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UNIVERSALITY

e Several quantum many body systems exhibit some
universality properties in the conductivity , which one
would like to mathematically derive starting from
microscopic models.

o | will consider optical conductivity of two physical systems:
a) non integrable quantum spin chains b) graphene.
e Solid state models provide concrete realizations of low

dimensional QFT models which can be studied by the
methods of constructive QFT.



UNIVERSALITY IN THE OPTICAL CONDUCTIVITY IN

GRAPHENE EXPERIMENTS

Nair Geim et al. Science (2008). The conductivity in a

frequency range 71 << w << Ais 0g = “2—‘772 (universality).

N-layer graphene ooy = Ng—‘f up a few percent.)
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They measure the transparency T of light and from that the
conductivity T(w) = 1/[(1 4 2ro(w)]? (in the fig. called

G((w)). Between 2 and 3 eV 2 = 1,01 4 0.03



NON INTEGRABLE QUANTUM SPIN CHAINS

o The Heisenberg XXZ spin chain Hy =
- Z[Jsx1 L+ JS2S2 + /S3SE . — hSY

where S¢ =02 /2 fori=1,2,...,Land « =1,2,3, 02
being the Pauli matrices (J = 1).



NON INTEGRABLE QUANTUM SPIN CHAINS

o The Heisenberg XXZ spin chain Hy =
- Z[J5151+1 + JS2S2 .+ J5S3S3. — hST]

where S¢ =02 /2 fori=1,2,...,Land « =1,2,3, 02
being the Pauli matrices (J = 1).

e The above model can be solved by Bethe ansatz, and it is
interesting to add a next-to-nearest neighbor interaction
breaking exact solvability, that is consider

H=H,+ H,

Hy = -\ 2[5151+2 + 5252+2 + 5353+2]
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LINEAR RESPONSE THEORY

o By the Peierls substitution j, = S!S2., — 5)35)(+1 + AF,
where F, is an expression quartic in the spin operators.

o If p, = 53 - % and (ngji) = (px,jx)

B
|24 H —il A A
K v (po, p) = LILn;o/O dxoe™ P70 < B e p ZB.T

—pH b e
and < O >5= T3l O, = e Oe 0 (imaginary

times), T denotes truncation and 7 denotes time ordering.

o The susceptibility is defined as
kox = limp_o limyy_o lims_oc K32\ (P).
o Using the Jordan-Wigner transformation it can be written

in terms of fermions at.



CONDUCTIVITY

o We consider the optical d.c. conductivity (Kubo formula)
D
oy = lim lim lim L(p)
po—0p—0f—co  Ipg

where p = (po, p) and
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o We consider the optical d.c. conductivity (Kubo formula)

. . . D
oy = lim lim lim L(p)
po—0p—0p3—0c0 Py

where p = (po, p) and
Dsa(p) = [Kih(p)+ < j° >4]

and
D)\ = lim lim lim Dﬁ’,\(p)

po—0 p—0 B—o0
is called Drude weight.
o Give information in the optical regime.

o The zero frequency limit should be take along the real axis
but we expect it makes no difference in the optical regime



CONDUCTIVITY IN THE XXZ CHAIN

o In the XXZ chain(J; # 0, A\ = 0), Bethe ansatz provides
exact formulas (Yang-Yang '66)
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CONDUCTIVITY IN THE XXZ CHAIN

o In the XXZ chain(J; # 0, A\ = 0), Bethe ansatz provides
exact formulas (Yang-Yang '66)

T sinfi
Dy = — -
fi2p(m — fi)
HO—E L sin i v50:Zsinﬂ
2m (m — i) ji
and cos ji = —Js.

o They verify the universal relation

Do//ﬁlo = Vio

o If A # 0 is the conductivity still infinite? Is the universal
relation still true?



