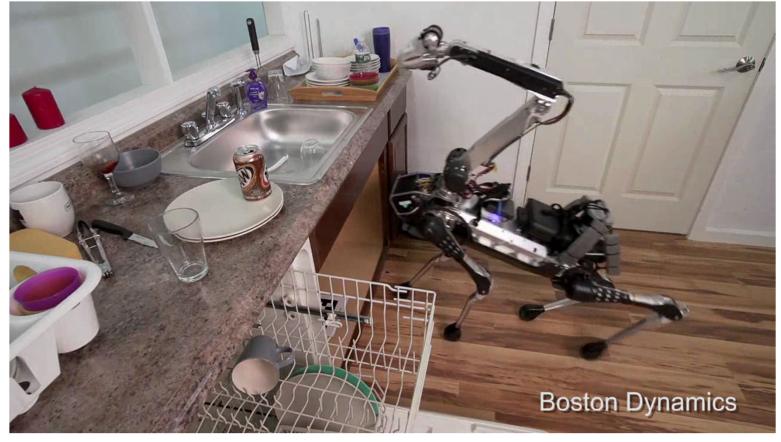
Master in


Computational Science and Engineering Specialization in Robotics

ETH Zurich, D-MAVT, D-INFK, D-ITET, D-HEST

https://ethz.ch/content/dam/ethz/special-interest/study-programme-websites/ms-compsci-and-eng-dam/documents/master-programme/MSc-CSE-GL-curr.pdf

Robotics tomorrow | Service Robots outside the production halls

SpotMini | electic quadruped, Boston Dynamics https://www.youtube.com/watch?v=tf7IEVTDjng

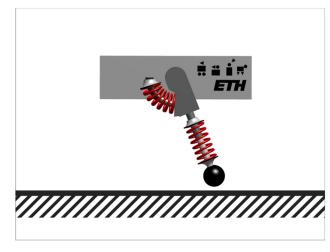
Service Robots | Key Challenges

Our real "physical" world is **multimodal**, very diverse and complex.

We need robots that ...

- ... can dealing with uncertain and partially available information
- ... see, feel and understand their environment
- ... have **torque** and **force** control for tactile interaction ("soft robots")
- ... offer intuitive human-machine interfaces
- ... learn and adapt every day
- \rightarrow all this requires AI/ML for intelligent control, but also novel sensing, actuation and robot concepts!!

50x speed https://www.youtube.com/watch?v=gy5g33S0Gzo

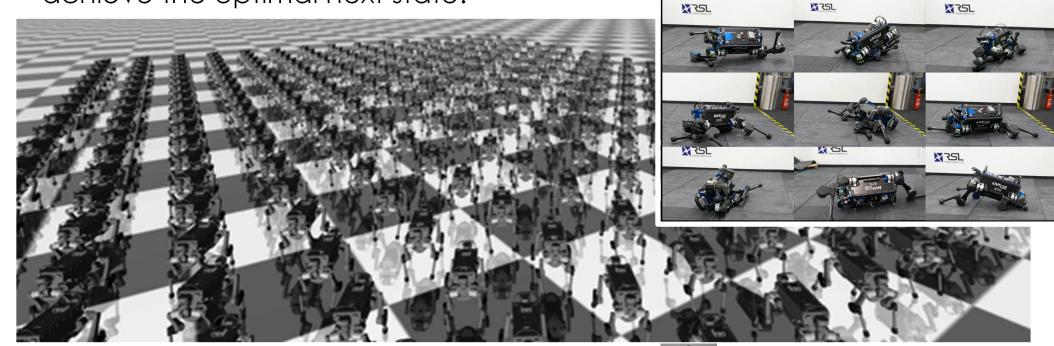


22.06.2020

Walking Robot ANYmal | designed for challenging environments

ANYmal – "soft" interaction with the environment | the ultimate quadruped

https://www.youtube.com/watch?v=EI1zBTYpXW0



22.06.2020

Reinforcement Learning | robot learning to walk

• Goal: given the actual state, learn the best action (leg movements) to

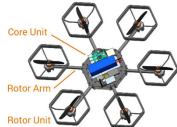
achieve the optimal next state.

