipulate that e has a strict minimum at a certain inner

product
◦
γ.

Choose (E1, . . . ,En) to be an orthonormal basis relative to
◦
γ, so

◦
γAB= δAB .

◦
γ induces a metric

◦
n on N by

◦
n=

n∑

A,B=1

◦
γAB ω

A ⊗ ωB =

n∑

A=1

ωA ⊗ ωA

In the following, we make use of the volume form ω0 on V

corresponding to
◦
γ, ω0(E1, . . . ,En) = 1.
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Assumptions

Postulate
We stipulate that e has a strict minimum at a certain inner

product
◦
γ.

Choose (E1, . . . ,En) to be an orthonormal basis relative to
◦
γ, so

◦
γAB= δAB .

◦
γ induces a metric

◦
n on N by

◦
n=

n∑

A,B=1

◦
γAB ω

A ⊗ ωB =

n∑

A=1

ωA ⊗ ωA

In the following, we make use of the volume form ω0 on V

corresponding to
◦
γ, ω0(E1, . . . ,En) = 1.

Remark
◦
n has curvature except when V is Abelian (no dislocations). On
the other hand, m is flat, being the pullback of the flat Euclidean

metric. Thus, unless V is Abelian,
◦
n is not isometric to m.
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The Analysis of Equilibrium Configurations
Uniform Distribution of Dislocations

◮ choice of isotropic energy and elimination of the crystalline
structure

◮ setup of the boundary value problem (in 2d)

◮ method of the solution for the 2-dimensional case

◮ strategy for the 3-dimensional case
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Toy Energy

Note that
◦
n and m = φ∗g (g : the Euclidean metric on M) on N

relate to
◦
γ and γ via:

◦
γ= ǫ∗y

◦
n
∣∣∣
TyN

, γ = ǫ∗y m|TyN
.

Proposition

The eigenvalues λi : i = 1, . . . , n of γ relative to
◦
γ coincide with

the eigenvalues of m relative to
◦
n.
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Toy Energy

Note that
◦
n and m = φ∗g (g : the Euclidean metric on M) on N

relate to
◦
γ and γ via:

◦
γ= ǫ∗y

◦
n
∣∣∣
TyN

, γ = ǫ∗y m|TyN
.

Proposition

The eigenvalues λi : i = 1, . . . , n of γ relative to
◦
γ coincide with

the eigenvalues of m relative to
◦
n.

Remark
If our energy per particle were to depend only on the eigenvalues of

γ relative to
◦
γ, then the crystalline structure V on N would be

eliminated in favor of the Riemannian metric
◦
n.
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Toy Energy

◮ isotropic energy density: e is a symmetric function of the

eigenvalues λk of γ relative to
◦
γ (or m relative to

◦
n),

e(γ) = e(λ1, . . . , λn)

◮ basic choice:

e(γ) = e(λ1, . . . , λn) =
1

2

n∑

k=1

(λk − 1)2 ≥ 0 ,

that satisfies e(λ1 = 1, . . . , λn = 1) = 0, strict minimum of

the energy density at γ =
◦
γ,

◦
γAB= δAB

◮ finally,

e(γ) =
1

2

n∑

k=1

(
λ2k − 2λk + 1

)
=

1

2
tr γ2 − tr γ +

n

2
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Stress Tensor

◮ from the definition of the thermodynamic stress on V
√

detm

det
◦
n
Sab = −2

∂e

∂mab

◮ according to our choice of energy (h =
◦
n)

e(λ1, λ2) =
1

2

(
(λ1 − 1)2 + (λ2 − 1)2

)
=

1

2
trh(m

2)− trhm + 1

=
1

2

(
h−1
)ac (

h−1
)bd

mabmcd −
(
h−1
)ab

mab + 1

◮ therefore,

Sab = 2

√
det h

detm

(
h−1
)ac (

h−1
)bd

(hcd −mcd ) (4)

◮ S is nonzero even for m = δ (i.e. for φ = id), which reflects
the fact that there are internal stresses due to dislocations
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Setup and Method in 2d

◮ N = Hε: hyperbolic plane (curvature: −ε2).

