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Spin systems on Zd with continuous symmetry .

Motivation: Spectral Theory of Random Band Matrices

Examples: j ∈ Zd ∩ Λ, Λ = Large Cube of side L

sj ∈ Unit circle, X − Y model , O(2)

sj ∈ Unit Sphere, Classical Heisenberg , O(3)

sj ∈ H2, Hyperbolic plane = SU(1, 1)/U(1)

sj ∈ H(2|2) = SUSY Hyperbolic sigma model

sj ∈ U(1, 1|2)/[U(1|1)× U(1|1)] = Efetov Sigma model .

To Describe Ordered Phase at Low Temperature - 3D



Outline of Lecture .

A) Review of X-Y and Heisenberg models

B) Conjecture: Universality of Mean Field Theory

Symmetry governs the low temperature phase - 3D

Wigner-Dyson Universality of local eigenvalue correlations

Kravstov-Mirlin (’94) finite volume corrections to W-D.



C) Gaussian Random Band Matrices: Hjk , j , k ∈ Λ ∩ Zd .

ZΛ(β) ≈< det(HΛ − E )2 >

β = W 2ρ(E )2, Hjk ≈ 0 for |j − k | �W = band width.

ZΛ(β) = partition function for Heisenberg Model.



D) SUSY H2|2 model - due to Zirnbauer (’91)

DSZ (10): ”Anderson-like” transition in 3D. -
Localization-Diffusion.

Sabot and Tarres H2|2 equivalent to: VRJP
Vertex Reinforced Jump Process

Edge Reinforced Random Walk equivalent to H̃ 2|2

Speculations about exponential localization in 2D.



History dependent walks and SUSY

Linearly edge reinforced random walk (ERRW), is a discrete
time walk on Zd starting at the origin. Let n(e, t) denote the
number of times the walk has visited the edge e up to time t.

The probability P(j , j ′; t + 1) walk at vertex j will visit a
neighboring edge (j , j ′) at time t + 1 is given by

P(j , j ′; t + 1) = [1 + n(j,j’;t)/β]/Sβ(j , t)

Sβ =
∑
e, j∈e

[1 + n(e,t)/β]

P. Diaconis: Partiallly exchangeable process ≈ RWRE

VRJP is similar but depends on local time at vertices.



X-Y and Heisenberg models on ΛL ∩ Zd

ZΛ(β) ≡
∫

eβ
∑Λ

j∼j′ sj ·sj′
∏
j∈Λ

dµ(sj)

dµ(s) is Haar measure on S1 or S2, Λ = periodic box.

〈A 〉Λ(β) ≡ 1

ZΛ(β)

∫
A eβ

∑Λ
j∼j′ sj ·sj′

∏
j∈Λ

dµ(sj)

M2
Λ(β) ≡ |Λ|−2

∑
j ,k∈Λ

〈 sj · sk 〉Λ(β)



Order in 3 dimensions, β � 1, [FSS (’76)],

M2
Λ(β)→ M2(β) ≈ 1− n − 1

β
G (0, 0) as L→∞ .

where G is the Green’s function for −∆; n=2 , n=3

Proofs: Reflection Positivity, RNG (Balaban), Fourier Analysis +
Ginibre for O(2) case

Order for 3D SUSY H2|2 [DSZ].

Proof: SUSY Ward Identities Z (β) ≡ 1, estimates for
non-uniformly elliptic Random Walk. Induction on length scales.



Mermin-Wagner: In 2D, MΛ(β)→ 0 as L→∞

The 2D X-Y model has power law decay for β � 1:

[Fr − Sp] : 〈s0 · sx〉(β) ≈ 1

|x |1/(2πβ̄)

Conjecture: At βc , 〈s0 · sx〉(βc) ≈ 1
|x |1/4 , KT transition.

Remarks: The 2D X-Y model is dual to the 2D Coulomb gas:
vortices ≈ charges.

Falco ’11 analyzes the dilute 2D Coulomb gas at βc - RNG.



Polyakov Conjecture for 2D Heisenberg:

〈s0 · sj〉(β) ≈ e−|x |/`(β), `(β) ≈ eCβ � 1

Conjecture: The 2D H2|2, and Edge Reinforced Random Walk
are exponentially localized.

Pin cjj ′ = 1 for j = 0, where cjj ′ = local conductance j ∼ j ′

For 2D ERRRW, Merkl-Rolles:

0 ≤< c
1/4
jj ′ >≤ C |j |−1/cβ .

Exponential decay?



