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FQHE

One of the most striking phenomena in condensed matter physics
is the Fractional Quantum Hall Effect (FQHE) for charged fermions
in strong magnetic fields that still, after decades of research,
poses many unresolved questions.
It has been recognized for some time that bosonic analogues of
the FQHE can be studied in cold quantum gases set in rapid
rotation in harmonic traps: There is a transition from an
uncorrelated Hartree states to strongly correlated many-body
states such as as the Laughlin wave function when the rotational
velocity approaches the frequency of the trap.
I shall focus on one aspect of the Quantum Hall Physics of cold
bosons: The emergence of strongly correlated many-body states
in anharmonic traps through appropriate tuning of the parameters
and changes in the properties of these states as the parameters
are varied.
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Hamiltonian

The Hamiltonian for N spinless bosons in a rotating frame with angular
velocity Ω = Ωe3 is

H3D =

N∑
j=1

(
−1

2∆j + V (xj)− Lj ·Ω
)

+
∑

1≤i<j≤N
v(|xi − xj |).

Here xj ∈ R3, L = −i x ∧∇ is the angular momentum operator, V is a
confining external potential and v the interaction potential. Units are
chosen so that ~ = m = 1.

We are interested in ground state properties of H3D
N for large N .
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Hamiltonian (cont.)

An interesting situation occurs when V is a quadratic potential in the
direction ⊥ to the rotation axis

V (x) = 1
2Ω2
⊥r

2 + V ‖(x3)

with r2 = x2
1 + x2

2 and the angular velocity Ω approaches the
frequency of the potential Ω⊥ from below.

It is useful to write the Hamiltonian in a ‘magnetic’ form:

H3D =

N∑
j=1

{
1
2(i∇j + A(xj))

2 + ω e3 · Lj + V ‖(x3)
}

+
∑
i<j

v(|xi − xj |)

where A(xj) = Ω⊥(x2,−x1, 0) and

ω = Ω⊥ − Ω > 0
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LLL and Bargmann Space

For ω � min{Ω⊥, gap in x3-direction} the ground state state becomes
effectively 2D and restricted to the Lowest Landau Level (LLL) of the
magnetic Laplacian with energy zero (after subtraction). We choose
units so that Ω⊥ = 1.

The relevant Hilbert space is the Bargmann space BN of symmetric,
analytic functions φ of z1, . . . , zN ∈ C such that∫

CN

|φ(z1, . . . , zN )|2 exp
(
−

N∑
j=1

|zj |2
)

d2z1 · · · d2zN <∞.

The ‘free’ part of the Hamiltonian in the LLL is (up to a constant)

ωLN
with the angular momentum operator

LN =

N∑
i=1

zi∂zi .
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Contact interaction

For short range, nonnegative interaction potentials v Lewin and
Seiringer (2009) have shown that for ωa� 1, with a the scattering
length of v, the motion is, indeed, restricted to the 2D LLL, and
moreover that v(xi − xj) can be replaced by gδ(zi − zj) with

g ∼ aΩ
1/2
‖ > 0

Such a potential is perfectly acceptable for analytic functions and is
even given by a bounded operator on the Bargmann space:

Define δ12 on B2 by

δ12φ(z1, z2) =
1

(2π)3/2
φ
(

1
2(z1 + z2), 1

2(z1 + z2)
)
.

Then a computation using the analyticity of φ shows that

〈φ, δ12〉 =

∫
C
|φ(z, z)|2 exp(−2|z|2) d2z.
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Yrast spectrum

The Hamiltonian on Bargmann space is now (apart from a constant)

HN = ωLN + g IN
with

LN =

N∑
i=1

zi∂i IN =
∑
i<j

δij

Notable feature: The operators LN and IN commute. The lower
boundary of (the convex hull of) their joint spectrum is called the Yrast
curve.
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Gaps

For every value of the angular momentum L the interaction operator
IN has a nonzero spectral gap