◮ expansion of the hyperbolic metric h in terms of the curvature:

hab = δab + ε2fab ,

where fab are analytic functions in (y1, y2) and ε2
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Setup and Method in 2d

◮ N = Hε: hyperbolic plane (curvature: −ε2).

◮ expansion of the hyperbolic metric h in terms of the curvature:

hab = δab + ε2fab ,

where fab are analytic functions in (y1, y2) and ε2

◮ Consider mappings
φ : Hε → E ,

where E is Euclidean space

◮ identity map

id : Hε → E
(y1, y2) 7→ (x1, x2) = (y1, y2)

(y1, y2): Riemannian normal coordinates in Hε,
(x1, x2): rectangular coordinates in E .
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Boundary Value Problem in 2d

◮ fix a smooth bounded domain Ω in N containing 0.

◮ identity map id : H0 = E2 → E2 is unique minimizer of our
toy energy for parameter ε = 0

◮ restriction to ensure uniqueness of id

i) 0 ∈ Hε 7→ 0 ∈ E ,

ii) ∂

∂y1

∣∣∣
0
7→ dφ · ∂

∂y1

∣∣∣
0
= l ∂

∂x1

∣∣
0

, l > 0.
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Boundary Value Problem in 2d

◮ fix a smooth bounded domain Ω in N containing 0.

◮ identity map id : H0 = E2 → E2 is unique minimizer of our
toy energy for parameter ε = 0

◮ restriction to ensure uniqueness of id

i) 0 ∈ Hε 7→ 0 ∈ E ,

ii) ∂

∂y1

∣∣∣
0
7→ dφ · ∂

∂y1

∣∣∣
0
= l ∂

∂x1

∣∣
0

, l > 0.

◮ boundary value problem (static equations):

Fε[φ] =

(
m

∇bS
ab

SabMb

)
= 0

(
in Ω
on ∂Ω

)
, (5)

a system of elliptic PDEs with free boundary conditions

22/34



Method of the Solution (in 2d)

Step 0: linearization of (5) at the identity φ = id + ψ,

Fε [φ] = Fε [id ] + DidFε · ψ + Nε(ψ) = 0 ,

where Nε(ψ) ∼ ψ2 + O(ψ3)
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Method of the Solution (in 2d)

Step 0: linearization of (5) at the identity φ = id + ψ,

Fε [φ] = Fε [id ] + DidFε · ψ + Nε(ψ) = 0 ,

where Nε(ψ) ∼ ψ2 + O(ψ3)

Step 1: solution of the linear problem (Lax-Milgram)

Step 2: iteration scheme for solution of the nonlinear problem (for ε
sufficiently small)

Step 3: scaling argument yields solution of the actual problem with
curvature −1 and rescaled (smaller) domain
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Step 1: Linear Problem
◮ iteration starting at ψ0 = 0 corresponding to the linearized

problem
L0 · ψ1 = −Fε [id ] ,

Lε: linearized operator DidFε
◮ Sab(id) = 2ε2 fab|ε=0 + O(ε4) ⇒ ψ1 = O(ε2)
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Step 1: Linear Problem
◮ iteration starting at ψ0 = 0 corresponding to the linearized

problem
L0 · ψ1 = −Fε [id ] ,

Lε: linearized operator DidFε
◮ Sab(id) = 2ε2 fab|ε=0 + O(ε4) ⇒ ψ1 = O(ε2)
◮ linearizing m at the trivial solution, φi = y i + ψi for nonlinear
ψ

mab = δab + ṁab + O(ψ2) , where ṁab =

(
∂ψb

∂ya
+
∂ψa

∂yb

)
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Step 1: Linear Problem
◮ iteration starting at ψ0 = 0 corresponding to the linearized

problem
L0 · ψ1 = −Fε [id ] ,

Lε: linearized operator DidFε
◮ Sab(id) = 2ε2 fab|ε=0 + O(ε4) ⇒ ψ1 = O(ε2)
◮ linearizing m at the trivial solution, φi = y i + ψi for nonlinear
ψ

mab = δab + ṁab + O(ψ2) , where ṁab =

(
∂ψb

∂ya
+
∂ψa

∂yb

)

