Systems and Control Specialisation

JOHN LYGEROS

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Systems and control

- Digitalisation, Cyber-Physical Systems, ...
- Digital world meets the physical world

An ubiquitous principle

Smart & Intelligent = Systems & Control

Example: Quadrotor control

Control people found in many places

At ETH

- D-ITET: Dörfler, Lygeros, Smith
- D-MAVT: D'Andrea, Frazzoli, Onder, Zeilinger
- D-BSSE: Khammash

Recent graduates from our lab ended up in

- Industry: Engineering, automotive, power, chemical, pharma, …
- Finance, Management Consulting, Legal services
- Founded 5 start-ups
- Became professors

Control people teach many courses

Offered at CSE

- Control Systems I (HS)
- Control Systems II (FS)
- Linear System Theory (HS)
- Signals and Systems (HS)
- Dynamic Programming and Optimal Control (HS)
- Nonlinear Systems and Control (FS)
- Machine Learning (HS)
- Advanced Topics in Control (FS)
- Seminar in Systems and Control for CSE (HS/FS)

Control people occasionally do research

AMZ Student Formula Team

How does this work?

- \rightarrow 1. Use model to predict car movement
 - 2. Select steering and acceleration for next 400ms
 - So that car stays inside the track and
 - Maximises progress/goes ahead of opponent

Feedback

- 3. Apply first 20ms of this selection to the car
- 4. Measure what happened
- 5. Repeat
- Infinite choices, cannot possibly check them all
- Real time optimisation to the rescue

Receding Horizon or Model Predictive Control

Control of energy hubs

Operational decisions

- Do I buy or sell energy?
- Do I store energy?
- Where?

Require forecasting Complex feedback!

In silico feedback in biology

Time (min)

Data based optimal control

Data based dynamic programming

- Value function or Q-function characterisation
 - Fixed point of nonlinear operator
- Through solution of linear program
 - Decision variables in space of functions
 - Robust constraint in state-action pairs
- Elegant and theoretically powerful, but
 - Infinite number of decision variables
 - Infinite number of constraints
- Try to use for computation
 - Approximation guarantees?
 - Basis for data driven approximation?

Data Enabled Predictive Control

- Data Enabled Predictive Control
 - Replace model constraint in MPC ...
 - ... with subspace constraint based on data matrix
- Behavioural system theory
 - Equivalent to MPC for ideal LTI systems
- With regularisation also works with noise, nonlinear systems ...
- Applications to
 - Quadrotors
 - Power systems
 - Building control

Power system

- Power grid with HVDC
- Control set points of low level controllers
- Based on data from realistic nonlinear simulator
 - Grey uncontrolled
 - Orange: DeePC
 - Blue SysID+MPC