
Random Band Matrices and the
Extended States Conjecture

Antti Knowles

Courant – NYU
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Part I

Band matrices and the Anderson transition



The universality conjecture (Wigner [1955], Anderson [1958], . . . )

A quantum system of sufficient complexity exhibits one of the two following
behaviours.

(A) Delocalized eigenvectors, local spectral statistics given by RMT.
(Weak disorder)

(B) Localized eigenvectors, local spectral statistics are Poisson.
(Strong disorder)

System is described by a Hamiltonian H which has to be ‘generic’ to yield
sufficient complexity.

Popular mathematical playgrounds for probing the universality conjecture:

I Random matrices (Wigner matrices, random Schrödinger operators)

I Quantum chaos models



Two standard models of quantum disorder

For simplicity, work on one-dimensional lattice {1, . . . , L} with L→∞.

Wigner random matrix. The entries of H are i.i.d. up to the constraint
H = H∗. This is a mean-field model with no spatial structure.

Behaviour of type (A).

(Erdős-Schlein-Yau-. . . [2009–2012], Tao-Vu [2009–2012])

Random Schrödinger operator. On-site randomness + short-range hopping.

H = −∆ +
∑
x

vx =


v1 1
1 v2 1

1
. . .

. . .
. . . vL−1 1

1 vL


Behaviour of type (B).

(Goldscheid-Molchanov-Pastur [1997], Minami [1996])



Band matrices

I A family of interpolating models.

I Allow a precise statement of Wigner’s conjecture, together with a
transition from (A) to (B).

Let H = (Hxy) be an L× L matrix with mean-zero entries independent up to
contraint H = H∗. Let f be a probability density on R (the band profile) and
suppose that

E|Hxy|2 = Sxy
..=

1

W
f

(
x− y
W

)
.

Here W ∈ [1, L] is the band width.



Anderson transition for band matrices

Varying W provides a means to test the transition from (A) to (B).

Conjecture (Fyodorov-Mirlin [1991])

The transition occurs at W ∼ L1/2.

Let ` denote the typical localization length of the eigenvectors of H. Then the
conjecture means that ` ∼W 2.

I Upper bound: ` 6W 8 (Schenker [2010]).

I Lower bound: arises from quantum diffusion.



Quantum diffusion and eigenvector delocalization

Define the expected quantum transition probability from 0 to x in time t
through

%(t, x) ..= E
∣∣(e−itH)x0

∣∣2 .
Consider the diffusive regime t = ζT and x = ζ1/2WX with ζ →∞.

Diffusion cannot hold for x�W 2 =⇒ choose ζ = Wκ for 0 < κ < 2.

Theorem (Erdős-K [2011])

Fix 0 < κ < 1/3. Then for all T > 0

%
(
WκT,W 1+κ/2X

)
−→

∫ 1

0

4

π

λ2√
1− λ2

G(λT,X) dλ

weakly in X, where

G(T,X) ..=
1√

2πTD
e−

1
2TD X2

, D ..=
1

2

∫
X2f(X) dX .

Corollary: eigenvectors have localization length ` >W 1+1/6.



The resolvent approach to quantum diffusion

Instead of studying the unitary time evolution e−itH , consider the resolvent
G(z) ..= (H − z)−1. These are equivalent by the identities

G(z) = i

∫ ∞
0

eitz e−itH dt , e−itH =
i

2π

∮
e−itz G(z) dz .

Control of eitH ⇐⇒ Control of G(E + iη) for η ∼ t−1.

Theorem (Erdős-K-Yau-Yin [2012])

Suppose that L 6W 5/4 and η >W−1/2. Then, after a small amount of
averaging, the matrix (|Gxy|2) is with high probability equal to Θ(1 + o(1)),
where

Θ ..=
|m|2S

1− |m|2S
;

here S ..= (Sxy) is the step distribution of a random walk and m is the
Stieltjes transform of Wigner’s semicircle law.

Corollary: For L 6W 5/4 the eigenvectors are delocalized with high probability.



Interpretation of the deterministic limit Θ

In Fourier space Θ reads

|m|2Ŝ(p)

1− |m|2Ŝ(p)
≈ γ

η +Dγ(Wp)2
, γ ..=

√
4− E2

2
,

where Ŝ(p) is the Fourier transform of Sx0.

This is the resolvent of the classical diffusion op-
erator Dγ(Wp)2.

Going back to x-space we get

ηΘxy ≈

{√
η

W exp
(
−√η |x−y|W

)
if η >

(
W
L

)2
1
L if η 6

(
W
L

)2
.



Part II

Statistics of eigenvalue density



Smoothed eigenvalue density on mesoscopic scales

From now on, allow arbitrary spatial dimension d > 1: indices x, y lie in the
discrete d-dimensional cube of side length L.

