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Abstract

The IP on Python in Geosciences (IPP) invites you to gain hands on experience on some aspects
of python. In parallel with simple examples specific to the IPP, you will encounter examples taken from
a concrete, real world application context. This mix is deliberate, the practicum aims at teaching some
basics, but also wants to expose you to real world problems. For the same reason, you should form
teams of two - in reality, coding is often a joint effort and / or others should be able to use what you
coded.

You get eight tasks to work on, which address different python topics and go from rather simple to
more and more difficult. All tasks can be done in teams, one tasks is explicitly meant as team work.
Some tasks (or parts of tasks) are marked with "For hand-in" and you are expected to submit us your
python scripts for these. Associated parts of tasks are explicitly marked by ’For hand-in’. Also, at the
end of the IPP you must present during about 15 minutes what you did (explain some of your code,
associated highlights or challenges, what did you pick from the non-compelling tasks, how did you
solve that, what aspects of python you think are really cool / useful or, by contrast, missing). You are
not expected to solve all tasks / all parts of each task - or to understand everything.

Contents

1 Science Context 2

2 Python Code 4

3 Task by Task 5
3.1 Task 1: dir(), type(), help(), matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Task 2: pandas data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Task 3: cartopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Task 4: netcdf files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Task 5: functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Task 6: classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Task 7: team work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 Task 8: more advanced topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



1 Science Context

The reports on climate and climate change published by the Intergovernmental Panel on Climate
Change (IPCC) form an essential pillar of the associated political, economic, and societal debate.
Within each IPCC report, Working Group I (WG I) focuses on ’The Physical Science Basis’, on what
natural sciences can tell us about climate and climate change. This working group relies heavily on
observational data, as well as on simulation data from Global Climate Models (GCMs, featuring an
atmosphere and and ocean) and Earth System Models (ESMs, featuring also an interactive carbon cy-
cle). Such models cover in great detail a wide variety of physical, biological, and chemical processes.
As such, they may be seen as some sort of a gold standard in climate science. The downside is that
these models are very expensive to run on a computer. On a modern high performance computer it
typically takes several hours to produce just one year of simulated climate. The simulations entering
the IPCC reports typically take several months.

This is too expensive for other applications and communities that are likewise relevant in the climate
change debate. A concrete example are studies that address economic aspects of climate change and
associated feedbacks. For example, what are the economic costs of climate change or how should
an effective carbon tax be designed? Studies of this sort require a detailed description (modeling) of
the economy and, consequently, must compromise on the climate model part. In practice, this means
that instead of an expensive GCM or ESM (see above), a much simpler Climate Emulator (CE) is
used. As the naming suggests, a CE is meant to emulate (mimic) some of the (complex) behavior
(results) of GCMs. A prominent example is the change in global mean temperature in response to
carbon emissions. An ESM simulates this response in great physical and biogeochemical detail. The
CE consists of only a few equations (see below) and is calibrated to mimic the response of the ESM
to carbon emissions: what fraction of carbon emissions remains in the atmosphere (i.e., is not taken
up by the ocean or the land biosphere), thereby changing the atmospheric CO2, thereby causing a
greenhouse gas forcing, thereby changing (increasing) the global mean temperature. Such a simple
CE can then be used to study the interplay between economy (emitting carbon) and climate (where
carbon emissions cause temperature to increase, resulting in economic losses / damages).

The Nobel Prize in Economic Sciences in 2018 was awarded for pioneering work in this field to
William Nordhaus (shared with Paul Roemer for his work on endogenous growth theory). The CE of
the associated model, the model being named DICE (Dynamic Integrated Climate-Economy model,
see Figure 1 for a sketch), forms the scientific context of this specific project within the IPP. Put simply,
the project gives an impression of what a simple CE like in DICE can do, and what it cannot do. A
detailed description of the model can be found in Folini et al. [2024]. The python code used was written
in this context. The model comprises two parts: a carbon cycle, which ’translates’ carbon emissions
into atmospheric CO2 concentrations, and a climate part, which ’translates’ changes in atmospheric
CO2 concentrations into changes in global mean temperature. The question then arises what such a
cheap but simple CE - simple climate model - can do and what it can not do.
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Figure 1: Left: Schematic view of coupled economy-climate model. The economy (top left) produces
CO2 emissions, which serve as input to a CE (simple climate model, top right). The CE ’translates’
the CO2 emissions into an atmospheric CO2 concentration and an associated change in global mean
temperature, < T >. This temperature change is used to estimate climate related economic damages
(bottom) that feed back as a cost factor to the economy (top left). All quantities may be accompanied by
some uncertainty ±σ. The CE part of this feedback loop provides the scientific context of this specific
project within the IPP. Right: Illustration of the three reservoirs of the carbon cycle and associated
transfer coefficients.

Formally, the carbon cycle consists of three reservoirs (atmosphere, upper ocean, lower ocean),
whose carbon masses (in GtC, Giga tons Carbon) Mt = (MAT
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The climate part consists of two coupled ordinary differential equations for the temperatures of atmo-
sphere and ocean,
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The ci are (physical) constants, the radiative feebdack parameter λ is the ratio of the forcing F2xCO2

from a doubling of CO2 to the (equilibrium) temperature change T2xCO2 under such a doubling, Ft is
any non-CO2 forcings, e.g. from methane or aerosols.

