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1. The Quantum Random Energy Model

Hamming cube: QN := {−1, 1}N

configuration space of N spins

Laplacian on QN : (−∆ψ)(σ) := Nψ(σ)−
∑N

j=1 ψ(Fjσ)

Spin flip: Fjσ = (σ1, . . . ,−σj , . . . , σN )

Hence the Laplacian acts as a transversal magnetic field: −∆ = N −
∑N

j=1 σ
x
j

Eigenvalues: 2|A|, A ⊂ {1, . . . ,N} Degeneracies:
(

N
|A|

)
Normalized Eigenvectors: fA(σ) = 1√

2N
∏

j∈A σj

Perturbation by a multiplication operator U:

H = −∆ + κU

U = U(σz
1 , . . . , σ

z
j ); Coupling constant κ ≥ 0; ‖U‖∞ ≈ O(N)

In this talk: U(σ) =
√

N g(σ) with {g(σ)}σ∈QN
i.i.d. standard Gaussian r.v. REM



Predicted properties of the QREM

Predicted low-energy spectrum:

Ĥ = Γ (−∆− N) + U/
√

2, i.e. κ = (
√

2 Γ)−1

Jörg/Krzakala/Kurchan/Maggs ’08

First order phase transition of the ground state at κc = 1√
2 ln 2

:

κ < κc : Extended ground state with non-random ground-state energy

E0 = −κ2 + o(1)

κ > κc : Low lying eigenstates are concentrated on lowest values of U.

In particular: E0 = N + κ min U +O(1)

κ = κc : Energy gap ∆min = E1 − E0 vanishes exponentially in N

Main aim in this talk: explain some of the above features!



Some heuristics

Known properties of the REM: U(σ) =
√

N g(σ)

Except for events of exponentially small probability:

U0 := min U = −κ−1
c N +O(ln N)

The extreme values U0 ≤ U1 ≤ . . . form a Poisson process

about −κ−1
c N +O(ln N) with intensity e−κcx dx .

Perturbation theory:

Fate of localized states: 〈δσ,Hδσ〉 = N + κU(σ).

Fate of delocalized states: 〈fA ,U fA〉 = 1
2N

∑
σ U(σ) = O(

√
N 2−N/2).



More motivations and related questions

1. Adiabatic Quantum Optimization: Farhi/Goldstone/Gutmann/Snipser ’01, . . .

Question: Find minimum in a complex energy landscape U(σ)

e.g. REM, Exact Cover 3, . . .

Idea: Evolve the ground state through adiabatic quantum evolution, i.e.
i ∂tψt = H(t/τ)ψt generated by

H(s) := (1− s)(−∆) + s U , s ∈ [0, 1]

Required time : τ ≈ c ∆−2
min

2. Mean field model for localization transition in disordered N particle systems
Altshuler ’06

3. Evolutionary Genetics: Rugged fitness landscape for quasispecies . . .

Schuster/Eigner ’77, Baake/Wagner ’01, . . .



2. Low-energy regime of the QREM in case κ < κc

Theorem (Case κ < κc)

Except for events of exponentially small probability, the eigenvalues of H
strictly below

(
1− κ

κc
− δ
)

N are within balls centred at

2n − κ2

1− 2n
N

, n ∈ N0 ,

of radius O
(

N−
1
2 +δ
)

with δ > 0 arbitrary.

There are exactly
(N

n

)
eigenvalues in each ball and their eigenfunctions are

delocalized:

‖ψE‖2
∞ ≤ 2−N eΓ( xE

2 )N

where Γ(x) := −x ln x − (1− x) ln(1− x) and xE := E
N + κ

κc
+ δ.



Sktech of the proof – delocalization regime

Step 1: Hypercontractivity of the Laplacian

|ψE (σ)|2 ≤ 〈δσ ,P(−∞,E ](H) δσ〉 = inf
t>0

etE〈δσ , e−tH δσ〉

= inf
t>0

et(E−κU0)〈δσ , et∆ δσ〉 = 2−N eΓ( xE
2 )N .