Service Drones | flying robots for challenging tasks

wingtra – most elegant VTOL

| from student project to startup

https://www.youtube.com/watch?v=QADvPDWtgFU

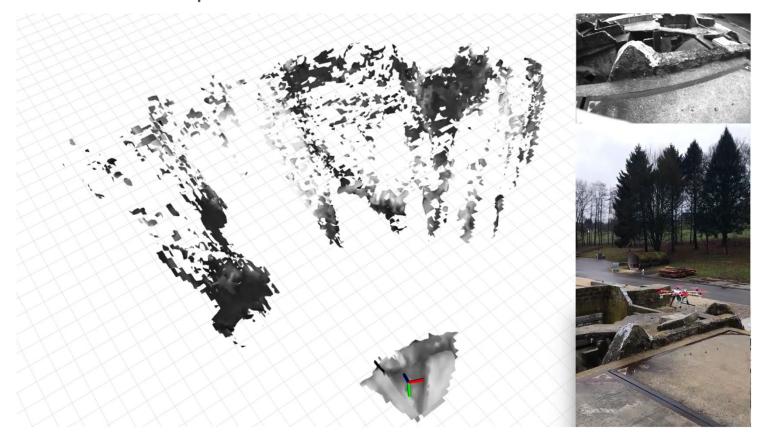

| 81 hours non-stop in summer 2015 | 5.64 m, 6.2 kg

https://www.youtube.com/watch?v=8m4_NpTQn0E https://www.youtube.com/watch?v=wyS6W1t_ryQ

Voliro – future of flying robots

| the omni-directional multi-copter
https://www.youtube.com/watch?v=9FJn_t-YCwM

"Seeing" | Visual-Inertial Motion Estimation



https://www.youtube.com/watch?v=yvgPrZNp4So

3D Reconstruction | on-board a drone

Interdisciplinary, exciting and highly demanded in industry

Key Topics

- Systems Engineering
 - Design and Optimization of Products and Systems
- Physical Modelling and Simulation
- Optimization and Control
- Perception, Graphics, Virtual Reality
- Embedded and Distributed Computing
- Artificial Intelligence & Machine Learning
- Robotics
 - Design, Modelling, Control and Intelligence
- Challenging Applications
 - autonomous vehicles and transportation, VR/AR, search and rescue, smart agriculture and construction, energy technology, biomedical and much more.

Field of Specialization "Robotics Courses" (Contact: Roland Siegwart, D-MAVT)

Course*	SWS	Sem.	Dep.	KP
Theory of Robotics and Mechatronics	3G	HS	MAVT	4
Autonomous Mobile Robots	4G	FS	MAVT	5
Probabilistic Artificial Intelligence	2V 1U 1A	HS	INFK	5
Deep Learning	2V 1U	HS	INFK	4
Computer Vision	3V 1U 1A	HS	INFK	6
Image Analysis and Computer Vision	3V 1U	HS	ITET	6
Dynamic Programming and Optimal Control	2V 1U	HS	MAVT	4
Recursive Estimation	2V 1U	HS	MAVT	4
Robot Dynamics	2V 1U	HS	MAVT	4
Machine Learning	3V 2U 2A	HS	INFK	8
3D Vision	3G	FS	INFK	4
Seminar in Robotics for CSE		HS / FS	RW	4

^{*} five courses from the fields of specialization, including the seminar

Core Faculty in Robotics (for Projects and Seminars)

D-MAVT

- Margarita Chli
- Raffaello D'Andrea
- Emilio Frazzoli
- Marco Hutter
- Robert Katzschmann
- Brad Nelson
- Roland Siegwart
- Melanie Zeilinger

- Stelian Coros

- Siyu Tang

- Roy Smith

- Roger Gassert
- Robert Riener
- Simone Schürle

Recommended Lecture Series by International Experts

- Distinguished Seminars in Robotics, Systems and Controls
 - http://www.msrl.ethz.ch/education/Distinguished_Seminar_RSC.html
- ETHZ Control Seminars
 - http://control.ee.ethz.ch/
- **▶ ETHZ Computer Science Colloquium**
 - http://www.inf.ethz.ch/news/colloquium/

Research Overview of Core Faculty in Robotics

D-MAVT

D-INFK

D-ITET

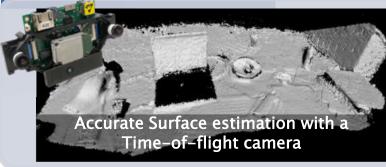
Prof. Dr. Margarita Chli

- Affiliation:
 - D-MAVT
 - Vision for Robotics Lab
- Research Areas

Vision-based perception for robots

- focus on small UAVs
 - Robot Navigation
 - Scene Reconstruction / Understanding
 - Collaborative Robot sensing & mapping