∆(L) = inf{spec IN �LN=L \{0}} > 0

The gap, and hence the Yrast curve, are monotonously decreasing
with L. Reason: the angular momentum of an eigenstate of IN can be
increased by one unit by multiplying with the center of mass coordinate
(z1 + · · ·+ zN )/N .
There is numerical and some theoretical evidence that

∆(L) ≥ ∆(N(N − 1)−N) ≥ C ≡ ∆ > 0

for all L independently of N but this is still not proved.
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Passage to the Laughlin state

For a given ratio ω/g the angular momentum and interaction energy of
the ground state(s) ψ0 is determined by the point(s) on the Yrast curve
where a supporting line has slope −ω/g.

For |ω|/g � 1/N , ψ0 is an uncorrelated Hartree state for large N (Lieb,
Seiringer, JY, 2009)

If |ω|/g < ∆/N2 one reaches the Laughlin state, whose wave function
in Bargman space is

ψLaughlin(z1, . . . , zN ) = c
∏
i<j

(zi − zj)2.

It has interaction energy 0 and angular momentum N(N − 1).

The limit ω → 0 keeping ω > 0 is experimentally very delicate, however.
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Anharmonic potential

For stability but also to study new effects we consider now a
modification of the Hamiltonian:

H3D → H3D + k

N∑
i=1

|zi|4

with a new parameter k > 0. The potential |z|4 can be expressed
through L and L2 on Bargmann space and the Hamiltonian can be
written (up to an additive constant)

HN = (ω + 3k)LN + k

N∑
i=1

L2
(i) + g IN
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Powers of angular momentum are equivalent to
powers of |z|2.

With L = z∂ on the Bargmann space B we have by partial integration,
using the analyticity of ϕ,

〈ϕ,Lϕ〉 =

∫
|ϕ(z)|2(|z|2 − 1) exp(−|z|2) d2z

and

〈ϕ,L2ϕ〉 =

∫
(|z|4 − 3|z|2 + 1)|ϕ(z)|2 exp(−|z|2) d2z
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Anharmonic potential (cont.)

Another viewpoint: Consider the energy as a functional on the LLL
Hilbert space ⊂ L2(C) consisting of wave functions of the form
Ψ = ψ(z1, . . . , zN ) exp(−

∑
j |zj |2/2), ψ ∈ BN :

E [Ψ] =

∫
Vω,k(z)ρΨ(z) + 〈Ψ, INΨ〉

where ρΨ is the one-particle density of Ψ with the normalization∫
ρΨ(z) d2z = N and the potential is

Vω,k(z) = ω |z|2 + k |z|4.

Note that ω < 0 is allowed provided k > 0.
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Fully correlated states

We shall call states Ψ ∈ ker IN fully correlated. These are states of the
form

Ψ(z1, ...zN ) = φ(z1, . . . , zN )ΨLaugh(z1, ...zN )

with φ symmetric and analytic, and the Laughlin state

ΨLaugh(z1, ...zN ) = c
∏
i<j

(zi − zj)2 e−
∑N

j=1 |zj |2/2.

For the Hamiltonian without the anharmonic addition to the potential
the Laughlin state is an exact ground state This is not true for k 6= 0
because

∑N
i=1 L2

(i) does not commute with IN .

Note, however, that LN still commutes with the Hamiltonian.
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Criterion for strong correlations in the ground state Ψo

THEOREM 1. ∥∥∥PKer(IN )⊥Ψ0

∥∥∥→ 0

in the limit N →∞, ω, k → 0 if one of the following conditions hold:
ω ≥ 0 and ωN2 + kN3 � g ∆.

0 ≥ ω ≥ −2kN and N(ω2/k) + ωN2 + kN3 � g ∆.