3D Mean Field Conjecture

Let ξ ∈ Rn, and ΛL ⊂ Z3, periodic cube side L→∞

〈e
1
|Λ|
∑

j∈Λ ξ·sj〉(β)→
∫

Sn−1
eML(β) ξ·s 0dµ(s 0)

Correction: × exp [ C |ξ|2
β̄2L2(d−2) ] - Free Field

Interpretation: Law of Large Numbers with CLT correction.

D. Ueltchi: Related conjecture for Quantum Heisenberg:
Poisson-Dirichlet process - coagulation - fragmentation of long
permutation cycles.



Remarks

1) Valid to second order in ξ by definition.

2) Formal derivation for SUSY Efetov model - Kravtsov-Mirlin
Spin Wave analysis about ordered state. Wigner - Dyson

M ≈ ρ(E ) and β̄L(d−2) = conductance.

3) Valid for X-Y for almost all β [Fröhlich, Fr-Pfister]
with Correction ≈ 1/βL(d−2)

4) Conjecture does not depend on sigma approximation - φ4 OK.



Sketch of proof [Fröhlich]:

For the X-Y model, the infinite volume state: 〈 · 〉

〈exp{ 1

|Λ|
∑
j∈Λ

ξ · sj}〉(β) =

∫
〈exp{ 1

|Λ|
∑
j∈Λ

ξ · sj}〉(β, s0)dµ(s0)

where s 0 labels the pure states. Note

〈ξ · sj〉(β), s 0) = M ξ · s0

Correction: Vars 0{L−d
∑

j sj · ξ} ≤
C

βL(d−2) - IR bounds.



Gaussian Random Band Matrices

Let H = H∗ be a random matrix indexed by j , k ∈ ΛL ∩ Zd such
that Hjk is Gaussian, 〈Hjk〉 = 0 and

〈HjkH̄j ′k ′〉 = δj ,j ′δk,k ′JW (j , k) j , k ∈ ΛL ∩ Zd

and
JW (j , k) ≡ (−W 2∆Λ + 1)−1(j , k)

≈W−1e−|j−k|/W in 1D

W is the width of the band.



The Green’s Function, Eε = E + iε

Let H denote a random band matrix, ε > 0 , W >> 1 fixed

G (Eε; j , k) ≡ (H− Eε)
−1(j , k).

Extended States, Quantum-Diffusion in 3D:

< |G (Eε; j , k)|2 >∼=
ρ(E )

−D∆ + ε
(j , k) ≈ C (|j − k|+ 1)−1

for j , k Z3 and |E | ≤ 1.9, ρ(E ) = density of states.

Localization :

< |G (Eε; j , k)|2 >∼= ε−1 e−|j−k|/`(E)



Conjecture: In 1D, if W 2 � L,

Then local pair correlation for RBM = Mean Field GUE.

Theorem [T. Shcherbina]: 1D case

If W 2 � L, and −2 < E < 2, then as L→∞

R ≡ 〈det(H − E +ξ/Lπρ) det(H − E−ξ/Lπρ)〉
〈det(H − E )2〉

→
∫

S2
e iξ·s 0dµ(s 0) =

sin|ξ|
ξ

where ρ = ρ(E )

Conjecture: In 3D Result holds for fixed large W.
Remark: There are simple corrections for non Gaussian case.



Sketch of proof :

Let ψ, ψ̄, and χ, χ̄ be anti commuting Grassmann variables.

Det(H − E ) =

∫
e−

∑
jk∈Λ ψ̄j (Hjk−Eδjk )ψj Dψ

If H is Gaussian band matrix we can intergrate over H to get

〈Det(H − E )2〉 =

∫
e−

∑
jk [Jjk trMjMk−EMjδjk ] DψDχ

where Mj =

(
ψ̄jψj ψ̄jχj

χ̄jψj χ̄jχj

)
.

Let Xj be 2× 2 hermitian matrices - dual to M.



then by Hubbard Stratonovich we have

〈Det(H − E )2〉

=

∫
e−

1
2

∑Λ
j [W 2tr(∇X )2

j +trX 2
j ]
∏

j

det(Xj − iE )dXj

For large W saddle point dominates:

Xj ≈ U∗j diag(ρ(E ),−ρ(E )) Uj U ∈ SU(2)

In this approximation we have a Heisenberg model with

Xj = ρ(E )sj , sj ∈ S2, β = W 2ρ(E )2



SUSY Statistical Mechanics - Efetov

Averages of Green’s functions can be rigorously written as
correlations of SUSY Statistical Mechanics - duality.

The spins in SUSY models are 4 by 4 matrices Φj which have 8
real components and 8 anticommuting components.

The action A(Φ) has SU(1, 1|2) invariance -

Hyperbolic and Heisenberg models are coupled.

Advantages: Randomness can be integrated out. A finite
dimensional Saddle manifold dominates the integral.
Nonperturbative analysis, Symmetries manifest.