CONDUCTIVITY IN THE NON INTEGRABLE CASE

e Benfatto, Falco, Mastropietro Comm. Math.Phys. 2009;
PRL 2011; Mastropietro PRE 2013

Theorem. There exists ¢ < 1 such that, if | k|, |\| < e the
zero temperature Drude weight is non vanishing and
analytic in J3, \; moreover

s K
D>\ = KV A R) =
m TV
with K =
1-— » [(J5+2X)(1 — cos2pr) + A(1 — cos4pr) + F]
Vs )

and vs = sin(pg) + F, sin pr = h and
Fl

) +
IF| < Ce2|F| < C
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CONDUCTIVITY IN THE NON INTEGRABLE CASE

o Infinite conductivity at 7 = 0 for small J;, A.

o Universal relation

Dy_ e
K N

which was conjectured by Haldane (1980), extending
previous ideas by Kadanoff and Wegner (1971) and Luther
and Peschel (1975).

o At A = 0 it reduces to the Bethe ansatz formulas (but no
use of Bethe ansatz is done) K~! = 2(1 — £) =

K1=1+2540(%)and vs = 1+ O(Js)
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CONDUCTIVITY IN THE NON INTEGRABLE CASE

e D, is also connected to the critical exponents by exact
relations; for instance if X is the exponent of < S3S§ >

then
Dk

X=[—=F

o Other exponents are determined by X using the Kadanoff
relations which can be proven to be true in this model



LATTICE WARD IDENTITES

o By the commutation relations
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LATTICE WARD IDENTITES

o By the commutation relations
—iPo < Ppdic Ay >T P < Jpd Bp >T=
[<§k él:>T B <ék++pék_+p>r]
—ipKY(p) + pKY°(p) = 0
—ipoK3"' (p) + pDA(p) = 0

e This implies
KY(po.0) =0, D(0,p) =0

Relation between regularity of the FT of correlations and
conductivity; for instance if the FT is continuous the
Drude weight is vanishing (what is not not in the case).



MULTISCALE ANALYSIS

o We perform a multiscale RG analysis and we get that the
current-current correlation Kg”i(p) can be naturally
decomposed as sum of two terms where the second
contains also the irrelevant terms (Umklapp, non linear
bands)

Kt (x) = KM (x) + KM (%)
and

K(a)l,l <
| A (X)| — 1+ |X|2

A

KO (x) >0

R —
| < 1+ [x[2+0



MULTISCALE ANALYSIS

o We perform a multiscale RG analysis and we get that the
current-current correlation Kg”i(p) can be naturally
decomposed as sum of two terms where the second
contains also the irrelevant terms (Umklapp, non linear

bands)
Kt (x) = KM () + KO (%)
and c
K(a)l,l <
| A (X)| — 14 |X|2
(b)1,1 C
Ky (%) < T o 6>0

o Gram bounds (Caianiello (N. Cim. 1956); Gawedzski and
Kupiainen (CMP 1985)) and implementing Ward Identities
at each RG iteration (vanishing of beta function);
(Benfatto Mastropietro CMP 2005 )



SKETCH OF THE PROOF

o The bound for Kia)l’l(x) are not sufficient to say the the
FT is bounded; moreover the contribution of the irrelevant
terms is O(1).



SKETCH OF THE PROOF

o The bound for Kia)l’l(x) are not sufficient to say the the
FT is bounded; moreover the contribution of the irrelevant
terms is O(1).

o We need to exploit the idea of emerging symmetries
introducing a QFT model describing massless Dirac
femions with a momentum regularization and a non local
quartic interaction.



SKETCH OF THE PROOF

o The bound for Kia)l’l(x) are not sufficient to say the the
FT is bounded; moreover the contribution of the irrelevant
terms is O(1).

o We need to exploit the idea of emerging symmetries
introducing a QFT model describing massless Dirac
femions with a momentum regularization and a non local
quartic interaction.

o The analysis of the ultraviolet problem is done applying a
method applied by Lesniewski (CMP 1987) for the analysis
of the Yukava, model; in the infrared one has to use Ward
identites and the asymtotic vanishing of the beta function.
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o The effective QFT is expressed directly in terms of
Grassmann variables. If j, = 9x7,1¥x. The partition
function is (similar definition for the generating fnction) .
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THE EFFECTIVE QFT MODEL

o The effective QFT is expressed directly in terms of
Grassmann variables. If j, = 9x7,1¥x. The partition
function is (similar definition for the generating fnction) .