Step 2: Reduction of fluctuations

Illustration for the ground state energy E0(g) = inf‖ψ‖2=1〈ψ ,H ψ〉
Lipschitz continuity of as a function of the 2N Gaussian random variables g

E0(g′)− E0(g) ≤ κ
√

N
∑
σ

|g′(σ)− g(σ)| |ψ0(σ)|2

≤ κ
√

N ‖ψ0‖2
4 ‖g − g′‖2 ≤ κ

√
N ‖ψ0‖∞ ‖g − g′‖2

≤ κ
√

N 2−
N
2 eΓ

( x0
2

)
N
2 ‖g − g′‖2 .

Hence E0 is identically distributed to κ
√

N 2−
N
2 eΓ

( x0
2

)
N
2 times a 1-Lipschitz

function of one normalized Gaussian.



Sktech of the proof – delocalization regime

The complete proof uses concentration of measure inequality à la Talagrand:

Lemma

There exist constants C, c <∞ such that for any ε > 0 and any λ > 0:

P

(∣∣‖PεUPε‖ − E [‖PεUPε‖]
∣∣ > λ

√
dim Pε

2N

)
≤ C e−cλ2

E [‖PεUPε‖] ≤ C N

√
dim Pε

2N

where Pε := 1− 1[N(1−ε),N(1+ε)](−∆) and ε = N−
1
2 +δ.

Step 3: Schur complement formula

Pε (H − z)−1 Pε =
(

PεHPε − z − κ2PεUQε (QεHQε − z)−1 QεUPε
)−1



2. Low-energy regime of the QREM in case κ ≥ κc

Main idea: Geometric decomposition

For energies below Eδ :=
(

1− κ
κc

+ δ
)

N the localized eigenstates originate
in large negative deviation sites:

Xδ :=

{
σ |κU(σ) < − κ

κc
N + δN

}

For δ > 0 small enough and except for events of exponentially small probability (e.e.p.):

Xδ consists of isolated points which are separated by a distance greater than
2γN with some γ > 0.

On balls Bγ,σ := {σ′
∣∣ dist(σ, σ′) < γN} the potential is larger than−εN

aside from at σ.



Low-energy regime of the QREM in case κ ≥ κc

Theorem (Case κ ≥ κc)

E.e.p. and for δ > 0 sufficiently small, there is some γ > 0 such that all
eigenvalues of H below Eδ =

(
1− κ

κc
+ δ
)

N coincide up to an exponentially
small error with those of

Ĥδ := HR ⊕
⊕
σ∈Xδ

HBγ,σ .

where R := QN\
⋃
σ∈Xδ

Bγ,σ.

Low energy spectrum of HR looks like H in the delocalisation regime

Low energy spectrum of HBγ,σ is explicit . . .



Some spectral geometry on Hamming balls

Known properties of Laplacian on Bγ,σ:

E0(−∆Bγ,σ ) = N(1− 2
√
γ(1− γ)) + o(N)

Adding a large negative potential κU at σ and some more moderate
background elsewhere, rank-one analysis yields:

E0(HBγ,σ ) = N + κU(σ)− sγ(N + κU(σ)) +O(N−1/2)

where sγ is the self-energy of the Laplacian on a ball of radius γN.

for the corresponding normalised ground state:∑
σ′∈∂Bγ,σ

∣∣ψ0(σ′)
∣∣2 ≤ e−Lγ N for some Lγ > 0.

|ψ0(σ)|2 ≥ 1−O(N−1)

HBγ,σ has a spectral gap of order N above the ground state.



3. Summary and outlook

1 Complete description of the low-energy spectrum of the QREM

. . . and generalisations to non-gaussian r.v.’s

2 Ground-state phase transition at κ = κc with an exponentially closing
gap.

Low-energy spectrum:

Ĥ = Γ (−∆− N) + U/
√

2, i.e. κ = (
√

2 Γ)−1

Jörg/Krzakala/Kurchan/Maggs ’08



3. Summary and outlook

Existence of resonance delocalization for eigenvalues in gaps of Laplacian
for intermediate energies

Project with M. Aizenman and M. Shamis (Princeton)

Eigenstates in the spectral gaps of the Laplacian will form delocalized states. They are however not uniformely

extented over the Hamming cube and are presumably another example of what physicists now call non-ergodic

extended states.

Inspired by: M.A., S.W.: Resonant delocalization for random Schrödinger operators on tree graphs, JEMS (2013)

Regular tree graph B with coordination number K + 1 ≥ 3:

H = −∆ + λ g on `2(B).

Spectral phase diagram:

extended states

Appearance of extended states

within the `1-spectrum of−∆