◮ linear boundary value problem L0 · ψ + Fε [id ] = 0
{

∂
∂yb

(
ṁab − ε2lab

)
= 0 : in Ω ,(

ṁab − ε2lab
)
Mb = 0 : on ∂Ω

ṁab =
(
h−1
)ac (

h−1
)bd

ṁcd , l
ab =

(
h−1
)ac (

h−1
)bd

fcd |ε=0.
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Generalized Linear Problem

(M, g) a compact Riemannian manifold with boundary ∂M and X
a vectorfield on M. Set

π = LXg , πij = ∇iXj +∇jXi = πji , Xi = gijX
j ,

Lie derivative of the metric g along X .

◮ action integral

A =

∫

M

(
1

4
|π|2g + ρiXi

)
dµg −

∫

∂M

τ iXi dµg |∂M

◮ Euler-Lagrange equations Ȧ = 0 and boundary conditions read

{
∇jπ

ij = ρi : in M
πijNj = τ i : on ∂M

(6)

◮ identification: (Ω, ṁ, id∗δ) with (M, π, g)
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Generalized Linear Problem

◮ σ = LY g , i.e. σij = ∇iYj +∇jYi = σji , Yi = gijY
j

◮ suppose now that Y is a Killing field, i.e. σ = LY g = 0
⇒ integrability condition

∫

M

Yiρ
i =

∫

∂M

Yiτ
i

guarantees existence of a solution X for the boundary value
problem (6) (Lax-Milgram)
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Generalized Linear Problem

◮ σ = LY g , i.e. σij = ∇iYj +∇jYi = σji , Yi = gijY
j

◮ suppose now that Y is a Killing field, i.e. σ = LY g = 0
⇒ integrability condition

∫

M

Yiρ
i =

∫

∂M

Yiτ
i

guarantees existence of a solution X for the boundary value
problem (6) (Lax-Milgram)

◮ estimate (p = 2):

||X ||Hs (M) ≤ C
(
||ρ||Hs (M) + ||τ ||Hs−1/2(∂M)

)

◮ two solutions differ by a Killing field (uniqueness up to
rotation and translation), elimination of Euclidean Killing
fields by fixing a point and a direction
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Step 2: Nonlinear Case
◮ solution of Fε[φ] = 0 provided ε is sufficiently small
◮ Strategy: iteration scheme for ψn = φn − id , where the first

step is the linearized problem
◮ Iteration: L0 · ψn+1 = − (Lε − L0) · ψn − Fε[id ]− Nε[ψn]

requires integrability condition, satisfied by applying a doping
technique
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◮ solution of Fε[φ] = 0 provided ε is sufficiently small
◮ Strategy: iteration scheme for ψn = φn − id , where the first

step is the linearized problem
◮ Iteration: L0 · ψn+1 = − (Lε − L0) · ψn − Fε[id ]− Nε[ψn]

requires integrability condition, satisfied by applying a doping
technique

◮ coordinates ya on Ω, and π denoting the linearized metric ṁ

(AP)

{
∂πab

n+1

∂yb = ρan : in Ω ,(
πabn+1 − σabn

)
Mb = 0 : on ∂Ω ,

(7)

where πabn+1 =
∂ψb

n+1

∂ya +
∂ψa

n+1

∂yb .
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Step 2: Nonlinear Case
◮ solution of Fε[φ] = 0 provided ε is sufficiently small
◮ Strategy: iteration scheme for ψn = φn − id , where the first

step is the linearized problem
◮ Iteration: L0 · ψn+1 = − (Lε − L0) · ψn − Fε[id ]− Nε[ψn]

requires integrability condition, satisfied by applying a doping
technique

◮ coordinates ya on Ω, and π denoting the linearized metric ṁ

(AP)

{
∂πab

n+1

∂yb = ρan : in Ω ,(
πabn+1 − σabn

)
Mb = 0 : on ∂Ω ,

(7)

where πabn+1 =
∂ψb

n+1

∂ya +
∂ψa

n+1

∂yb .
◮ integrability condition

∫

Ω
ξaρan −

∫

∂Ω
ξaσabn Mb = 0 ,

for every Killing field ξa = αa
by

b + βa, αa
b = −αb

a of a
background Euclidean metric id∗δ.
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Doping Technique