ω ≤ −2kN , |ω|/k . N2 and kN3 � g ∆

ω ≤ −2kN , |ω|/k � N2 and |ω|N � g ∆

Note: For k = 0 the first item is just the condition for the passage to the
Laughlin state, while the other conditions are void because ω < 0 is
only allowed if k > 0.
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Trial States

Apart from a simple lower bound, the essential ingredient of the proof
of the theorem is an upper bound to the energy of trial states of the
form ‘giant vortex times Laughlin’, namely, with m ≥ 0 and cm,N a
normalization constant,

Ψ(m)
gv (z1, . . . , zN ) = cm,N

N∏
j=1

zmj
∏
i<j

(zi − zj)2 e−
∑N

j=1 |zj |2/2

For small m these are Laughlin’s ‘quasi hole’ states. For m & N , i.e.,
mN & N2= angular momentum of the Laughlin state, there label ‘giant
vortex’ appears more appropriate.
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Optimal Choice of m

The energy of the trial states can be estimated using properties of the
angular momentum operators and the radial symmetry in each variable
of
∏N

j=1 |zj |2m× the gaussian measure. Optimizing the estimate over
m leads to

mopt =

{
0 if ω ≥ −2kN
|ω|
2k −N if ω < −2kN.

This is consistent with the picture that the Laughlin state is an
approximate ground state in the first two cases of Theorem 1, in
particular for negative ω as long as |ω|/k . N . The angular
momentum remains O(N2) in these cases.
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Transitions at |ω|/k ∼ N and at |ω|/k ∼ N 2

When ω < 0 and |ω|/(kN) becomes large the angular momentum is
approximately Lqh = O(N |ω|/k)� N2, much larger than for the
Laughlin state.

A further transition at |ω|/k ∼ N2 is manifest through the change of the
subleading contribution to the energy of the trial functions. Its order of
magnitude changes from O(kN3) to O(|ω|N) at the transition.

To obtain further insights into the physics of the transition we consider
the density of the trial wave functions.
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The N -particle density as a Gibbs measure

We denote (z1, . . . , zN ) by Z for short and consider the scaled N
particle density (normalized to 1)

µN,m(Z) := NN
∣∣∣Ψ(m)

gv (
√
NZ)

∣∣∣2 .
We can write

µN,m(Z) = Z−1
N,m exp

 N∑
j=1

(
−N |zj |2 + 2m log |zj |

)
− 4

∑
i<j

log |zi − zj |


= Z−1

N,m exp

(
− 1

T
HN,m(Z)

)
,

with T = N−1 and

HN,m(Z) =

N∑
j=1

(
−|zj |2 +

2m

N
log |zj |

)
− 4

N

∑
i<j

log |zi − zj |.
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Plasma analogy and mean field limit

The Hamiltonian HN,m(Z) defines a classical 2D Coulomb gas
(‘plasma’) in a uniform background of opposite charge and a point
charge (2m/N) at the origin, corresponding respectively to the −|zi|2
and the 2m

N log |zj | terms.

The probability measure µN,m(Z) minimizes the free energy functional

F(µ) =

∫
HN,m(Z)µ(Z) + T

∫
µ(Z) logµ(Z)

for this Hamiltonian at T = N−1.

The N →∞ limit is in this interpretation a mean field limit where at the
same time T → 0. It is thus not unreasonable to expect that for large
N ,

µN,m ≈ ρ⊗N

with a one-particle density ρ minimizing a mean field free energy
functional.
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Mean field limit (cont.)

The mean field free energy functional is defined as

EMF
N,m[ρ] :=

∫
R2

Wm ρ+ 2

∫ ∫
ρ(z) log |z − z′|ρ(z′) +N−1

∫
R2

ρ log ρ

with
Wm(z) = |z|2 − 2

m

N
log |z|.

It has a minimizer ρMF
N,m among probability measures on R2 and this

minimizer should be a good approximation for the scaled 1-particle
density of the trial wave function, i.e.,

µ
(1)
N,m(z) :=

∫
R2(N−1)

µN,m(z, z2, . . . , zN )d2z2 . . . d
2zN .
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The Mean Field Limit Theorem

H. Spohn and M. Kiessling have previously studied such mean field
limits, using compactness arguments. For our purpose, however, we
need quantitative estimates on the approximation of µ(1)

N,m by ρMF
N,m.

