On the Mechanics of Crystalline Solids with a Continuous Distribution of Dislocations

Ivo Kaelin (ETH Zurich) joint work with Demetrios Christodoulou

Workshop Analytical Aspects of Mathematical Physics
Zurich, May 28th, 2013

Outline

1. Motivation
2. The General Setting
3. The Static Case
4. The Analysis of Equilibrium Configurations
5. Outlook

Motivation

- importance of understanding the mechanics of elastic materials, not only perfect crystals
- classical description using a relaxed reference state is not valid in the presence of dislocations
- complete dislocation theory only in linear approximation (Kröner, Nabarro), nonlinear concepts are missing

Motivation

- importance of understanding the mechanics of elastic materials, not only perfect crystals
- classical description using a relaxed reference state is not valid in the presence of dislocations
- complete dislocation theory only in linear approximation (Kröner, Nabarro), nonlinear concepts are missing
- goal: configurations of minimal energy for crystalline solids with a uniform distribution of elementary dislocations

References

[CK] D. Christodoulou and I. Kaelin, On the mechanics of crystalline solids with a continuous distribution of dislocations. http://arxiv.org/abs/1212.5125, to appear in Advances in Theoretical and Mathematical Physics (ATMP).
[C1] D. Christodoulou, On the geometry and dynamics of crystalline continua. Ann. Inst. Henri Poincaré 69 (1998), 335-358.

The General Setting

- introduce the basic concepts to describe a crystalline solid containing dislocations as in [C1]
- uniform distribution of elementary dislocations and Lie group structure
- examples of the two elementary dislocations: edge and screw dislocations in 2 and 3 dimensions, respectively
- thermodynamic state space and state function

Basic Definitions

- \mathcal{N} : material manifold (oriented, n-dimensional)
- evaluation map

$$
\begin{aligned}
\epsilon_{y}: \chi(\mathcal{N}) & \rightarrow T_{y} \mathcal{N} \\
X & \mapsto \epsilon_{y}(X)=X(y)
\end{aligned}
$$

$\chi(\mathcal{N}): C^{\infty}$-vectorfields on \mathcal{N}

Basic Definitions

- \mathcal{N} : material manifold (oriented, n-dimensional)
- evaluation map

$$
\begin{aligned}
\epsilon_{y}: \chi(\mathcal{N}) & \rightarrow T_{y} \mathcal{N} \\
X & \mapsto \epsilon_{y}(X)=X(y)
\end{aligned}
$$

$\chi(\mathcal{N}): C^{\infty}$-vectorfields on \mathcal{N}

Definition

A crystalline structure on \mathcal{N} : linear subspace $\mathcal{V} \subset \chi(\mathcal{N})$ such that $\left.\epsilon_{y}\right|_{\mathcal{V}}$ is an isomorphism for each $y \in \mathcal{N}$.

Remark
\mathcal{V} on \mathcal{N} is complete if each $X \in \mathcal{V}$ is complete.

Basic Concepts

Definition

Given a complete crystalline structure \mathcal{V} on \mathcal{N}, we define the dislocation density Λ by:

$$
\Lambda(y)(X, Y)=\epsilon_{y}^{-1}([X, Y](y)) \in \mathcal{V}, \forall y \in \mathcal{N}, X, Y \in \mathcal{V}
$$

Basic Concepts

Definition

Given a complete crystalline structure \mathcal{V} on \mathcal{N}, we define the dislocation density Λ by:

$$
\Lambda(y)(X, Y)=\epsilon_{y}^{-1}([X, Y](y)) \in \mathcal{V}, \forall y \in \mathcal{N}, X, Y \in \mathcal{V}
$$

Remark
If Λ is constant on \mathcal{N} then, for all $X, Y \in \mathcal{V}$, there is a $Z \in \mathcal{V}$ such that

$$
[X, Y]=Z
$$

Thus \mathcal{V} is a Lie algebra and \mathcal{N} is the corresponding Lie group.

Examples

i) Edge Dislocation

Figure 1: Elementary edge dislocation in a two dimensional crystal lattice. Burger's vector b points in the direction of the 1st axis. (Sonde Atomique et Microstructures, Université de Rouen)

Examples

i) Edge Dislocation

Figure 1: Elementary edge dislocation in a two dimensional crystal lattice. Burger's vector b points in the direction of the 1st axis. (Sonde Atomique et Microstructures, Université de Rouen)

Edge Dislocation

- in the continuum limit, this phenomenon is mathematically represented by the commutation relation

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=E_{1} \tag{1}
\end{equation*}
$$

where E_{1}, E_{2} are the vectorfields along the coordinate axes

Edge Dislocation

- in the continuum limit, this phenomenon is mathematically represented by the commutation relation

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=E_{1} \tag{1}
\end{equation*}
$$

where E_{1}, E_{2} are the vectorfields along the coordinate axes

- affine group: characterized by transformations of \mathbb{R}

$$
x \mapsto e^{y^{1}} x+y^{2},
$$

generated by $E_{1}=\frac{\partial}{\partial y^{1}}, E_{2}=e^{y^{1}} \frac{\partial}{\partial y^{2}}$, satisfying (1)

Edge Dislocation

- in the continuum limit, this phenomenon is mathematically represented by the commutation relation

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=E_{1} \tag{1}
\end{equation*}
$$

where E_{1}, E_{2} are the vectorfields along the coordinate axes

- affine group: characterized by transformations of \mathbb{R}

$$
x \mapsto e^{y^{1}} x+y^{2},
$$

generated by $E_{1}=\frac{\partial}{\partial y^{1}}, E_{2}=e^{y^{1}} \frac{\partial}{\partial y^{2}}$, satisfying (1)

- corresponding metric

$$
\stackrel{\circ}{n}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}=\left(d y^{1}\right)^{2}+e^{-2 y^{1}}\left(d y^{2}\right)^{2},
$$

$\left\{E_{1}, E_{2}\right\}$ basis of \mathcal{V}, dual basis $\left\{\omega^{1}, \omega^{2}\right\}$ for \mathcal{V}^{*}

- $(\mathcal{N}, \stackrel{\circ}{n})$ is isometric to the hyperbolic plane \mathcal{H}

Examples

ii) Screw Dislocation

Figure 2: Elementary screw dislocation in a crystal lattice. Burger's vector b in the direction of the 3rd axis.
(Sonde Atomique et Microstructures, Université de Rouen)