Let λ1, . . . , λLd denote the eigenvalues of H/2.
Define the smoothed eigenvalue density at en-
ergy E ∈ (−1, 1) on scale η through

Y (E) ..=
∑
α

1

η
φ

(
λα − E

η

)
,

where φ is smooth and has sufficient decay.

Goal: compute the (normalized) covariance

Z(E1, E2) ..=
E
(
Y (E1)Y (E2)

)
− EY (E1)EY (E2)

EY (E1)EY (E2)

in the mesoscopic regime L−d � η � 1.

Two key questions:

(a) Density fluctuations, Z(E,E).

(b) Decay of correlations Z(E1, E2) in E2 − E1 � η.



The reference: Z for Poisson statistics

Let {λα} be a stationary Poisson point process with intensity Ld. Then

Z(E1, E2) =
C

Ldη

∫
φ(x)φ

(
x− E2 − E1

η

)
dx .

In particular:

(a) The density fluctuations behave according to

Z(E,E) =
C

Ldη
.

(b) The correlations Z(E + ∆/2, E −∆/2) decay in ∆ according to the tail
of φ.



The Altshuler-Shklovskii (AS) formulae for band matrices

Computation by Altshuler and Shklovskii [1986]. Suppose that η > (W/L)2.

(a) For d = 1, 2, 3 the density fluctuations satisfy

Z(E,E) ∼ Cd√
detD (1− E2)2

(
1

LW

)d(
η√

1− E2

)d/2−2
,

where Cd > 0.

(b) For d = 1, 3 and ∆� η the correlations satisfy

Z

(
E +

∆

2
, E − ∆

2

)
∼ Kd√

detD (1− E2)2

(
1

LW

)d(
∆√

1− E2

)d/2−2
,

where K1 < 0 and K3 > 0.



Heuristics: existence of the Anderson transition from AS formulae

Focus on the regime η >W 2/L2 where boundary effects are irrelevant for the
diffusion (choose a sufficiently large sample).

I For which η do the statistics of Y (E) become Poisson? At the transition
to/from Poisson, the variance of Y (E) must have the magnitude

1

LdW d
ηd/2−2 ∼ Z(E,E)

∣∣
band

!∼ Z(E,E)
∣∣
Poisson

∼ 1

Ldη
,

i.e.
1

W d
∼ η1−d/2 .

Conclusion: expect transition only for d = 1, at η ∼W−2.

I What about the localization length ` for d = 1? Lη randomly chosen
eigenvalues have overlapping eigenvectors if and only if η � `−1. Hence
the disappearance of Poisson statistics (emergence of eigenvalue
correlations) should occur at η ∼ `−1. This yields ` ∼ η−1 ∼W 2 at the
transition.



Proof of the AS formulae

Theorem (Erdős-K [2013])

I The AS formulae hold for d = 1, 2, 3, 4 and η >W−d/3. (For d = 4,
power law behaviour is replaced by logarithmic behaviour.)
(Universality of mesoscopic eigenvalue statistics)

I For d > 5: explicit asymptotic computation of Z(E1, E2). The result is
not universal and has no simple expression.

I The constants Kd are independent of φ, while Cd satisfies

Cd ∝
∫

dt |t|1−d/2 |φ̂(t)|2 .

I Wigner matrices (mean-field) satisfy the AS formulae with d = 0.

Case (b) for Wigner matrices (d = 0) was already proved by Boutet de Monvel
and Khorunzhy [1999].



Sketch of proof

Expand Y (E) as a power series in H. Main difficulty: terms are highly
oscillating.

Need a systematic resummation procedure (perturbative renormalization). We
use a two-step renormalization.

1. Instead of expanding in powers {Hn}n∈N, expand in Chebyshev
polynomials {Un(H)}n∈N.

Idea going back to Bai, Yin, Feldheim, and Sodin. Used in subsequent
works of Sodin and Erdős-K.

Classify resulting terms using graphs.

2. Further resum graphs belonging to certain equivalence classes (ladder
subdiagram resummation), using explicit identities to exploit strong
oscillations.

Requires somewhat involved algebra since estimates are not allowed.

The resulting terms are estimated using pointwise bounds on the resolvent
of S (local central limit theorems).



Conclusion

I Diffusion profile with strong control for L 6W 5/4 and η >W−1/2.

I Eigenvectors are delocalized for L 6W 5/4.

I Proof of the Altshuler-Shklovskii formulae for density-density correlations:
mesoscopic universality.

Major open questions:

I Improve L 6W 5/4 to L 6W 2.

I Control resolvent for η 6W−1.

I Microscopic universality of random band matrices for L 6W 2.

(Erdős-K-Yau-Yin [2012]: microscopic universality provided that L 6W 34/33

and H has a vanishing mean-field component.)