Examples of Research Projects


MONOCULAR CAMERA

OTHER VISION-BASED SENSORS

15

16

Prof. Dr. Raffaello D'Andrea

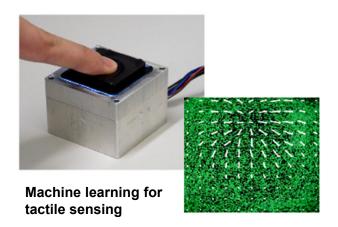
Affiliation:

- D-MAVT
 - Institute for Dynamic Systems and Control

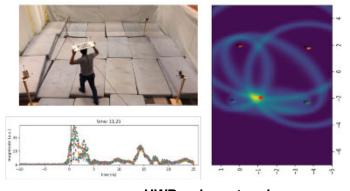
Research Areas

- Design and control of distributed, autonomous systems
- Design and control of systems capable of complex motion
- For example:
 - Systems with many interconnected components
 - Systems that learn from experience and improve their performance over time
 - Autonomous vehicles that perform complex tasks and maneuvers

Examples of Research Projects


Vision-based robotic skins

Co-ordination of robot swarms


Radar networks

17

Soft inflatable robotics

UWB radar networks

22.06.2020 Roland Siegwart

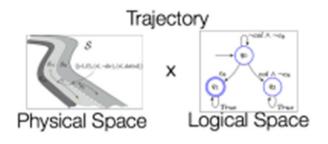
Prof. Dr. Emilio Frazzoli

Affiliation:

- D-MAVT
 - Institute for Dynamic Systems and Control

Research Areas

- Autonomous Vehicles
 - Enable vehicles such as cars and airplanes to safely and reliably drive/fly themselves in an uncertain, dynamic world (public roads, national airspace).
- Control of Transportation Systems
 - Advanced control and optimization methods to enable new concepts for large-scale transportation systems.
- Theoretical foundations
 - Advance the state of the art in foundational areas such as Control Theory, Algorithmic Robotics, System Design and Optimization


Examples of Research Projects

Planning and decision making for AVs

High-performance control

Planning with rules of the road

Prof. Dr. Marco Hutter

Affiliation:

- D-MAVT
 - Institute of Robotics and Intelligent Systems
 - Robotic Systems Lab

Research Areas

- Planning and control for locomotion and manipulation
 - Machine learning, non-linear optimization and model-predictive control
- Autonomous navigation and exploration
 - Environment perception and haptic sensing
- System and actuator design
 - Quadrupedal robots, mobile manipulators, autonomous construction machines
- Real-world applications
 - Search and rescue, industrial inspection and maintenance, construction and forestry,...

Examples of Research Projects

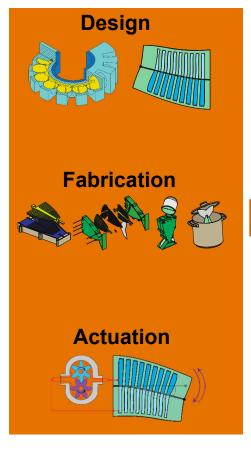
Roland Siegwart

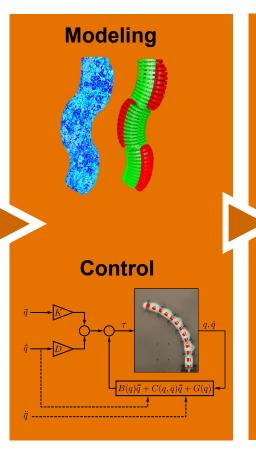
Prof. Dr. Robert Katzschmann

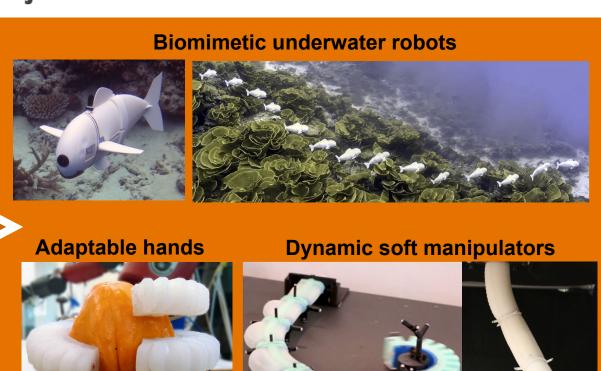
Affiliation:

- D-MAVT
 - Institute of Robotics and Intelligent Systems
 - Soft robotics

Research Areas


"Controlled Soft Robots Tackling Manipulation and Locomotion Challenges"


- Underwater Soft Robots
- Manipulation with Soft Hands
- Real-time Simulation of Soft Robots
- Model-based Control for Soft Robots
- Scalable Fabrication of Soft Robots



Examples of Soft Research Projects

Prof. Dr. Brad Nelson

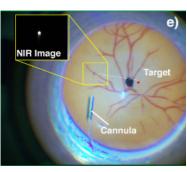
Affiliation:

- D-MAVT
 - Institute of Robotics and Intelligent Systems
 - Multi-Scale Robotics Lab

- Micro and Nano Robotics
 - Autonomous Micro and Nano Robots
 - Design and Fabrication
 - Localization, Locomotion, Control
 - Biomedical Applications
 - Micro and Nano Manipulation
 - Sensor and Actuator Development
 - Fluidic and Self Assembly
 - Applications in Biology and Biomedical Engineering

Examples of Research Projects

- Design and fabrication of biomedical micro-robots
- Soft robotics for medical applications
- Magnetic manipulation for intra-body navigation



22.06.2020

Prof. Dr. Roland Siegwart

Affiliation:

- D-MAVT
 - Institute of Robotics and Intelligent Systems
 - Autonomous Systems Lab

Research Area

- Mission and Dedication
 - To create intelligent robots and systems that operate autonomously in complex and dynamic environments.
- Research Focus
 - Novel robot concepts that are best adapted for ground, air, or water based applications.
 - New algorithms for perception, localization, abstraction, mapping, and path planning that will enable autonomous operation in challenging environments.

Roland Siegwart

ASL - ETH Zurich

ETH zürich

Autonomous Delivery Robots and Cars

Visual navigation and autonomous operation in city environments

Unmanned Aerial Vehicles

Design, control and fully autonomous operation in complex environments

Solar Airplanes

Continuous flight for long-term environment monitoring

Underwater Robots

Design and autonomous navigation of underwater robots in rivers

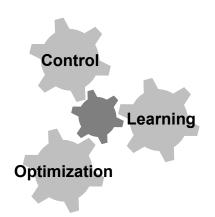
Mobile Manipulation

Object handling for manufacturing, logistics, and e-commerce

Service Robots

Navigation and transportation in our daily environment

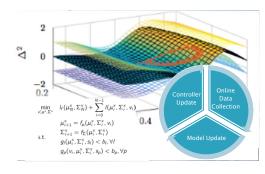
Prof. Dr. Melanie Zeilinger


Affiliation:

- D-MAVT
 - Institute for Dynamic Systems and Control

Research Areas

- Systems and Control Theory
 - Distributed Control of System Networks
 - Safe Learning-based Control
- Optimization Methods
 - Real-time Methods for Control
- Application to Robotic and Human in the Loop Control Systems


Examples of Research Projects

Safety Filters for Learningbased Control

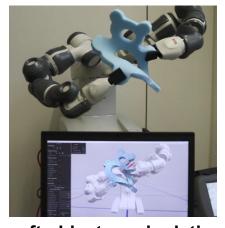
Cooperative Multi-Agent Systems

Predictive Control under Uncertainty

Personalized Control Systems

Prof. Dr. Stelian Coros

Affiliation:

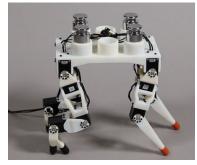

- D-INFK
 - Computational Robotics Lab (CRL)

- Engineering meets Al:
 - Algorithmic approaches to designing compliant robots
 - Exploiting multi-material 3D printing to create new types of robotic materials
- Computational models of motor control
 - Locomotion (wheeled, legged, hybrid, compliant systems), manipulation (both rigid and deformable objects), mobile manipulation, human-robot interaction, learning and optimal control methodologies



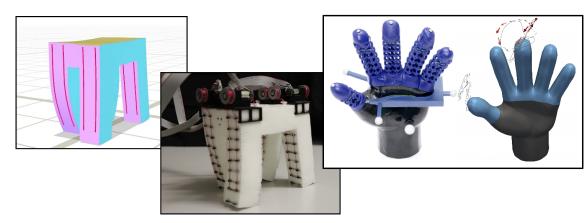
Examples of Research Projects (http://crl.ethz.ch/)