Screw Dislocation

- in the continuum limit, this phenomenon is mathematically represented by the commutation relations

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=E_{3},\left[E_{1}, E_{3}\right]=0,\left[E_{2}, E_{3}\right]=0 \tag{2}
\end{equation*}
$$

where E_{1}, E_{2}, E_{3} are the vectorfields along the coordinate axes

Screw Dislocation

- in the continuum limit, this phenomenon is mathematically represented by the commutation relations

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=E_{3},\left[E_{1}, E_{3}\right]=0,\left[E_{2}, E_{3}\right]=0 \tag{2}
\end{equation*}
$$

where E_{1}, E_{2}, E_{3} are the vectorfields along the coordinate axes

- Heisenberg group: characterized by unitary transformations of $L^{2}(\mathbb{R}, \mathbb{C})$

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=e^{i\left(y^{2} x+y^{3}\right)} \Psi\left(x+y^{1}\right)
$$

generated by $E_{1}=\frac{\partial}{\partial y^{1}}, E_{2}=\frac{\partial}{\partial y^{2}}+y^{1} \frac{\partial}{\partial y^{3}}, E_{3}=\frac{\partial}{\partial y^{3}}$, satisfying (2)

Screw Dislocation

- in the continuum limit, this phenomenon is mathematically represented by the commutation relations

$$
\begin{equation*}
\left[E_{1}, E_{2}\right]=E_{3},\left[E_{1}, E_{3}\right]=0,\left[E_{2}, E_{3}\right]=0 \tag{2}
\end{equation*}
$$

where E_{1}, E_{2}, E_{3} are the vectorfields along the coordinate axes

- Heisenberg group: characterized by unitary transformations of $L^{2}(\mathbb{R}, \mathbb{C})$

$$
\Psi(x) \mapsto \Psi^{\prime}(x)=e^{i\left(y^{2} x+y^{3}\right)} \Psi\left(x+y^{1}\right)
$$

generated by $E_{1}=\frac{\partial}{\partial y^{1}}, E_{2}=\frac{\partial}{\partial y^{2}}+y^{1} \frac{\partial}{\partial y^{3}}, E_{3}=\frac{\partial}{\partial y^{3}}$, satisfying (2)

- corresponding metric (homogeneous space)
$\stackrel{\circ}{n}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}+\left(\omega^{3}\right)^{2}=\left(d y^{1}\right)^{2}+\left(d y^{2}\right)^{2}+\left(d y^{3}-y^{1} d y^{2}\right)^{2}$,
$\left\{E_{1}, E_{2}, E_{3}\right\}$ basis of \mathcal{V}, dual basis $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ for \mathcal{V}^{*}

Thermodynamic State Space

- $S_{2}^{+}(\mathcal{V})$: inner products on \mathcal{V}
- thermodynamic state space: $S_{2}^{+}(\mathcal{V}) \times \mathbb{R}^{+} \ni(\gamma, \sigma)$
- $\gamma \in S_{2}^{+}(\mathcal{V})$: thermodynamic configuration
- $\sigma \in \mathbb{R}^{+}$: entropy per particle
- $V(\gamma)$: thermodynamic volume corresponding to γ
- a thermodynamic state function κ is a real-valued function on the thermodynamic state space

Thermodynamic Variables

- thermodynamic stress corresponding to (γ, σ) is $\pi(\gamma, \sigma) \in\left(S_{2}(\mathcal{V})\right)^{*}$ defined by

$$
-\frac{1}{2} \pi(\gamma, \sigma) V(\gamma)=\frac{\partial(\kappa(\gamma, \sigma) V(\gamma))}{\partial \gamma}
$$

Thermodynamic Variables

- thermodynamic stress corresponding to (γ, σ) is $\pi(\gamma, \sigma) \in\left(S_{2}(\mathcal{V})\right)^{*}$ defined by

$$
-\frac{1}{2} \pi(\gamma, \sigma) V(\gamma)=\frac{\partial(\kappa(\gamma, \sigma) V(\gamma))}{\partial \gamma}
$$

- thermodynamic temperature corresponding to (γ, σ) is $\vartheta(\gamma, \sigma) \in \mathbb{R}$ given by

$$
\vartheta(\gamma, \sigma)=\frac{\partial(\kappa(\gamma, \sigma) V(\gamma))}{\partial \sigma},
$$

with $\vartheta(\gamma, \sigma) \searrow 0$, for $\sigma \rightarrow 0$

Static Case

- $\mathcal{N}=\Omega \stackrel{\text { cpt. }}{\subset} \mathbb{R}^{n}, \mathcal{M}=\mathcal{E}^{n}$ Euclidean space $(n=2,3)$
- material picture

$$
\begin{aligned}
\phi: \mathcal{N} & \rightarrow \mathcal{M} \\
y & \mapsto \phi(y)=x
\end{aligned}
$$

Static Case

- $\mathcal{N}=\Omega \stackrel{\text { cpt. }}{\subset} \mathbb{R}^{n}, \mathcal{M}=\mathcal{E}^{n}$ Euclidean space $(n=2,3)$
- material picture

$$
\begin{aligned}
\phi: \mathcal{N} & \rightarrow \mathcal{M} \\
y & \mapsto \phi(y)=x
\end{aligned}
$$

- thermodynamic configuration

$$
\begin{array}{r}
\gamma(y)=i_{\phi, y}^{*} g \\
\text { where } i_{\phi, y}=d \phi(y) \circ \epsilon_{y}: \mathcal{V} \rightarrow T_{x} \mathcal{M}
\end{array}
$$

Static Case

- $\mathcal{N}=\Omega \stackrel{\text { cpt. }}{\subset} \mathbb{R}^{n}, \mathcal{M}=\mathcal{E}^{n}$ Euclidean space $(n=2,3)$
- material picture

$$
\begin{aligned}
\phi: \mathcal{N} & \rightarrow \mathcal{M} \\
y & \mapsto \phi(y)=x
\end{aligned}
$$

- thermodynamic configuration

$$
\gamma(y)=i_{\phi, y}^{*} g,
$$

where $i_{\phi, y}=d \phi(y) \circ \epsilon_{y}: \mathcal{V} \rightarrow T_{x} \mathcal{M}$