/ P (M) ehoo S v iy

where P(dy(M), where 1) = (11,1 _1) have propagator
XN(k)% with a smooth cut-off function vanishing for
lk| > 2N and v(x —y) a short range symmetric interaction.
e We can tune by implicit function theorem the bare
parameter )\, so that the exponents are the same (again
the vanishing of beta function is used) and K/Sa)l’l(x) is
equal to the correlations of this effective model up to
constants and setting ¢ = v;.
o Of course \ is convergent series in A depending on all
the details of the spin hamiltonian.
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WARD IDENTITIES FOR THE QFT MODEL

o The advantage of this model is that it verifies an extra
chiral symmetry. By performing v, + — e/®+x1, o,
D, = (—ipo + wep), w = %, p, = ¥4, in the limit
N — oo

Do < Pt osicrper > +0n(K,p) =

" 7+ =
5‘~U,w/[< wk,w’wk,w’ >—< wk—&-p,w’wk—i—p,w’ >]

o Ay = [ dkdpCu(k,p) < ¥ Ui sp it Vicipur > With

C(k, p) = [(xp' (k+p)—1) D, (k+p)—(xn' (k)—1) D, (k)]



ANOMALIES

e The correction term is non vanishing in the N — oo limit.
By a multiscale analysis it is found, in the limit of removed
cut-off (Mastropietro JMP 2007)
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ANOMALIES

e The correction term is non vanishing in the N — oo limit.
By a multiscale analysis it is found, in the limit of removed
cut-off (Mastropietro JMP 2007)

Jim Ap(k,p) =7 < Pp -t Vicip s >
with
__

 4nc

o The coefficient 7 is linear in 5\00: in the case of the axial
WI, this is the non-perturbative analogue of the anomaly
non renormalization in QED4 (the above WI were
postulated by Johnson (Nuovo Cim. 1961) using a
self-consistence argument).



0 X X
(a) Y (b) y o
w - —w -
- i — VN ,
z u b=l z=1u &«
x x
(¢) 5 u’ y o'
w -
|
z W'
w X

Multiscale analysis for Ay(k, p); decomposition of the

terms with terms with marginal dimension, vy = %.

new



NEW RELATIONS FOR THE LATTICE MODEL

o Similarly we get two Ward Identites for the densities for
which an exact expression for them is obtained

ir(a)1,1 1 (Z(l))2 ( ) (
2 p) = drvsZ? 1 — 72 [D+(P) D_(p
(p) (

(2 1 2(0) 2
(@00(p) — (27

 4rvZ2 1 — 72 [D+(p) D_(p
Ao

wher.e T= e D.,(p) = —ipo + wvsp. In order to get
that it is essential that we can study both models via
multiscale analysis.




NEW RELATIONS FOR THE LATTICE MODEL

o Similarly we get two Ward Identites for the densities for
which an exact expression for them is obtained

~ (3 1 (ZM)2 D_(p) D.(p
)(\)171(p): 2( — )2[ ( ) + +( ) —|—27‘]
ArvsZ21—72"D.(p) D_(p)
~ (3 1 (Z9)2 D_(p) D.(p
)(\)070( ): 2( — )2[ ( )+ +( )_|_27_]
4rvsZ%21—72"D.(p) D_(p)
where 7 = 4’::35, D.,(p) = —ipo + wvsp. In order to get

that it is essential that we can study both models via
multiscale analysis.

o 7 £ 7MW as irrelevant terms breaks Lorentz symmetry;
Vs, Z, Moo, 2, Z() depend from all microscopic details.
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SKETCH OF THE PROOF

o On the other hand the parameters are not all independent;
the condition Dy (0, p) = 0 fixes the value of K} (OL1(q).
o From the WI of the effective model

1 1
Z[—ipo 0 )<ppak dkip > TPVs= < Jedd deip >l =

Z1)
_ 1 At s -
—E[< ay dy >—<ak+pak+p >]

o The bare parameters are not independent but fixed by the
lattice WI

1 70 . 40
1—-7 7 (1)



SKETCH OF THE PROOF
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SKETCH OF THE PROOF

o In conclusion

R K V2p2
KOO — s
» (P) s + O(p)
A Kvs pj
Di(p) = 2 O(p)

T pg+ v2p?
with K = 1=Z, and the theorem follows

o Crucial role of the irrelevant terms; in field theoretic RG
they are neglected, but the problem is exactly to show
that universality persists even taking them into account.

o Extension to spinning 1D fermions (Hubbard model) done
in Benfatto-Falco-Mastropietro (2013); higly non trivial
due to log-divergences modulating the power law.

o Hopefully an extension of the RG analysis at 3 < oo is
possible (Big debate on D).



