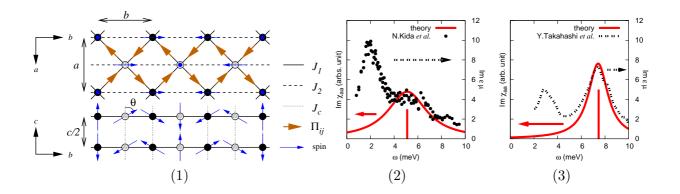
Theory of electromagnon in noncollinear magnets

Shin Miyahara¹ and Nobuo Furukawa^{1,2}


¹Multiferroics Project (MF), ERATO, Japan Science and Technology Agency (JST) ²Department of Physics and Mathematics, Aoyama Gakuin University

We propose a new mechanism to induce a novel one-magnon excitation by the electric component of light in spins with noncollinear structures, where electric fields couple to spins through the symmetric spin-dependent electric polarizations $P_S = \prod_{ij} (S_i \cdot S_j)$ [1,2].

One of the typical examples for noncollinear structures is a cycloidal spin structure, which is realized due to the frustration between nearest neighbor J_1 and next nearest neighbor interactions J_2 in classical spin systems. We adopt the mechanism to the three-dimensional frustrated Heisenberg systems (Fig.1), where cycloidal spin states are the ground state in highly frustrated parameter region, and show that the electromagnon at zone-edge can be induced by oscillating electric fields $E^{\omega}||a$. Such a zone-edge magnon excitation corresponds to the absorption observed in multiferroic perovskite manganites $RMnO_3$ [2-8] and the selection rule, *i.e.*, the strong absorption is observed only for the condition $E^{\omega}||a$, is also consistent with experimental observations. Some parts of optical spectra observed experimentally in DyMnO₃ [5] and TbMnO₃ [7] can be explained well as shown in the figures (Fig.2 for DyMnO₃ and Fig.3 for TbMnO₃).

Noncollinear structures can be realized due to the frustration generally and, thus, the absorption due to the electromagnon process likely exists in various frustrated materials.

- [1] S. Miyahara and N. Furukawa, arXiv:0811.4082
- [2] R. V. Aguilar *et al.*, Phys. Rev. Lett. **102**, 047203 (2009).
- [3] A. Pimenov et al., Nat. Phys. 2, 97 (2006).
- [4] R. V. Aguilar et al., Phys. Rev. B 76, 060404 (2007).
- [5] N. Kida *et al.*, Phys. Rev. B **78**, 104414 (2008).
- [6] N. Kida et al., J. Phys. Soc. Japan 77, 123704 (2008).
- [7] Y. Takahashi *et al.*, Phys. Rev. Lett. **101**, 187201 (2008).
- [8] J.S. Lee *et al.*, Phys. Rev. B **79**, 180403 (2009).

