A realistic spin fluctuation model for the pairing interaction in $YBCO_{6.6}$

T. Dahm¹, V. Hinkov,² S. V. Borisenko,³ A. A. Kordyuk,³ V. B. Zabolotnyy,³ J. Fink,^{3,4} B. Büchner,³ D. J. Scalapino,⁵ W. Hanke,⁶ and B. Keimer²

¹Institute for Theoretical Physics, University of Tübingen, D-72076 Tübingen, Germany ²Max-Planck-Institute for Solid State Research, D-70569 Stuttgart, Germany

³IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany ⁴BESSY, D-12489 Berlin, Germany

⁵Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA ⁶Institute for Theoretical Physics, University of Würzburg, D-97074 Würzburg, Germany

In order to make progress in a detailed understanding of the pairing mechanism in the high- T_c cuprates it is important to combine theoretical calculations with experimental data on the spin excitation spectrum and the electronic excitation spectrum. In conventional superconductors the combination of Migdal-Eliashberg theory with tunneling spectra and the phonon spectrum measured by inelastic neutron scattering (INS) has led to a convincing demonstration that pairing is mediated by phonons in these materials. Following a similar approach, in the present work we use recent experimental data of angular resolved photoemission spectroscopy (ARPES) and INS on the same single crystal of YBCO and combine them with a fully momentum and energy dependent selfconsistent theoretical calculation [1]. We show that the main characteristic structures of ARPES (kink and the peak-dip-hump feature) and the main structures in the INS spin excitation spectrum (resonance and hourglass shape) can be related with each other within a spin fluctuation exchange scenario. Our theoretical calculation provides a new interpretation of the ARPES kink and results in a high value of the superconducting transition temperature, showing that the experimentally observed spin excitation spectrum realistically can drive high-temperature superconductivity.

[1] T. Dahm *et al.*: Nature Physics 5, 217 (2009).