◮ N = n(n+1)
2 Killing fields ξA (A : 1, . . . ,N) in Euclidean space

◮ Doping (Kapouleas 1990): replace ρ by

ρ′ = ρ+
∑

A

cAξA
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Doping Technique

◮ N = n(n+1)
2 Killing fields ξA (A : 1, . . . ,N) in Euclidean space

◮ Doping (Kapouleas 1990): replace ρ by

ρ′ = ρ+
∑

A

cAξA

◮ Integrability condition
∫

Ω
ξA · ρ′ =

∫

∂Ω
ξA · σM ,

where σM = σabMb.
◮ reformulate problem (7) using ψa

n+1 = X a

(AP)





∂
∂yb

(
∂X b

∂ya + ∂X a

∂yb

)
= ρ′a = ρ′an : in Ω ,(

∂X b

∂ya + ∂X a

∂yb

)
Mb = τ a = σabn Mb : on ∂Ω ,

(8)
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System in the limit n → ∞
◮ estimate:

||X ||Hs+2(Ω) ≤ C (Ω)
(
||ρ′||Hs (Ω) + ||τ ||Hs+1/2(∂Ω)

)

◮ Apply to (8)(n) with ε≪ 1 we prove contraction of ψn in
Hs+2(Ω) for s > n

2 , therefore limits n → ∞ can be taken in
the corresponding Sobolev spaces

◮

(AP)

{
∂πab

∂yb = ρ′a : in Ω ,

πabMb = σabMb = τ a : on ∂Ω ,
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◮ estimate:

||X ||Hs+2(Ω) ≤ C (Ω)
(
||ρ′||Hs (Ω) + ||τ ||Hs+1/2(∂Ω)

)

◮ Apply to (8)(n) with ε≪ 1 we prove contraction of ψn in
Hs+2(Ω) for s > n

2 , therefore limits n → ∞ can be taken in
the corresponding Sobolev spaces

◮

(AP)

{
∂πab

∂yb = ρ′a : in Ω ,

πabMb = σabMb = τ a : on ∂Ω ,

Proposition

For ρ′ = ρ+
∑

A cAξA, where cA =
∑

B

(
M−1

)
AB

σB we have

X a :=
∑

A

cAξ
a
A

!
= 0 , (a = 1, . . . , n)

for ε sufficiently small.
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Step 3: Scaling

φ̃(y) = lφ
(y
l

)
, l > 0 .

Ω

Ω̃

N

φ

φ̃

φ(Ω)

φ̃(Ω̃)
E

Figure 3: Mapping φ from Ω to φ(Ω) and scaled version

φ̃ : Ω̃ = lΩ → φ̃(Ω̃) = lφ(Ω).

30/34



Isotropic Case

◮ metrics (not isometric, different curvatures)

m̃ab(y) = mab

(y
l

)
, h̃ab(y) = hab

(y
l

)

◮ stresses

S̃ab(y) = Sab
(y
l

)
, T ij (φ(y)) = T ij

(
φ
(y
l

))

◮ equations
m̃

∇bS̃
ab(y) =

1

l

(
m

∇bS
ab

)(y
l

)

⇒ If φ̃ is a solution relative to (h̃, Ω̃) then φ is a solution relative
to (h, Ω).
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Strategy for the 3d case: choice of anisotropic energy

◮ preferred direction of dislocations lines breaks isotropy
⇒ crystalline structure V enters the problem

◮ γ ∈ S+
2 (V),

γ =

(
γ̄AB θA
θTA ρ

)

◮ anisotropic energy (O: rotation around dislocation line)

e(γ̄, θ, ρ) = e(O γ̄Õ,Oθ, ρ) ,

⇒ invariants tr γ̄ , tr γ̄2 , |θ|2 , ρ

◮ choice of anisotropic energy

e =
1

2

(
(µ1 − 1)2 + (µ2 − 1)2

)
+
α

2
|θ|2 +

β

2
(ρ− 1)2 ,

where µ1,2 are the eigenvalues of γ̄AB with respect to
◦

γ̄.
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Strategy for the 3d case: choice of coordinates
◮ left-invariant metric on Heisenberg group (homogeneous

space, not isotropic, β ∈ R)

