# ETHZUICH

# Route Choice Modelling for Cyclists on Dense Urban Networks

A. Meister, M. Felder, B. Schmid and K. W. Axhausen Institute for Transport Planning and Systems



4 Choice set generation

- MOBIS-COVID dataset [1] used to model the route choice of cyclists in Zurich, recorded through GPS-tracking app.
- Dataset includes socio-demographics and various contextual variables.
- Mixed Logit with Path-Size [2] correction, formulated in Value-of-Distance space [3].
- Choice set generation using **BFSLE algorithm [4]**, adapted to account for high network density.
- Explicit modelling of e-bikes and respective taste heterogeneity.

## 2 Data

- Raw GPS tracks, including **4500 cycling trajectories**.
- Trajectories come from a total of **100 respondents**, sample slightly male, educated, higher income.
- E-bikers more male, older, educated, higher income.
- Network sourced from OSM, enriched with gradients, traffic signals, speedlimits, traffic volume, bike path (separated from traffic) and bike lanes (mixed traffic).
- Map matching with HMM approach, post-match filtering based on divergence, F-score, speed-delta.
- 3602 regular bikes, avg. speed 15.6kmh, avg. distance 2.7km
- 830 e-bikes, avg. speed 19.5kmh, avg. distance 3.5km

- BFSLE algorithm: repeated least-cost path with iterative removal of network links.
- Problem: developed on sparse networks, link elimination not effective when using highly dense networks (parallel links, complex intersections).
- Solution: additional link-penalty method in routing cost function
- Requirements for choice sets: spatially diverse, relevant trade-offs, realistic.
- Figure 2: 5 alternatives (colors) + chosen route (white) without (left) and with (right) link-penalty method.



Fig 2: exemplary choice set with and without link-penalty



Fig 1: exemplary map matching results

## 3 Modelling

- Mixed Logit formulation with Path-size correction term.
- Utility function given by:

$$U_{int} = -1 \cdot \lambda_n^{scale} \cdot [distance_{it} + \sum_{it}^{LOS} \beta_n^{LOS} \cdot x_{it}^{LOS}] + \beta_{it}^{PS} \cdot ln(PS_{int}) + \varepsilon_{int}$$
$$\lambda_n^{scale} = exp(\beta_{scale} + \eta_n)$$

#### **5** Results

- Parameter estimates are significant and show anticipated effects analog to existing literature.
- Positive effects: bike infrastructure, speed limit 30kmh.
- Negative effects: traffic signals, gradients, traffic volumes.
- Strong and consistent effect of gradients, clear e-bike effect.
- VoD indicators derived posterior distributions conditional on interaction effects.
- Table 1 example: for avg. respondent, 1km on a bike path is perceived 36% shorter, i.e. like 640m

|                          | avg.  | male  | female | <30y. | 30-50y. | >50y. | bike  | ebike |
|--------------------------|-------|-------|--------|-------|---------|-------|-------|-------|
| bike path [km]           | -0.36 | -0.15 | -0.42  | -0.15 | -0.15   | -0.15 | -0.23 | -0.12 |
| bike lane [km]           | -0.66 | -1.00 | -0.27  | -1.00 | -1.00   | -1.00 | -1.00 | -1.12 |
| speedlimit 30 [km]       | -0.16 | 0.09  | -      | -     | 0.07    | 0.07  | -0.13 | 0.37  |
| traffic signals [n]      | 0.19  | 0.42  | 0.23   | 0.29  | 0.31    | 0.40  | 0.28  | 0.53  |
| slope 2-6% [km]          | 0.55  | 0.31  | 0.46   | 0.24  | 0.77    | -     | 0.41  | 0.09  |
| slope 6-10% [km]         | 3.11  | 1.69  | 2.58   | 3.08  | 2.44    | 1.42  | 2.51  | 1.01  |
| slope >10% [km]          | 4.33  | 2.96  | 4.38   | 7.38  | -       | -     | -     | 2.78  |
| max. traffic 1-10k [0,1] | 0.07  | 0.16  | -      | -     | -       | -     | 0.08  | 0.27  |
| max. traffic >10k [0,1]  | 0.11  | 0.07  | 0.25   | 0.09  | 0.09    | 0.09  | 0.01  | 0.15  |

Table 1: mean VoD indicators, [-] values are equivalent to avg. column

- Females: prefer separated cycling infrastructure (bike path), less gradients, less traffic volumes, analog to literature.
- Ages: shows decreasing negative effect of gradients: sample biased towards older e-bikers, effects not fully disentangled.
- E-bikers: negative effect of gradients substantially reduced, negative



- Utility function parameterized in Value-of-Distance (analog WTP) space.
- Error components capture panel effects.
- Estimated parameter represent marginal rates of substitution (of length).
- Length acts as scale parameter (beta\_scale) with imposed negative loglikelihood distribution
- Attributes modelled using normal distributions (mixed Logit), various interaction effects.
- Estimated using mixl R-package, choice set size 40, simulation of likelihood function with 5000 draws.

perception of speed limits and traffic lights.

#### **5** References

- Joseph Molloy, Thomas Schatzmann, Beaumont Schoeman, Christopher Tchervenkov, Beat Hintermann, and Kay W. Axhausen. Observed impacts of the Covid-19 first wave on travel behaviour in Switzerland based on a large GPS panel. Transport Policy, 104:43–51, 2021.
- 2. Moshe Ben-Akiva, M Scott Ramming, and Shlomo Bekhor. Route choice models. In M. Schreckenberg, editor, Human Behaviour and Traffic Networks, pages 23–45. Springer, 2004.
- 3. David A Hensher and William H Greene. Valuation of travel time savings in wtp and preference space in the presence of taste and scale heterogeneity. Journal of Transport Economics and Policy, 45(3):505–525, 2011.
- 4. Nadine Rieser-Schussler, Michael Balmer, and Kay W Axhausen. Route choice sets for very high resolution data. Transportmetrica A: Transport Science, 9(9):825–845, 2013.

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

+41 44 633 3105 info@ivt.baug,ethz.ch www.ivt.ethz.ch