- energy per particle $e(\gamma)$ (a state function) defines the thermodynamic stress π

$$
-\frac{1}{2} \pi V=\frac{\partial e}{\partial \gamma}
$$

Static Case

- given a volume form ω on \mathcal{V}, pick a basis E_{1}, \ldots, E_{n} of \mathcal{V} s.t. $\omega\left(E_{1}, \ldots, E_{n}\right)=1$. Dual basis $\omega^{1}, \ldots, \omega^{n}$,

$$
\omega^{A} E_{B}=\delta_{B}^{A}, \quad A, B=1, \ldots, n
$$

- $m_{a b}$ metric induced on \mathcal{N} by the Euclidean metric g on \mathcal{M}, $m=\phi^{*} g$,

$$
\begin{aligned}
m_{a b} & =g_{i j} \frac{\partial x^{i}}{\partial y^{a}} \frac{\partial x^{j}}{\partial y^{b}} \quad\left[x^{i}=\phi^{i}(y)\right], \\
\gamma_{A B} & =E_{A}^{a} E_{B}^{b} m_{a b}
\end{aligned}
$$

Static Case

- given a volume form ω on \mathcal{V}, pick a basis E_{1}, \ldots, E_{n} of \mathcal{V} s.t. $\omega\left(E_{1}, \ldots, E_{n}\right)=1$. Dual basis $\omega^{1}, \ldots, \omega^{n}$,

$$
\omega^{A} E_{B}=\delta_{B}^{A}, \quad A, B=1, \ldots, n
$$

- $m_{a b}$ metric induced on \mathcal{N} by the Euclidean metric g on \mathcal{M}, $m=\phi^{*} g$,

$$
\begin{aligned}
m_{a b} & =g_{i j} \frac{\partial x^{i}}{\partial y^{a}} \frac{\partial x^{j}}{\partial y^{b}} \quad\left[x^{i}=\phi^{i}(y)\right], \\
\gamma_{A B} & =E_{A}^{a} E_{B}^{b} m_{a b}
\end{aligned}
$$

- thermodynamic stresses S on \mathcal{N} and $T=\phi_{*} S$ on \mathcal{M}

$$
\begin{aligned}
S^{a b} & =\pi^{A B} E_{A}^{a} E_{B}^{b} \\
T^{i j} & =S^{a b} \frac{\partial x^{i}}{\partial y^{a}} \frac{\partial x^{j}}{\partial y^{b}}
\end{aligned}
$$

Euler-Lagrange Equations

- total energy of a domain Ω in the material manifold \mathcal{N}

$$
\begin{equation*}
E=\int_{\Omega} e(\gamma) d \mu_{\omega} \tag{3}
\end{equation*}
$$

where $d \mu_{\omega}$ is the volume form on \mathcal{N} induced by ω

- first variation of the energy (3) is

$$
\dot{E}=\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0} E(\gamma+\lambda \dot{\gamma})=\int_{\Omega} \frac{\partial e(\gamma)}{\partial \gamma} \cdot \dot{\gamma} d \mu_{\omega}
$$

- by definition of the thermodynamic stress,

$$
\dot{E}=-\int_{\Omega} \frac{1}{2} \pi^{A B} \dot{\gamma}_{A B} \sqrt{\operatorname{det} \gamma} \operatorname{det} \omega(y) d^{n} y
$$

Boundary Value Problem

Finally, the Euler-Lagrange equations for the static case read

$$
\stackrel{m}{\nabla}_{a} S^{a b}=0 \quad \text { in } \Omega
$$

a system of elliptic PDE. Or, equivalently, $\left(T=\phi_{*} S\right.$ and $m=\phi^{*} g$)

$$
\stackrel{g}{\nabla}_{i} T^{i j}=0 \quad \text { in } \phi(\Omega)
$$

Boundary Value Problem

Finally, the Euler-Lagrange equations for the static case read

$$
\stackrel{m}{\nabla}_{a} S^{a b}=0 \quad \text { in } \Omega
$$

a system of elliptic PDE. Or, equivalently, $\left(T=\phi_{*} S\right.$ and $m=\phi^{*} g$)

$$
\stackrel{g}{\nabla}_{i} T^{i j}=0 \quad \text { in } \phi(\Omega)
$$

The (free) boundary conditions are

$$
S^{a b} M_{b}=0 \quad \text { on } \partial \Omega
$$

where $M_{b} Y^{b}=0$ for all $Y \in T_{y} \partial \Omega$. Or, equivalently,

$$
T^{i j} N_{j}=0 \quad \text { on } \partial \phi(\Omega)
$$

where $N_{j} X^{j}=0$ for all $X \in T_{\phi(y)} \phi(\partial \Omega)$.

Assumptions

Postulate
We stipulate that e has a strict minimum at a certain inner product $\stackrel{\circ}{\gamma}$.

Assumptions

Postulate

We stipulate that e has a strict minimum at a certain inner product $\stackrel{\circ}{\gamma}$.
Choose $\left(E_{1}, \ldots, E_{n}\right)$ to be an orthonormal basis relative to $\stackrel{\circ}{\gamma}$, so $\stackrel{\circ}{\gamma}_{A B}=\delta_{A B} . \stackrel{\circ}{\gamma}$ induces a metric $\stackrel{\circ}{n}$ on \mathcal{N} by

$$
\stackrel{\circ}{n}=\sum_{A, B=1}^{n} \stackrel{\circ}{\gamma}_{A B} \omega^{A} \otimes \omega^{B}=\sum_{A=1}^{n} \omega^{A} \otimes \omega^{A}
$$

In the following, we make use of the volume form ω_{0} on \mathcal{V} corresponding to $\stackrel{\circ}{\gamma}, \omega_{0}\left(E_{1}, \ldots, E_{n}\right)=1$.

Assumptions

Postulate

We stipulate that e has a strict minimum at a certain inner product $\stackrel{\circ}{\gamma}$.
Choose (E_{1}, \ldots, E_{n}) to be an orthonormal basis relative to $\stackrel{\circ}{\gamma}$, so $\dot{\gamma}_{A B}=\delta_{A B} . \dot{\gamma}$ induces a metric \dot{n} on \mathcal{N} by

$$
\stackrel{\circ}{n}=\sum_{A, B=1}^{n} \stackrel{\circ}{\gamma}_{A B} \omega^{A} \otimes \omega^{B}=\sum_{A=1}^{n} \omega^{A} \otimes \omega^{A}
$$

In the following, we make use of the volume form ω_{0} on \mathcal{V} corresponding to $\stackrel{\circ}{\gamma}, \omega_{0}\left(E_{1}, \ldots, E_{n}\right)=1$.
Remark
$\stackrel{\circ}{n}$ has curvature except when \mathcal{V} is Abelian (no dislocations). On the other hand, m is flat, being the pullback of the flat Euclidean metric. Thus, unless \mathcal{V} is Abelian, n is not isometric to m.