◦
n≡ h = dx2 + dy2 + e2β(dz − xdy)2

◮ h with respect to E1 = X ,E2 = Y ,E3 = e−βZ is orthonormal
h =

∑3
A=1 ω

A ⊗ ωA

◮ local coordinate system (ya : a = 1, 2, 3) on N (origin: given
point)

◮ change to Riemannian normal coordinates on N satisfying
hab(y) = δab + O(|y |2)

◮ show that
γAB(y) = δAB + O(|y |2)

and the same arguments apply as in the case of a uniform
distribution of edge dislocations

◮ main difference to the 2-dimensional case: stress is more
complicated due to anisotropic energy
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Outlook

◮ generalization to isotropic energy of the type (|b| < a, a > 0)

e(λ1, λ2) =
a

2

(
(λ1 − 1)2 + (λ2 − 1)2

)
+ b(λ1 − 1)(λ2 − 1)

+O((λ1,2 − 1)3)

◮ confront theory with experiments, e.g. scaling properties,
internal stress distribution, predict nonlinear phenomena

◮ static solution for general energy, arbitrary dislocation density

◮ piezoelectric effect: internal stresses due to electric field
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Thank you!



Legendre-Hadamard Conditions

◮ part of the hyperbolicity condition discussed in [C2]

◮ formulated in terms of ∂φi

∂ya (y) = v ia

◮ requires for ξa, ξb ∈ T ∗
yN , ηi , ηj ∈ Tφ(y)M

1

4

∂2e

∂v ia∂v
j
b

ξaξbη
iηj : positive for ξ, η 6= 0



Legendre-Hadamard Conditions

◮ part of the hyperbolicity condition discussed in [C2]

◮ formulated in terms of ∂φi

∂ya (y) = v ia

◮ requires for ξa, ξb ∈ T ∗
yN , ηi , ηj ∈ Tφ(y)M

1

4

∂2e

∂v ia∂v
j
b

ξaξbη
iηj : positive for ξ, η 6= 0

◮ Legendre-Hadamard condition in the static case reads:

∂2e

∂γAB∂γCD
ηCηAξBξD +

1

2

∂e

∂γAB
|η|2ξAξB > 0 (η, ξ 6= 0)

where ξA = E a
Aξa and ηC = E c

Cv
l
cgliη

i .



Equivalences

Definition
Two crystalline structures V and V ′ on N are equivalent if there is
a diffeomorphism ψ of N onto itself such that ψ∗ induces an
isomorphism of V onto V ′.

A : V → V ′: linear isomorphism, A∗ : S+
2 (V ′) → S+

2 (V) induced
isomorphism defined by γ = A∗γ′, where

γ(X ,Y ) = γ′(AX ,AY ) , ∀X ,Y ∈ V .
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Definition
Two crystalline structures V and V ′ on N are equivalent if there is
a diffeomorphism ψ of N onto itself such that ψ∗ induces an
isomorphism of V onto V ′.

A : V → V ′: linear isomorphism, A∗ : S+
2 (V ′) → S+

2 (V) induced
isomorphism defined by γ = A∗γ′, where

γ(X ,Y ) = γ′(AX ,AY ) , ∀X ,Y ∈ V .

Corresponding energy functions on S+
2 (V) and S+

2 (V ′) denoted by
e and e′

Definition
Two materials are said to be mechanically equivalent if
e′(γ′) = e(γ), where γ = A∗γ′.



Equivalences

To capture the same substance in the same phase, we must have
the same equilibrium mass density. e is defined on S+

2 (V) and has

a strict minimum at
◦
γ. Denote by ω◦

γ
its corresponding volume

form on V. Pick a positive basis (E1, . . . ,En) for V which is

orthonormal relative to
◦
γ. Then

ω◦

γ
(E1, . . . ,En) = 1 .

Equilibrium mass density µ0 (of small portions)

ω(E1, . . . ,En) = µ0 > 0 , ω = µ0ω◦

γ
,

and µ′0 = µ0.
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