(a)



soft object manipulation

collaborative robots


human-robot interaction

mobile manipulation

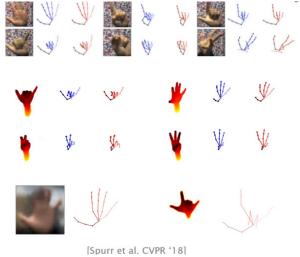
towards increasingly life-like legged robots

soft robotics 22.06.2020

Prof. Dr. Otmar Hilliges

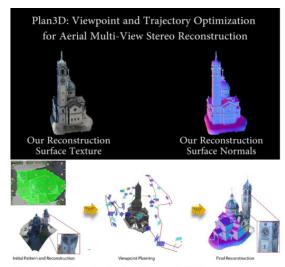
Affiliation:

- D-INFK
 - Institute(s) for Pervasive Computing & Visual Computing
 - Advanced Interactive Technologies Lab


Research Areas

- Intersection of machine learning, computer vision and robotics
- Deep learning for machine perception of human activity
- Applications in interactive systems and human-robot interaction




Computational Science and Engineering
Specialization in Robotics

Examples of Research Projects: Perception and Real-time control

[Hepp et al. in submission Siggraph '18]

22.06.2020

Prof. Dr. Marc Pollefeys

Affiliation:

- D-INFK
 - Institute for Visual Computing
 - Computer Vision and Geometry Lab

Research Area

- Computer Vision
 - 3D Modeling from Images
 - 3D Sensing, Sensor Calibration, Omni-Directional Vision
 - Real-Time Computer Vision
- Robot Vision
 - Visual Simultaneous Localization and Mapping
 - Mapping and Navigation for MAV, humanoid robots and cars

Examples of Research Projects

- Autonomous Micro Air Vehicles
- Autonomous Driving
- Visual Localization
- 3D Mapping
- 3D Modeling of Interacting People
- Real-Time Embedded Computer Vision

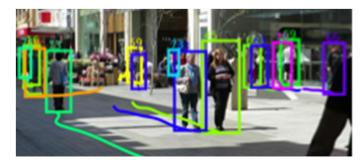
Project Tango

36

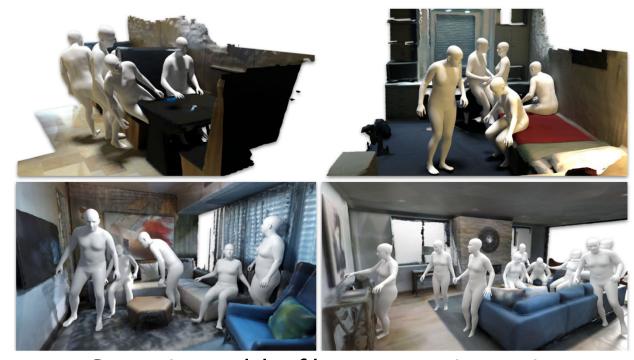
Prof. Dr. Siyu Tang

Affiliation:

- D-INFK
 - Institute for Visual Computing
 - Computer Vision and Learning Group


Research Areas:

- Intersection of computer vision, machine learning and optimisation with focus on analysing and modelling people
 - People detection and tracking
 - Action understanding
 - Generative models of 3D human
 - Representation learning
 - Discrete optimisation for image and video analysis


37

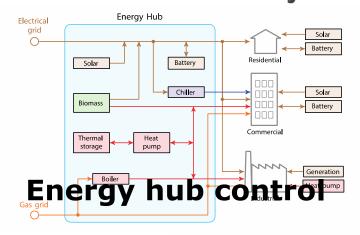
Examples of Research Projects

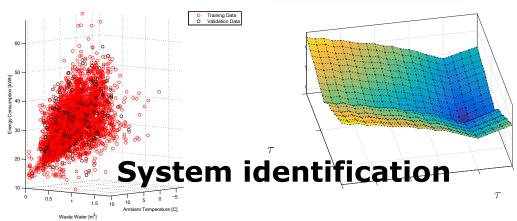
People detection and tracking

Generative models of human scene interaction

Prof. Dr. Roy Smith

Affiliation:


- D-ITET
 - Automatic Control Lab



Research Areas

- System modeling and identification
- Distributed control systems
- Energy management in buildings and energy hubs
- Autonomous kites for power generation
- Robust control theory and applications
- Thermoacoustic machines

Examples of Research Projects

Prof. Dr. Luc van Gool

Affiliation:

- D-ITET
 - Computer Vision Laboratory

Research Areas


- Computer Vision
 - 3D modeling from images or with structured light
 - Object (class) recognition
 - Tracking and gesture analysis
 - Combinations of the above
- Robot Vision
 - Autonomous vehicles
 - Medical robots
- Surveillance
 - Anomaly detection

Examples of a Research Projects

Prof. Dr. Roger Gassert

Using robotics, wearable sensors and non-invasive neuroimaging to explore, assess and restore sensorimotor function

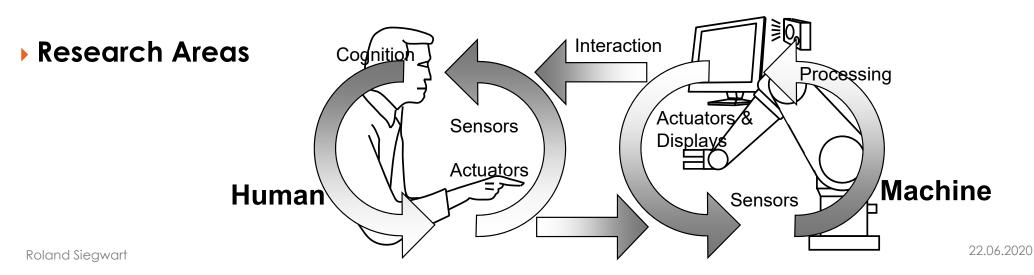
Affiliation:

- D-HEST
 - Institute of Robotics and Intelligent Systems
 - Rehabilitation Engineering Laboratory

Research Areas

- Haptics and Physical Human-Machine Interaction
 - Interaction control, sensor/actuator design and characterization
- Neuro-robotics and Rehabilitation
 - Robot/neuroimaging-assisted therapy, devices for home therapy
- Assistive Technology
 - Exoskeletons, brain-computer interfaces

Examples of Research Projects



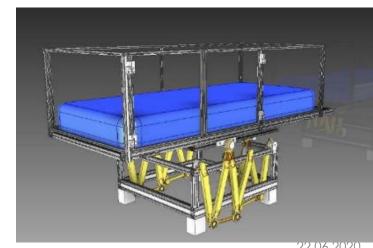
RELAB Engineering for Independence

Prof. Dr. Robert Riener

Affiliations:

- D-HEST, ETH Zurich
 - Institute of Robotics and Intelligent Systems
 - Sensory-Motor Systems Lab
- Medical Faculty, University of Zurich
 - University Hospital Balgrist, Zurich

Computational Science and Engineering ion in Robotics

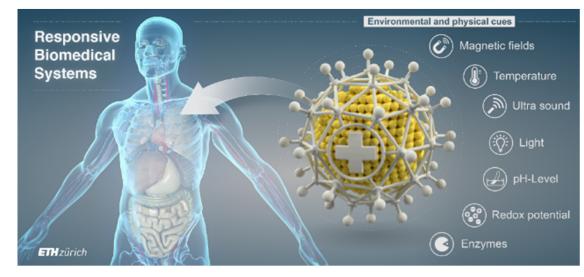

Research Projects

Rehabilitation Robotics

Wearable **Exoskeletons**

Somnomat for improved sleep

Prof. Dr. Simone Schürle


Affiliation:

- D-HEST
 - Institute of Translational Medicine
 - Responsive Biomedical Systems Laboratory

Research Areas

- Design and Fabrication of microand nanosystems
 - Diseases diagnostics
 - Localized therapeutic delivery
 - Therapy monitoring
- Engineering of companion instrumentation for signal transduction and processing

Examples of a Research Projects

Remote control of microrobots in tissue to probe and sense local biomechanics

MICROROBOTICS FOR NANOSENSORS FOR MECHANOSIGANLING IN TISSUES ARTHRITIS DIAGNOSTICS IMPLANT MONITORING BACTERIAL CANCER THERAPY

Inductance and acoustic-based detection of microand nanosensors as reporters for early stages of arthritis

Wireless detection of local infections through smart implant coatings

Swarm control of magnetic bacteria for cancer therapy