HUBBARD MODEL ON THE HONEYCOMB LATTICE

Hy = —t Z Z (a;obx;&-,o + b;_+&7aa;0)+

ReN,i=1,2,30=1]

_ 1 - L
) Z Z (a;aai,a o 5) <b>:<i’_+5;,a’b>‘<’+gi70' N E)
i=1,2,3




PHYSICAL OBSERVABLES

+ _ + + + _ HXO + 7HX0 1
(4] \IJ;’U = (a;p, bz+5170), “Ux,a —e \IJ;’Ue with

x = (xp,X) and x € [0, 3], for some 3 > 0.



PHYSICAL OBSERVABLES

O Vi, = (2, b7 5 ) Vi, = ePoug e with
x = (xp,X) and x, € [0, ﬂ] for some B > 0.

Q@ If S(x—y)=(V, lli+) we denote by 5(k) the F.T.,
k = (ko, k), ko = 2”(no +1) 1 ng €2, k € B the first
Brillouin zone.



THE 2-POINT FUNCTION FOR U =0

1 iko —vO0* (k)
So(k) = L ,
olk) ( —v0(k) iko




THE 2-POINT FUNCTION FOR U =0

o
1 iko —vO0* (k)
k) = o oadr | Ok ik ’
kg + v (k)| ve (k) 1Ko
vOQK) = £33 | ekGi=01) — (1 + 2e3/2k1 cos k).
@ If p = (%’r, j:327”§) vﬁo) = %t close to a Dirac propagator

(massless Dirac in 2 4 1 while in the previous case 1 + 1)

: ¥o !
ik ik, F k
So(k‘i‘p%) ~ (0) _,(3 , ( 1 2) )
ve ' (—iky F kb) iko



THE DISPERSION RELATION




THE OPTICAL CONDUCTIVITY

o The currents are (spin is understood)

o B N P N (U E S
J5 = iet E e "PXom(aF bﬂgj b;+gja>?) = Ve J3
XeN

J

: i l—e_'.ﬁgf.
with 77;3 = sum of the three bond currents
J



THE OPTICAL CONDUCTIVITY

o The currents are (spin is understood)
N —iBRT, (- F _()A
= jet Z e (5177;3(a; bﬂgj b;+gja>?) Ve J5
XeN
J

with 77’ = (;ﬂé-
e The conductivity at imaginary frequencies by Kubo

formula is w = %’rn

2 €2
3V3hw

where 3\/_/2 is the area of the hexagonal cell,
<_/prjm—wp> FT(<Jlx0me,yo, p>)

: sum of the three bond currents

afn(/w) [( (0)) <./lw0 Jm —w,0 ~B +A/m] )



THE OPTICAL CONDUCTIVITY FOR U = 0:

THEORETICAL PREDICTIONS

o Stauber, Peres, Geim PRB (2008)

lim lim of (w+i0%) =6 e’
im lim_ ol (w+i07) = Gjmo 00 = ——
W0 B Im ImY0 0 2%h
Universal conductivity (t independent) for w small and
greater than 37 1. Finite as the density of states is
vanishing.



THE OPTICAL CONDUCTIVITY: EXPERIMENTS

Nair et al. Science (2008). The conductivity in a frequency
range Sl << w << tis op = ’;—f (universality) up a few
percent (In the same range the conductivity for N-layer

graphene is o¢ = N”z—f up a few percent.)
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They measure the transparency T of light and from that the
conductivity T(w) = 1/[(1 4 2ro(w)]? (in the fig. called

G((w)). Between 2 and 3 eV 2 = 1.01 4 0.03
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EXPERIMENTS AND SOME PUZZLE

o The electron-electron interaction is large e?/ Av2 ~ 2.18
Why the conductivity is universal, that is there is no an
essential many body renormalization in the conductivity?

o Exacerbating the problem, in other experiments the
interaction appear. Ellis et al Nat. Mat. (2011): the
Fermi velocity is strongly enlarged by the interactions at
low frequencies.

o There is a large debate in current times on the graphene
conductivity. In particular some people have found
interaction dependent corrections while others objects that
these are spurious effects due to the uv regularizations.



UNIVERSALITY OF THE CONDUCTIVITY

o Giuliani, Mastropietro. CMP 293,301 (2010); PRB(R)79,
201403 (2009); Giuliani, Mastropietro, Porta. PRB 83,
195401 (2011); CMP 311,317 (2012).