THEOREM 2
There exists a constant C > 0 such that for large enough N and any
V ∈ H1(R2) ∩W 2,∞(R2)∣∣∣∣∫

R2

(
µ

(1)
N,m − ρ

MF
N,m

)
V

∣∣∣∣ ≤ C(logN/N)1/2‖∇V ‖L1 + CN−1‖∇2V ‖L∞

if m . N2, and∣∣∣∣∫
R2

(
µ

(1)
N,m − ρ

MF
N,m

)
V

∣∣∣∣ ≤ CN−1/2m−1/4‖V ‖L∞

for m� N2.
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Ingredients of the Proof of Theorem 2

The proof of Theorem 2 is based on upper and lower bounds for the
free energy.
For the upper bound one uses ρMF⊗N as a trial measure. The lower
bound uses:

2D versions of two classical electrostatic results: Onsager’s
lemma, and an estimate of the change in electrostatic energy
when charges are smeared out.
The variational equation associated with the minimization of the
mean field free energy functional.
Positivity of relative entropies, more precisely the
Cszizàr-Kullback-Pinsker inequality

The estimate on the density (for m . N2) follows essentially from the
fact that the positive Coulomb energy D(µ(1) − ρMF, µ(1) − ρMF) is
squeezed between the upper and lower bounds to the free energy.
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Use of Theorem 2

The use of Theorem 2 is threefold:

It provides a picture of the one-particle density of the trial states.

Approximating the energy of the trial functions by∫
Vω,k(z)ρMF

N,m(z)d2r

with an optimal m improves the previous energy estimates
computed by angular momentum considerations.

Estimating the energy with the aid of the angular momentum
operators requires potentials of a special form. The ‘density
method’ is more general.

Jakob Yngvason (Uni Vienna) Quantum Hall Phases 24 / 28



Asymptotic Formulas for the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas
for the mean-field density: If m ≤ N2, then ρMF

m is well approximated
by a density ρ̂MF

m that minimizes the mean field functional without the
entropy term. It takes a constant value (2π)−1 on an annulus with inner
and outer radia R− = (m/N)1/2 and R+ = (2 +m/N)1/2 and is zero
otherwise. The constant value is a manifestation of the
incompressibility of the density of the trial state.

For m & N2 the entropy term dominates the interaction term∫ ∫
ρ(z) log |z − z′|ρ(z′). The density is well approximated by the

gaussian ρth(z) = (πm!)−1|z|2m exp(−|z|2) that is centered around√
m.
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Phases

As the parameters ω and k tend to zero and N is large the qualitative
properties of the optimal trial wave functions thus exhibit different
phases:

The state changes from a pure Laughlin state to a modified
Laughlin state with a ‘hole’ in the density around the center when
ω is negative and |ω| exceeds 2kN .

A further transition is indicated at |ω| ∼ kN2. The density profile
changes from being ‘flat’ to a Gaussian.
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µ(1)

r/
√
N

ω/k ≥ −2N

µ(1)

r/
√
N

ω < 0, N � |ω|/k � N2

µ(1)

r/
√
N

ω < 0, |ω|/k � N2
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Summary and conclusions

We have studied a rotating Bose gas in a quadratic plus quartic
trap where the rotational frequency can exceed the frequency of
the quadratic part of the trap.
Through the analysis of trial states for energy upper bounds and
simple lower bounds we have obtained criteria for the ground state
to be fully correlated in an asymptotic limit. The lower bounds,
although not sharp, are of the same order of magnitude as the
upper bounds.
The density of the wave functions can be analyzed through the
plasma analogy. The character of the density changes at
|ω|/k = O(N) and again at |ω|/k = O(N2).
Sharp lower bounds, that would follow from a general proof of
incompressibility of fully correlated states, would establish the
observed crossing of optimal trial functions as a genuine quantum
phase transition.
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