The Analysis of Equilibrium Configurations

Uniform Distribution of Dislocations

- choice of isotropic energy and elimination of the crystalline structure
- setup of the boundary value problem (in 2d)
- method of the solution for the 2-dimensional case
- strategy for the 3-dimensional case

Toy Energy

Note that $\stackrel{\circ}{n}$ and $m=\phi^{*} g(g$: the Euclidean metric on $\mathcal{M})$ on \mathcal{N} relate to $\stackrel{\circ}{\gamma}$ and γ via:

$$
\stackrel{\circ}{\gamma}=\left.\epsilon_{y}^{*} \stackrel{\circ}{n}\right|_{T_{y} \mathcal{N}} \quad, \quad \gamma=\left.\epsilon_{y}^{*} m\right|_{T_{y} \mathcal{N}} .
$$

Proposition

The eigenvalues $\lambda_{i}: i=1, \ldots, n$ of γ relative to ${ }_{\gamma}^{\gamma}$ coincide with the eigenvalues of m relative to $\stackrel{\circ}{n}$.

Toy Energy

Note that $\stackrel{\circ}{n}$ and $m=\phi^{*} g(g$: the Euclidean metric on $\mathcal{M})$ on \mathcal{N} relate to $\stackrel{\circ}{\gamma}$ and γ via:

$$
\stackrel{\circ}{\gamma}=\left.\epsilon_{y}^{*} \stackrel{\circ}{n}\right|_{T_{y} \mathcal{N}} \quad, \quad \gamma=\left.\epsilon_{y}^{*} m\right|_{T_{y} \mathcal{N}} .
$$

Proposition

The eigenvalues $\lambda_{i}: i=1, \ldots, n$ of γ relative to $\stackrel{\circ}{\gamma}$ coincide with the eigenvalues of m relative to $\stackrel{\circ}{n}$.

Remark

If our energy per particle were to depend only on the eigenvalues of γ relative to $\stackrel{\circ}{\gamma}$, then the crystalline structure \mathcal{V} on \mathcal{N} would be eliminated in favor of the Riemannian metric $\stackrel{\circ}{n}$.

Toy Energy

- isotropic energy density: e is a symmetric function of the eigenvalues λ_{k} of γ relative to ${ }_{\gamma}^{\gamma}$ (or m relative to $\stackrel{\circ}{n}$),

$$
e(\gamma)=e\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

- basic choice:

$$
e(\gamma)=e\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{2} \sum_{k=1}^{n}\left(\lambda_{k}-1\right)^{2} \geq 0
$$

that satisfies $e\left(\lambda_{1}=1, \ldots, \lambda_{n}=1\right)=0$, strict minimum of the energy density at $\gamma=\stackrel{\circ}{\gamma}, \stackrel{\circ}{\gamma}_{A B}=\delta_{A B}$

- finally,

$$
e(\gamma)=\frac{1}{2} \sum_{k=1}^{n}\left(\lambda_{k}^{2}-2 \lambda_{k}+1\right)=\frac{1}{2} \operatorname{tr} \gamma^{2}-\operatorname{tr} \gamma+\frac{n}{2}
$$

Stress Tensor

- from the definition of the thermodynamic stress on \mathcal{V}

$$
\sqrt{\frac{\operatorname{det} m}{\operatorname{det} \stackrel{\circ}{n}}} S^{a b}=-2 \frac{\partial e}{\partial m_{a b}}
$$

- according to our choice of energy ($h=\frac{\circ}{n}$)

$$
\begin{aligned}
e\left(\lambda_{1}, \lambda_{2}\right) & =\frac{1}{2}\left(\left(\lambda_{1}-1\right)^{2}+\left(\lambda_{2}-1\right)^{2}\right)=\frac{1}{2} \operatorname{tr}_{h}\left(m^{2}\right)-\operatorname{tr}_{h} m+1 \\
& =\frac{1}{2}\left(h^{-1}\right)^{a c}\left(h^{-1}\right)^{b d} m_{a b} m_{c d}-\left(h^{-1}\right)^{a b} m_{a b}+1
\end{aligned}
$$

- therefore,

$$
\begin{equation*}
S^{a b}=2 \sqrt{\frac{\operatorname{det} h}{\operatorname{det} m}}\left(h^{-1}\right)^{a c}\left(h^{-1}\right)^{b d}\left(h_{c d}-m_{c d}\right) \tag{4}
\end{equation*}
$$

- S is nonzero even for $m=\delta$ (i.e. for $\phi=i d$), which reflects the fact that there are internal stresses due to dislocations

Setup and Method in 2d

- $\mathcal{N}=\mathcal{H}_{\varepsilon}$: hyperbolic plane (curvature: $-\varepsilon^{2}$).
- expansion of the hyperbolic metric h in terms of the curvature:

$$
h_{a b}=\delta_{a b}+\varepsilon^{2} f_{a b},
$$

where $f_{a b}$ are analytic functions in $\left(y^{1}, y^{2}\right)$ and ε^{2}

Setup and Method in 2d

- $\mathcal{N}=\mathcal{H}_{\varepsilon}$: hyperbolic plane (curvature: $-\varepsilon^{2}$).
- expansion of the hyperbolic metric h in terms of the curvature:

$$
h_{a b}=\delta_{a b}+\varepsilon^{2} f_{a b},
$$

where $f_{a b}$ are analytic functions in $\left(y^{1}, y^{2}\right)$ and ε^{2}

- Consider mappings

$$
\phi: \mathcal{H}_{\varepsilon} \rightarrow \mathcal{E}
$$

where \mathcal{E} is Euclidean space

- identity map

$$
\begin{aligned}
\text { id: } \mathcal{H}_{\varepsilon} & \rightarrow \mathcal{E} \\
\left(y^{1}, y^{2}\right) & \mapsto\left(x^{1}, x^{2}\right)=\left(y^{1}, y^{2}\right)
\end{aligned}
$$

$\left(y^{1}, y^{2}\right)$: Riemannian normal coordinates in $\mathcal{H}_{\varepsilon}$, $\left(x^{1}, x^{2}\right)$: rectangular coordinates in \mathcal{E}.