THEOREM

For |U| < Uy and any fixed w, o)) (iw) is analytic in U
uniformly in 3 and
e’r

lim lim oj,(iw) = —=0
W0+ 00 Im( ) h 2 Im

while the Fermi velocity vp = 3/2t + aU + O(U?) with
a=0511...




UNIVERSALITY OF THE CONDUCTIVITY

o Giuliani, Mastropietro. CMP 293,301 (2010); PRB(R)79,
201403 (2009); Giuliani, Mastropietro, Porta. PRB 83,
195401 (2011); CMP 311,317 (2012).

THEOREM

For |U| < Uy and any fixed w, o)) (iw) is analytic in U
uniformly in 3 and
e’

lim lim oj,(iv) = ——=
w—0t f—o0 Im( ) h 2

Otm -

while the Fermi velocity vp = 3/2t + aU + O(U?) with
a=0511...

o While the Fermi velocity and the wave function
renormalization are renormalized ve(U) > vg(0) the
conductivity is protected: radiative corrections cancel out.



PRrROOF.

o The correlation is then written as a convergent (due to
Gram bounds) tree expansion at weak coupling and , if

Kim(p) is the FT of (Jj; Jmy) and Kom(p) is the FT of
(px; Imy), from the bound

A

K,.(p) is continuous at p =0



PRrROOF.

o The correlation is then written as a convergent (due to
Gram bounds) tree expansion at weak coupling and , if
Kim(p) is the FT of (Jjx; Jmy) and Kom(p) is the FT of
(px; Im.y), from the bound

!A(W(p) is continuous at p =0

o Now the WI implies that the Drude weight is vanishing

2 . 174 S oA
o —mwh_)rr(}+ 6|me = [K,m(w, 0) — K,m(O)] )
Ki.m(p) is even: if the derivative were continuous the
conductivity vanishes. But is not. (CFR 1D K; ,, non
continuous ¢(0) = o0)



THE CURRENT-CURRENT FUNCTION

o As a result of the Renormalization Group analysis and tree
expansion

Z/

klm(p) = <JP /'-/ P, m>0 VE + R/m(p)

where (-), . is the average associated to a non-interacting
system with Fermi velocity

3
ve(U) =St +dU+.. Z,=1+aU+ bU? +

and

Rim(%,¥)| < ————7%
|I(XY)|—1+|x_y|4+9

with 0 < 6 < 1 (power counting improvement due to

irrelevance), so that IAR’,m(w, 6) is continuous and
differentiable at p = 0.
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IMPLICATIONS OF WI

@ By the lattice WI again we get relations between the bare
parameters

Z():Z, Z]_:ZZ:VFZ.

Q
K/m(p) = V/?‘@p,/;j—p,m%,v,: + R/m(P)

@ Note that Kjn(p) is even
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e Finally
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UNIVERSALITY OF THE CONDUCTIVITY

e Finally

7B U e
7=~z Jim = (Ru(,0) - Rn(0.0)

~ ~

+(VI%U(w,ﬁ),l;j(fw,a),m>07vl: - VI%UO,I;J.O,m)o’VF)} .

e The first term is differentiable and even hence vanishing,
while the first term is identical to the free one so it does
not depend from vr n
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(GRAPHENE WITH LONG RANGE INTERACTION

o In the case of graphene with Coulomb interactions it has
been predicted that again the conductivity is equal to the
non interacting case.

e This is consequence of the Fermi velocity divergence, a
rather unphysical phenomenon.

o However if we take into account retardation effects, there
is emergence of Lorentz symmetry and the Fermi velocity
flows to the light velocity (Giuliani Mastropietro Porta
Ann. Phys. 2012).

o In this case the conductivity is different from the non
interacting one, but still universal (Herbut-Mastropietro
PRB 2013) does not depend from the material
parameter.[Results order by order in the perturbative
expanasion|
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CONCLUSION

e Solid state physics provide realization of QFT models at
low dimensions and with cut-offs.

o Rigorous RG methods allow the proof of several
universality properties.

o Lattice effects are important even if they are irrelevant in
the RG sense.

o (Non trivial) extensions would include finite temperature
effects (role of integrability) and disorder.



