EHzürich

Route Choice Modelling for Cyclists on Dense Urban Networks

A. Meister, M. Felder, B. Schmid and K. W. Axhausen Institute for Transport Planning and Systems

1 Introduction

- MOBIS-COVID dataset [1] used to model the route choice of cyclists in Zurich, recorded through GPS-tracking app.
- Dataset includes socio-demographics and various contextual variables.
- Mixed Logit with Path-Size [2] correction, formulated in Value-of-Distance space [3].
- Choice set generation using BFSLE algorithm [4], adapted to account for high network density.
Explicit modelling of e-bikes and respective taste heterogeneity.

2 Data

- Raw GPS tracks, including 4500 cycling trajectories.
- Trajectories come from a total of 100 respondents, sample slightly male, educated, higher income.
- E-bikers more male, older, educated, higher income.
- Network sourced from OSM, enriched with gradients, traffic signals, speedlimits, traffic volume, bike path (separated from traffic) and bike lanes (mixed traffic).
- Map matching with HMM approach, post-match filtering based on divergence, F-score, speed-delta.
- 3602 regular bikes, avg. speed 15.6 kmh , avg. distance 2.7 km 830 e-bikes, avg. speed 19.5 kmh , avg. distance 3.5 km

Fig 1: exemplary map matching results

3 Modelling

- Mixed Logit formulation with Path-size correction term.
- Utility function given by:

$$
\begin{aligned}
& U_{\text {int }}=-1 \cdot \lambda_{n}^{\text {scale }} \cdot\left[\text { distance }_{i t}+\sum^{L O S} \beta_{n}^{L O S} \cdot x_{i t}^{L O S}\right]+\beta_{i t}^{P S} \cdot \ln \left(P S_{\text {int }}\right)+\varepsilon_{\text {int }} \\
& \lambda_{n}^{\text {scale }}=\exp \left(\beta_{\text {scale }}+\eta_{n}\right) \\
& P S_{\text {int }}=\sum_{a \in \Gamma_{i}} \frac{l_{a}}{L_{i}} \frac{1}{\sum_{j \in C_{n t}} \delta_{a j}}
\end{aligned}
$$

- Utility function parameterized in Value-of-Distance (analog WTP) space.
- Error components capture panel effects.
- Estimated parameter represent marginal rates of substitution (of length).
- Length acts as scale parameter (beta_scale) with imposed negative loglikelihood distribution
- Attributes modelled using normal distributions (mixed Logit), various interaction effects.
- Estimated using mixl R-package, choice set size 40, simulation of likelihood function with 5000 draws.

4 Choice set generation

- BFSLE algorithm: repeated least-cost path with iterative removal of network links.
- Problem: developed on sparse networks, link elimination not effective when using highly dense networks (parallel links, complex intersections).
- Solution: additional link-penalty method in routing cost function
- Requirements for choice sets: spatially diverse, relevant trade-offs, realistic. Figure 2: 5 alternatives (colors) + chosen route (white) without (left) and with (right) link-penalty method.

Fig 2: exemplary choice set with and without link-penalty

5 Results

- Parameter estimates are significant and show anticipated effects analog to existing literature.
- Positive effects: bike infrastructure, speed limit 30kmh.
- Negative effects: traffic signals, gradients, traffic volumes
- Strong and consistent effect of gradients, clear e-bike effect.
- VoD indicators derived posterior distributions conditional on interaction effects.
- Table 1 example: for avg. respondent, 1 km on a bike path is perceived 36% shorter, i.e. like 640 m

	avg.	male	female	$<30 \mathrm{y}$.	$30-50 \mathrm{y}$.	$>50 \mathrm{y}$.	bike	ebike
bike path $[\mathrm{km}]$	-0.36	-0.15	-0.42	-0.15	-0.15	-0.15	-0.23	-0.12
bike lane $[\mathrm{km}]$	-0.66	-1.00	-0.27	-1.00	-1.00	-1.00	-1.00	-1.12
speedlimit $30[\mathrm{~km}]$	-0.16	0.09	-	-	0.07	0.07	-0.13	0.37
traffic signals $[\mathrm{n}]$	0.19	0.42	0.23	0.29	0.31	0.40	0.28	0.53
slope 2-6\% $[\mathrm{km}]$	0.55	0.31	0.46	0.24	0.77	-	0.41	0.09
slope 6-10\% $[\mathrm{km}]$	3.11	1.69	2.58	3.08	2.44	1.42	2.51	1.01
slope $>10 \%[\mathrm{~km}]$	4.33	2.96	4.38	7.38	-	-	-	2.78
max. traffic 1-10k $[0,1]$	0.07	0.16	-	-	-	-	0.08	0.27
max. traffic $>10 \mathrm{k}[0,1]$	0.11	0.07	0.25	0.09	0.09	0.09	0.01	0.15

Table 1: mean VoD indicators, [-] values are equivalent to avg. column

- Females: prefer separated cycling infrastructure (bike path), less gradients, less traffic volumes, analog to literature.
- Ages: shows decreasing negative effect of gradients: sample biased towards older e-bikers, effects not fully disentangled.
- E-bikers: negative effect of gradients substantially reduced, negative perception of speed limits and traffic lights.

5 References

[^0]
[^0]: - Joseph Molloy, Thomas Schatzmann, Beaumont Schoeman, Christopher Tchervenkov, Beat Hintermann, and Kay W. Axhausen. Observed impacts of the Covid-19 first wave on travel behaviour in Switzerland based on a large GPS pane Transport Policy, 104:43-51, 2021

 2. Moshe Ben-Akiva, M Scott Ramming, and Shlomo Bekhor. Route choice models. In M. Schreckenberg, editor, Human Behaviour and Traffic Networks, pages 23-45. Springer, 2004.
 Behaviour and Traffic Networks, pages 23-45. Springer, 2004.
 3. David A Hensher and William H Greene. Valuation of travel time savings in wtp and preference space in the presence of
 4. David A Hensher and William H Greene. Valuation of travel time savings in wtp and preference sp
 taste and scale heterogeneity. Journal of Transport Economics and Policy, $45(3): 505-525,2011$.
 5. Nadine Rieser-Schussler, Michael Balmer, and Kay W Axhausen. Route choice sets for very high resolution data Transportmetrica A: Transport Science, $9(9): 825-845,2013$.