Boundary Value Problem in 2d

- fix a smooth bounded domain Ω in \mathcal{N} containing 0 .
- identity map id : $\mathcal{H}_{0}=\mathcal{E}^{2} \rightarrow \mathcal{E}^{2}$ is unique minimizer of our toy energy for parameter $\varepsilon=0$
- restriction to ensure uniqueness of id
i) $0 \in \mathcal{H}_{\varepsilon} \mapsto 0 \in \mathcal{E}$,
ii) $\left.\left.\frac{\partial}{\partial y^{1}}\right|_{0} \mapsto d \phi \cdot \frac{\partial}{\partial y^{1}}\right|_{0}=\left.I \frac{\partial}{\partial x^{1}}\right|_{0} \quad, I>0$.

Boundary Value Problem in 2d

- fix a smooth bounded domain Ω in \mathcal{N} containing 0 .
- identity map id : $\mathcal{H}_{0}=\mathcal{E}^{2} \rightarrow \mathcal{E}^{2}$ is unique minimizer of our toy energy for parameter $\varepsilon=0$
- restriction to ensure uniqueness of id
i) $0 \in \mathcal{H}_{\varepsilon} \mapsto 0 \in \mathcal{E}$,
ii) $\left.\left.\frac{\partial}{\partial y^{1}}\right|_{0} \mapsto d \phi \cdot \frac{\partial}{\partial y^{1}}\right|_{0}=\left.I \frac{\partial}{\partial x^{1}}\right|_{0} \quad, I>0$.
- boundary value problem (static equations):

$$
\begin{equation*}
F_{\varepsilon}[\phi]=\binom{\nabla_{b} S^{a b}}{S^{a b} M_{b}}=0 \quad\binom{\text { in } \Omega}{\text { on } \partial \Omega} \tag{5}
\end{equation*}
$$

a system of elliptic PDEs with free boundary conditions

Method of the Solution (in 2d)

Step 0: linearization of (5) at the identity $\phi=i d+\psi$,

$$
\begin{aligned}
& \quad F_{\varepsilon}[\phi]=F_{\varepsilon}[i d]+D_{i d} F_{\varepsilon} \cdot \psi+N_{\varepsilon}(\psi)=0 \\
& \text { where } N_{\varepsilon}(\psi) \sim \psi^{2}+O\left(\psi^{3}\right)
\end{aligned}
$$

Method of the Solution (in 2d)

Step 0: linearization of (5) at the identity $\phi=i d+\psi$,

$$
F_{\varepsilon}[\phi]=F_{\varepsilon}[i d]+D_{i d} F_{\varepsilon} \cdot \psi+N_{\varepsilon}(\psi)=0
$$

where $\boldsymbol{N}_{\varepsilon}(\psi) \sim \psi^{2}+O\left(\psi^{3}\right)$
Step 1: solution of the linear problem (Lax-Milgram)
Step 2: iteration scheme for solution of the nonlinear problem (for ε sufficiently small)
Step 3: scaling argument yields solution of the actual problem with curvature -1 and rescaled (smaller) domain

Step 1: Linear Problem

- iteration starting at $\psi_{0}=0$ corresponding to the linearized problem

$$
L_{0} \cdot \psi_{1}=-F_{\varepsilon}[i d]
$$

L_{ε} : linearized operator $D_{i d} F_{\varepsilon}$

- $S^{a b}(i d)=\left.2 \varepsilon^{2} f_{a b}\right|_{\varepsilon=0}+O\left(\varepsilon^{4}\right) \quad \Rightarrow \quad \psi_{1}=O\left(\varepsilon^{2}\right)$

Step 1: Linear Problem

- iteration starting at $\psi_{0}=0$ corresponding to the linearized problem

$$
L_{0} \cdot \psi_{1}=-F_{\varepsilon}[i d]
$$

L_{ε} : linearized operator $D_{i d} F_{\varepsilon}$

- $S^{a b}(i d)=\left.2 \varepsilon^{2} f_{a b}\right|_{\varepsilon=0}+O\left(\varepsilon^{4}\right) \quad \Rightarrow \quad \psi_{1}=O\left(\varepsilon^{2}\right)$
- linearizing m at the trivial solution, $\phi^{i}=y^{i}+\psi^{i}$ for nonlinear ψ

$$
m_{a b}=\delta_{a b}+\dot{m}_{a b}+O\left(\psi^{2}\right) \quad, \text { where } \quad \dot{m}_{a b}=\left(\frac{\partial \psi^{b}}{\partial y^{a}}+\frac{\partial \psi^{a}}{\partial y^{b}}\right)
$$

Step 1: Linear Problem

- iteration starting at $\psi_{0}=0$ corresponding to the linearized problem

$$
L_{0} \cdot \psi_{1}=-F_{\varepsilon}[i d]
$$

L_{ε} : linearized operator $D_{i d} F_{\varepsilon}$

- $S^{a b}(i d)=\left.2 \varepsilon^{2} f_{a b}\right|_{\varepsilon=0}+O\left(\varepsilon^{4}\right) \quad \Rightarrow \quad \psi_{1}=O\left(\varepsilon^{2}\right)$
- linearizing m at the trivial solution, $\phi^{i}=y^{i}+\psi^{i}$ for nonlinear ψ

$$
m_{a b}=\delta_{a b}+\dot{m}_{a b}+O\left(\psi^{2}\right) \quad, \text { where } \quad \dot{m}_{a b}=\left(\frac{\partial \psi^{b}}{\partial y^{a}}+\frac{\partial \psi^{a}}{\partial y^{b}}\right)
$$

- linear boundary value problem $L_{0} \cdot \psi+F_{\varepsilon}[i d]=0$

$$
\begin{aligned}
& \begin{cases}\frac{\partial}{\partial y^{b}}\left(\dot{m}^{a b}-\varepsilon^{2} l^{a b}\right)=0 & : \quad \text { in } \Omega, \\
\left(\dot{m}^{a b}-\varepsilon^{2} l^{a b}\right) M_{b}=0 & : \quad \text { on } \quad \partial \Omega\end{cases} \\
& \dot{m}^{a b}=\left(h^{-1}\right)^{a c}\left(h^{-1}\right)^{b d} \dot{m}_{c d}, l^{a b}=\left.\left(h^{-1}\right)^{a c}\left(h^{-1}\right)^{b d} f_{c d}\right|_{\varepsilon=0} \text {. }
\end{aligned}
$$

Generalized Linear Problem

(M, g) a compact Riemannian manifold with boundary ∂M and X a vectorfield on M. Set

$$
\pi=\mathcal{L}_{X} g \quad, \quad \pi_{i j}=\nabla_{i} X_{j}+\nabla_{j} X_{i}=\pi_{j i} \quad, \quad X_{i}=g_{i j} X^{j}
$$

Lie derivative of the metric g along X.