Efetov SUSY sigma model - One Dimension

Let hj ∈ H2 and σj ∈ S2 be spins in hyperboloid and sphere.

The Gibbs weight is proportional to

L∏
j=0

(hj · hj+1 + σj · σj+1) eβ(σj ·σj+1−hj ·hj+1).

Where hj = (xj , yj , zj) satisfy z2
j − x2

j − y 2
j = 1 and

h · h′ = zz ′ − xx ′ − yy ′.

It is convenient to parameterize this hyperboloid with
horospherical coordinates s, t ∈ R:

z = cosh t + s2et/2, y = sinh t − s2et/2, x = set .

Theorem [Dis-S] Conductance ≈ e−L/β, β = ρ(E )2W 2.



H2|2 supersymmetric hyperbolic model on Zd

Simplified model of Anderson localization - delocalization.

The spins lie on a hyperboloid with Grassmann components:

sj = (zj , xj , yj , ψ̄j , ψj) with sj · sj = 1

s · s ′ ≡ zz ′ − xx ′ − yy ′ − 2ψ̄ψ′

Nearest Neighbor interaction with small magnetic field ε > 0

e−β
∑Λ

j,j′ sj ·sj′e−ε
∑Λ zj

Correlation: Note (ε ≈ imaginary part of energy)

Gε(j , k) ≡ 〈yjyk〉(β, ε)



Localization - Diffusion transition for H2|2 in 3D

Disertori, Sp, Zirnbauer (2010): In infinite volume limit

For β � 1 diffusion in 3D,

Gε(j , k) ≈ (−D∆ + ε)−1(j , k)

For 0 < β � 1, localization:

Gε(j , k) ≤ C

ε
e−|j−k|/`

uniformly as ε ↓ 0



H2|2 as a Random Walk in Random Environment

Let tj ∈ R, j ∈ Λ ∩ Zd . Define elliptic operator D

[v ; Dβ,ε(t) v ]Λ ≡ β
∑

(j ∼j ′)
etj+tj ′ (vj − vj ′)

2 +
∑

k∈Λ
εk e

tk v 2
k .

The local conductance = etj+tj′ for j ∼ j ′.

After integrating out the Grassmann variables, distribution of
random environment {tj} has Gibbs density:

e−βL(t) · [ det Dβ,ε(t)]1/2
∏
j

e−tj
dtj√
2π

where

L(t) =
∑
j∼j ′

[ cosh(tj − tj ′)− 1] +
∑
j

εj
β

[(cosh(tj)− 1].



Behavior of local conductance

In 3D, for β � 1, moments of the conductance are bounded

〈ep(tj+tj′ )〉(β, ε) ≤ C p = ±2,±4

uniformly in ε. - Ordered, Diffusive phase

Localization follows from exponential decay of the conductance

〈e(tj+tj′ )/4〉 ≤ e−|j |/` for |j | � 1.

Merkl-Rolles: In 1D strip, ` ≈ width of strip, In 2D power law
decay - ERRW. Mermin Wagner.

Conjecture: In 2 Dimensions localization holds for all β <∞ for
ERRW and H2|2.



Control t fluctuations via SUSY Ward identities

For Example for any ` > 1,

< coshm(t0 − t`)(1− m

β
G`(t)) >= 1

where G` is the Green’s function of D(t) :

G`(t) ≈ et0+t` ((δ0 − δ`), {Dβ,ε(t)}−1(δ0 − δ`))

If 0 ≤ G`(t) ≤ C, then for Cm < β

< coshm(t0 − t`) >≤ (1− Cm

β
)−1

Implies that t - fluctuations at scale ` are small for large β.



2D localization for H2|2 ??

A) ERRW and VRJP are attractve. 2D RW is recurrent so
attractiveness is enhanced.

B) The 2D saddle point (minimum) in t of H2|2 exhibits
localization - conductance goes to 0 exponentially fast.

C) The Hessian in at t ≈ 0 is given by:

−β
∑
j

(∇tj)
2 +

∑
j ,k

(∇tj) J(j − k) (∇tk)

where

J(j − k) = [∇G0(j , k)]2 ≈ 1

|j − k|2(d−1)

Log divergent sum in 2D ! effective β → 0 in 2D.



Comments

A) Need more robust techniques to prove and analyze continuous
symmetry breaking. Simple O(2) models should be analyzed in
more detail.

B) Can ERRW or VRJP analyzed directly without SUSY?

Direct probabilistic methods may offer insights into 2D localization
and the Anderson phase transition in 3D.

At present there there is little understanding of transition for
ERRW or H2|2 in 3D. Probably no upper critical dimension and
Multi-fractal.