- action integral

$$
A=\int_{M}\left(\frac{1}{4}|\pi|_{g}^{2}+\rho^{i} X_{i}\right) d \mu_{g}-\left.\int_{\partial M} \tau^{i} X_{i} d \mu_{g}\right|_{\partial M}
$$

- Euler-Lagrange equations $\dot{A}=0$ and boundary conditions read

$$
\begin{cases}\nabla_{j} \pi^{i j}=\rho^{i} & : \text { in } M \tag{6}\\ \pi^{i j} N_{j}=\tau^{i} & : \text { on } \partial M\end{cases}
$$

- identification: $\left(\Omega, \dot{m}, i d^{*} \delta\right)$ with (M, π, g)

Generalized Linear Problem

- $\sigma=\mathcal{L}_{Y}$ g, i.e. $\sigma_{i j}=\nabla_{i} Y_{j}+\nabla_{j} Y_{i}=\sigma_{j i}, \quad Y_{i}=g_{i j} Y^{j}$
- suppose now that Y is a Killing field, i.e. $\sigma=\mathcal{L}_{Y} g=0$
\Rightarrow integrability condition

$$
\int_{M} Y_{i} \rho^{i}=\int_{\partial M} Y_{i} \tau^{i}
$$

guarantees existence of a solution X for the boundary value problem (6) (Lax-Milgram)

Generalized Linear Problem

- $\sigma=\mathcal{L}_{Y}$ g, i.e. $\sigma_{i j}=\nabla_{i} Y_{j}+\nabla_{j} Y_{i}=\sigma_{j i}, \quad Y_{i}=g_{i j} Y^{j}$
- suppose now that Y is a Killing field, i.e. $\sigma=\mathcal{L}_{Y} g=0$
\Rightarrow integrability condition

$$
\int_{M} Y_{i} \rho^{i}=\int_{\partial M} Y_{i} \tau^{i}
$$

guarantees existence of a solution X for the boundary value problem (6) (Lax-Milgram)

- estimate $(p=2)$:
$\|X\|_{H^{s}(M)} \leq C\left(\|\rho\|_{H^{s}(M)}+\|\tau\|_{H^{s-1 / 2}(\partial M)}\right)$
- two solutions differ by a Killing field (uniqueness up to rotation and translation), elimination of Euclidean Killing fields by fixing a point and a direction

Step 2: Nonlinear Case

- solution of $F_{\varepsilon}[\phi]=0$ provided ε is sufficiently small
- Strategy: iteration scheme for $\psi_{n}=\phi_{n}-i d$, where the first step is the linearized problem
- Iteration: $L_{0} \cdot \psi_{n+1}=-\left(L_{\varepsilon}-L_{0}\right) \cdot \psi_{n}-F_{\varepsilon}[i d]-N_{\varepsilon}\left[\psi_{n}\right]$ requires integrability condition, satisfied by applying a doping technique

Step 2: Nonlinear Case

- solution of $F_{\varepsilon}[\phi]=0$ provided ε is sufficiently small
- Strategy: iteration scheme for $\psi_{n}=\phi_{n}-i d$, where the first step is the linearized problem
- Iteration: $L_{0} \cdot \psi_{n+1}=-\left(L_{\varepsilon}-L_{0}\right) \cdot \psi_{n}-F_{\varepsilon}[i d]-N_{\varepsilon}\left[\psi_{n}\right]$ requires integrability condition, satisfied by applying a doping technique
- coordinates y^{a} on Ω, and π denoting the linearized metric \dot{m}

$$
(A P)\left\{\begin{align*}
\frac{\partial \pi_{n+1}^{a b}}{\partial y^{b}} & =\rho_{n}^{a} \quad: \quad \text { in } \Omega \tag{7}\\
\left(\pi_{n+1}^{a b}-\sigma_{n}^{a b}\right) M_{b} & =0 \quad: \quad \text { on } \partial \Omega
\end{align*}\right.
$$

where $\pi_{n+1}^{a b}=\frac{\partial \psi_{n+1}^{b}}{\partial y^{a}}+\frac{\partial \psi_{n+1}^{a}}{\partial y^{b}}$.

Step 2: Nonlinear Case

- solution of $F_{\varepsilon}[\phi]=0$ provided ε is sufficiently small
- Strategy: iteration scheme for $\psi_{n}=\phi_{n}-i d$, where the first step is the linearized problem
- Iteration: $L_{0} \cdot \psi_{n+1}=-\left(L_{\varepsilon}-L_{0}\right) \cdot \psi_{n}-F_{\varepsilon}[i d]-N_{\varepsilon}\left[\psi_{n}\right]$ requires integrability condition, satisfied by applying a doping technique
- coordinates y^{a} on Ω, and π denoting the linearized metric \dot{m}

$$
(A P)\left\{\begin{align*}
\frac{\partial \pi_{n+1}^{a b}}{\partial y^{b}} & =\rho_{n}^{a} \quad: \quad \text { in } \Omega \tag{7}\\
\left(\pi_{n+1}^{a b}-\sigma_{n}^{a b}\right) M_{b} & =0 \quad: \quad \text { on } \partial \Omega
\end{align*}\right.
$$

where $\pi_{n+1}^{a b}=\frac{\partial \psi_{n+1}^{b}}{\partial y^{a}}+\frac{\partial \psi_{n+1}^{a}}{\partial y^{b}}$.

- integrability condition

$$
\int_{\Omega} \xi^{a} \rho_{n}^{a}-\int_{\partial \Omega} \xi^{a} \sigma_{n}^{a b} M_{b}=0
$$

for every Killing field $\xi^{a}=\alpha_{b}^{a} y^{b}+\beta^{a}, \alpha_{b}^{a}=-\alpha_{a}^{b}$ of a background Euclidean metric $i d^{*} \delta$.

Doping Technique

- $N=\frac{n(n+1)}{2}$ Killing fields $\xi_{A}(A: 1, \ldots, N)$ in Euclidean space
- Doping (Kapouleas 1990): replace ρ by

$$
\rho^{\prime}=\rho+\sum_{A} c_{A} \xi_{A}
$$

Doping Technique

- $N=\frac{n(n+1)}{2}$ Killing fields $\xi_{A}(A: 1, \ldots, N)$ in Euclidean space
- Doping (Kapouleas 1990): replace ρ by

$$
\rho^{\prime}=\rho+\sum_{A} c_{A} \xi_{A}
$$

- Integrability condition

$$
\int_{\Omega} \xi_{A} \cdot \rho^{\prime}=\int_{\partial \Omega} \xi_{A} \cdot \sigma_{M}
$$

where $\sigma_{M}=\sigma^{a b} M_{b}$.

- reformulate problem (7) using $\psi_{n+1}^{a}=X^{a}$

$$
(A P)\left\{\begin{align*}
\frac{\partial}{\partial y^{b}}\left(\frac{\partial X^{b}}{\partial y^{a}}+\frac{\partial X^{a}}{\partial y^{b}}\right) & =\rho^{\prime a}=\rho_{n}^{\prime a} \quad: \quad \text { in } \quad \Omega, \tag{8}\\
\left(\frac{\partial X^{b}}{\partial y^{a}}+\frac{\partial X^{a}}{\partial y^{b}}\right) M_{b} & =\tau^{a}=\sigma_{n}^{a b} M_{b} \quad: \quad \text { on } \quad \partial \Omega,
\end{align*}\right.
$$

System in the limit $n \rightarrow \infty$

- estimate:

$$
\|X\|_{H^{s+2}(\Omega)} \leq C(\Omega)\left(\left\|\rho^{\prime}\right\|_{H^{s}(\Omega)}+\|\tau\|_{H^{s+1 / 2}(\partial \Omega)}\right)
$$

- Apply to (8)(n) with $\varepsilon \ll 1$ we prove contraction of ψ_{n} in $H^{s+2}(\Omega)$ for $s>\frac{n}{2}$, therefore limits $n \rightarrow \infty$ can be taken in the corresponding Sobolev spaces

$$
(A P)\left\{\begin{aligned}
\frac{\partial \pi^{a b}}{\partial y^{b}} & =\rho^{\prime a} & : \quad \text { in } \Omega \\
\pi^{a b} M_{b} & =\sigma^{a b} M_{b}=\tau^{a} & : \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

System in the limit $n \rightarrow \infty$

- estimate:

$$
\|X\|_{H^{s+2}(\Omega)} \leq C(\Omega)\left(\left\|\rho^{\prime}\right\|_{H^{s}(\Omega)}+\|\tau\|_{H^{s+1 / 2}(\partial \Omega)}\right)
$$

- Apply to (8)(n) with $\varepsilon \ll 1$ we prove contraction of ψ_{n} in $H^{s+2}(\Omega)$ for $s>\frac{n}{2}$, therefore limits $n \rightarrow \infty$ can be taken in the corresponding Sobolev spaces

$$
(A P)\left\{\begin{array}{rll}
\frac{\partial \pi^{a b}}{\partial y^{b}} & =\rho^{\prime a} & : \quad \text { in } \Omega \\
\pi^{a b} M_{b} & =\sigma^{a b} M_{b}=\tau^{a} & : \quad \text { on } \partial \Omega
\end{array}\right.
$$

Proposition

For $\rho^{\prime}=\rho+\sum_{A} c_{A} \xi_{A}$, where $c_{A}=\sum_{B}\left(M^{-1}\right)_{A B} \sigma_{B}$ we have

$$
X^{a}:=\sum_{A} c_{A} \xi_{A}^{a} \stackrel{!}{=} 0 \quad,(a=1, \ldots, n)
$$

for ε sufficiently small.

Step 3: Scaling

$$
\tilde{\phi}(y)=I \phi\left(\frac{y}{l}\right) \quad, \quad I>0 .
$$

Figure 3: Mapping ϕ from Ω to $\phi(\Omega)$ and scaled version
$\tilde{\phi}: \tilde{\Omega}=I \Omega \rightarrow \tilde{\phi}(\tilde{\Omega})=I \phi(\Omega)$.

Isotropic Case

- metrics (not isometric, different curvatures)

$$
\tilde{m}_{a b}(y)=m_{a b}\left(\frac{y}{l}\right) \quad, \quad \tilde{h}_{a b}(y)=h_{a b}\left(\frac{y}{l}\right)
$$

- stresses

$$
\tilde{S}^{a b}(y)=S^{a b}\left(\frac{y}{l}\right) \quad, \quad T^{i j}(\phi(y))=T^{i j}\left(\phi\left(\frac{y}{l}\right)\right)
$$

- equations

$$
\tilde{\nabla}_{b} \tilde{S}^{a b}(y)=\frac{1}{l}\left(\stackrel{m}{\nabla}_{b} S^{a b}\right)\left(\frac{y}{l}\right)
$$

\Rightarrow If $\tilde{\phi}$ is a solution relative to $(\tilde{h}, \tilde{\Omega})$ then ϕ is a solution relative to (h, Ω).

Strategy for the 3d case: choice of anisotropic energy

- preferred direction of dislocations lines breaks isotropy
\Rightarrow crystalline structure \mathcal{V} enters the problem
- $\gamma \in S_{2}^{+}(\mathcal{V})$,

$$
\gamma=\left(\begin{array}{cc}
\bar{\gamma}_{A B} & \theta_{A} \\
\theta_{A}^{T} & \rho
\end{array}\right)
$$

- anisotropic energy (O : rotation around dislocation line)

$$
e(\bar{\gamma}, \theta, \rho)=e(O \bar{\gamma} \widetilde{O}, O \theta, \rho)
$$

\Rightarrow invariants $\operatorname{tr} \bar{\gamma}, \operatorname{tr} \bar{\gamma}^{2},|\theta|^{2}, \rho$

- choice of anisotropic energy

$$
e=\frac{1}{2}\left(\left(\mu_{1}-1\right)^{2}+\left(\mu_{2}-1\right)^{2}\right)+\frac{\alpha}{2}|\theta|^{2}+\frac{\beta}{2}(\rho-1)^{2},
$$

where $\mu_{1,2}$ are the eigenvalues of $\bar{\gamma}_{A B}$ with respect to $\stackrel{\circ}{\bar{\gamma}}$.

Strategy for the 3d case: choice of coordinates

- left-invariant metric on Heisenberg group (homogeneous space, not isotropic, $\beta \in \mathbb{R}$)

$$
\stackrel{\circ}{n} \equiv h=d x^{2}+d y^{2}+e^{2 \beta}(d z-x d y)^{2}
$$

- h with respect to $E_{1}=X, E_{2}=Y, E_{3}=e^{-\beta} Z$ is orthonormal $h=\sum_{A=1}^{3} \omega^{A} \otimes \omega^{A}$
- local coordinate system ($y^{a}: a=1,2,3$) on \mathcal{N} (origin: given point)
- change to Riemannian normal coordinates on \mathcal{N} satisfying $h_{a b}(y)=\delta_{a b}+O\left(|y|^{2}\right)$
- show that

$$
\gamma_{A B}(y)=\delta_{A B}+O\left(|y|^{2}\right)
$$

and the same arguments apply as in the case of a uniform distribution of edge dislocations

- main difference to the 2-dimensional case: stress is more complicated due to anisotropic energy

Outlook

- generalization to isotropic energy of the type $(|b|<a, a>0)$

$$
\begin{aligned}
e\left(\lambda_{1}, \lambda_{2}\right)= & \frac{a}{2}\left(\left(\lambda_{1}-1\right)^{2}+\left(\lambda_{2}-1\right)^{2}\right)+b\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right) \\
& +O\left(\left(\lambda_{1,2}-1\right)^{3}\right)
\end{aligned}
$$

- confront theory with experiments, e.g. scaling properties, internal stress distribution, predict nonlinear phenomena
- static solution for general energy, arbitrary dislocation density
- piezoelectric effect: internal stresses due to electric field

Thank you!

Legendre-Hadamard Conditions

- part of the hyperbolicity condition discussed in [C2]
- formulated in terms of $\frac{\partial \phi^{i}}{\partial y^{a}}(y)=v_{a}^{i}$
- requires for $\xi_{a}, \xi_{b} \in T_{y}^{*} \mathcal{N}, \eta^{i}, \eta^{j} \in T_{\phi(y)} \mathcal{M}$

$$
\frac{1}{4} \frac{\partial^{2} e}{\partial v_{a}^{i} \partial v_{b}^{j}} \xi_{a} \xi_{b} \eta^{i} \eta^{j} \quad: \quad \text { positive for } \xi, \eta \neq 0
$$

Legendre-Hadamard Conditions

- part of the hyperbolicity condition discussed in [C2]
- formulated in terms of $\frac{\partial \phi^{i}}{\partial y^{a}}(y)=v_{a}^{i}$
- requires for $\xi_{a}, \xi_{b} \in T_{y}^{*} \mathcal{N}, \eta^{i}, \eta^{j} \in T_{\phi(y)} \mathcal{M}$

$$
\frac{1}{4} \frac{\partial^{2} e}{\partial v_{a}^{i} \partial v_{b}^{j}} \xi_{a} \xi_{b} \eta^{i} \eta^{j} \quad: \quad \text { positive for } \xi, \eta \neq 0
$$

- Legendre-Hadamard condition in the static case reads:

$$
\frac{\partial^{2} e}{\partial \gamma_{A B} \partial \gamma_{C D}} \eta \eta_{C} \eta_{A} \xi_{B} \xi_{D}+\frac{1}{2} \frac{\partial e}{\partial \gamma_{A B}}|\eta|^{2} \xi_{A} \xi_{B}>0 \quad(\eta, \xi \neq 0)
$$

where $\xi_{A}=E_{A}^{a} \xi_{a}$ and $\eta_{C}=E_{C}^{c} v_{c}^{\prime} g_{l i} \eta^{i}$.

Equivalences

Definition

Two crystalline structures \mathcal{V} and \mathcal{V}^{\prime} on \mathcal{N} are equivalent if there is a diffeomorphism ψ of \mathcal{N} onto itself such that ψ_{*} induces an isomorphism of \mathcal{V} onto \mathcal{V}^{\prime}.
$A: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$: linear isomorphism, $A^{*}: S_{2}^{+}\left(\mathcal{V}^{\prime}\right) \rightarrow S_{2}^{+}(\mathcal{V})$ induced isomorphism defined by $\gamma=A^{*} \gamma^{\prime}$, where

$$
\gamma(X, Y)=\gamma^{\prime}(A X, A Y) \quad, \forall X, Y \in \mathcal{V}
$$

Equivalences

Definition

Two crystalline structures \mathcal{V} and \mathcal{V}^{\prime} on \mathcal{N} are equivalent if there is a diffeomorphism ψ of \mathcal{N} onto itself such that ψ_{*} induces an isomorphism of \mathcal{V} onto \mathcal{V}^{\prime}.
$A: \mathcal{V} \rightarrow \mathcal{V}^{\prime}$: linear isomorphism, $A^{*}: S_{2}^{+}\left(\mathcal{V}^{\prime}\right) \rightarrow S_{2}^{+}(\mathcal{V})$ induced isomorphism defined by $\gamma=A^{*} \gamma^{\prime}$, where

$$
\gamma(X, Y)=\gamma^{\prime}(A X, A Y) \quad, \forall X, Y \in \mathcal{V}
$$

Corresponding energy functions on $S_{2}^{+}(\mathcal{V})$ and $S_{2}^{+}\left(\mathcal{V}^{\prime}\right)$ denoted by e and e^{\prime}

Definition

Two materials are said to be mechanically equivalent if $e^{\prime}\left(\gamma^{\prime}\right)=e(\gamma)$, where $\gamma=A^{*} \gamma^{\prime}$.

Equivalences

To capture the same substance in the same phase, we must have the same equilibrium mass density. e is defined on $S_{2}^{+}(\mathcal{V})$ and has a strict minimum at $\stackrel{\circ}{\gamma}$. Denote by $\omega_{\dot{\gamma}}$ its corresponding volume form on \mathcal{V}. Pick a positive basis $\left(E_{1}, \ldots, E_{n}\right)$ for \mathcal{V} which is orthonormal relative to $\stackrel{\circ}{\gamma}$. Then

$$
\omega_{\gamma}\left(E_{1}, \ldots, E_{n}\right)=1
$$

Equilibrium mass density μ_{0} (of small portions)

$$
\omega\left(E_{1}, \ldots, E_{n}\right)=\mu_{0}>0 \quad, \quad \omega=\mu_{0} \omega_{\grave{\gamma}}
$$

and $\mu_{0}^{\prime}=\mu_{0}$.