1For example, emissions from fossil fuels in 2020 are estimated at 34.8 GtCO2 or 9.5 GtC, thus Et = [9.5, 0, 0]; see
https://www.co2.earth/global-co2-emissions or also Le Quéré et al. [2018]
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2 Python Code

The python code used here was originally written to systematically test the CE described above and
produce publication ready figures [as used in Folini et al., 2024]. The choice to use this code directly
(after some cleaning and removal of non-essential contents) for this IPP was deliberate: it is through
really existing, practical applications that you learn about practical work. The code you get is primarily
’science code’, not ’teaching code’. As such, it also violates here and there ’good coding practice
rules’2. The idea is that you learn to work within a given, pre-existing framework, to use and adapt
something existing to your needs. This is a situation you are likely to encounter over and over again
in your career. It is not necessary that you look at (let alone understand) each and every line of
code. Although you are certainly welcome to do so during this IPP if you wish. The code of the CE is
organized into four *.py files, python scripts and python modules:

1) Figs4Paper.py - definitions of specific, reproducable figures for publications.
In python terms, a script, a collection of statements (if-statements, function calls)

2) TestDefs.py - definitions of specific tests and associated plotting functions.
In python terms, a module, a collection of function (method) definitions

3) ClimDICE.py - climate emulator as such, carbon cycle and temperature equations.
In python terms, a module, the definition of a class (containing methods)

4) PatternScaling.py - utilities to scale global mean temperature change to 2D map.
In python terms, a module, a collection of function (method) definitions

In addition, you are provided files specific to this IPP: globals.py, Task*.py, Chiens.py (details are given
in the individual tasks). The codes will allow you, in particular, to familiarize yourself with a few as-
pects of python, including: basic inquiries (shape, type); basic flow control (if-else, for-loops); basic
modules (numpy, re, os); matplotlib (plotting lines); cartopy (plotting geographical maps); pandas
(bundling data into data frames instead of simple arrays); function definition (bundling of statements);
class definition (bundling of functions).

A word on python scripts and modules (*.py files). Python scripts are just a way to collect
(wrap) individual python commands (statements) in a (more or less) orderly way. Instead of typing
each command separately, you can just ’run’ or ’execute’ the python script (the *.py file). This not only
saves you work (typing). It also helps you reproduce what you did (you have all the commands you
used in the *py file) and then re-use what you did in a different context. Also, it allows you to easily
share what you did (the *.py files) with others - be it that they want to reproduce what you did or they
want to profit from the time you already invested for their own work, they want to re-use your work and
adapt it to their purpose.

Instead of ’only’ collecting the series of commands you would type at a command prompt, you can
bundle series of commands you use over and over again in a function - and then use that function in
place of the series of commands. These functions you may store away again in a *.py file, in a python
module that you can import when you want to use your functions.

All these advantages of python scripts and modules (reproducability, reusability, sharing with others)
depend heavily on the ’quality’ of the scripts: how well they are organized, how clean they are written,
how well they are commented. Python helps you in this endeavor by providing a wealth of useful

2For example, you will find multiple statements on one line, separated by a ;, which is not considered good coding practice
and actually should be avoided. Also, there may be unused variables, indenting does not always follow ’good practice’ etc. For
the curious and ambitious (thanks to Mathias Hauser for the hint): you can use ’flake8’ to learn more about the deficits of the
code. No help here from our side.
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’language elements’. Data can be organized, for example, in list, (multidimensional) arrays, tuples,
dictionaries, data frames (pandas, xarray). Methods to work with these data can be organized in
functions or classes.

The concrete code of the CE you use in this practicum illustrates these points. You will also see
that the code is far from perfect. A main reason here is that the code ’grew organically’ with the science
task at hand, a typical situation in real day life. Given man power (time) as the limiting factor, one has to
compromise on where to invest how much time: further developing the capabilities of the code, keeping
it readable, see that its parts can be re-used, have it sufficiently well commented.

3 Task by Task

This project within the IPP is organized in seven tasks, described one by one below. Each task should
take you roughly one half day of the practicum, depending on how much you know and how deep you
want to dive in each task. It is recommended to start with task 1, then go to task 2 etc. However, if you
already feel somewhat confident with python, you may change the suggested series of tasks or skip
one or the other. Individual tasks are reasonably ’stand alone’ - if you already know some python. How
far you get with all the tasks also depends on your previous knowledge - there may be too many tasks
for you or too few. The goal is that you learn ’real life’ python with the help of these tasks and present in
the end (Leistungskontrolle!) some highlights of what you did, what you learned - or where you failed.

To get started: a) use the conda environment ’ipp_analysis’ (see introdcution) and b) down-
load codes and data (zip-files) from the course web-page to your laptop. Put the zip-files with the
code and data in a folder. Go to that folder and unzip what you downloaded. You should get the fol-
lowing folders: ’Code’, ’DataFromCMIP’, ’EmiAndConcData’, ’pattern_library’ and ’pattern_library_cg’.
The folder ’Code’ contains all the *py files you will need. ’DataFromCMIP’ contains CMIP5 data used for
bench marking the CE. ’EmiAndConcData’ contains data on CO2 emissions and concentrations used
in CMIP5. The folder ’pattern_library’ contains spatial patterns to ’translate’ a change in globale mean
temperature into a 2D temperature change pattern (featuring e.g. that poles warming more than the
equator, or land warms more than ocean). The folder ’pattern_library_cg’ contains the same patterns,
but remapped onto a common, coarse grid.

3.1 Task 1: dir(), type(), help(), matplotlib

This task has three goals: a) give an impression of the IPP’s science context (just run an existing
python script and look at the figures you get); b) introduce some useful built-in python commands (dir(),
type(), help()); c) produce a figure yourself (use what you learned in the introduction to data from the
science context).

a) Go to where you put the *.py files. Launch ipython by typing at your command prompt ipython

b) Science context of the IP. Type %run Figs4Paper.py3. You should get three plots on your
screen: CO2 concentration and temperature change as function of time (year), as well as a tem-
perature change map for one specific year (2080). The data shown come from the CE described
in Section 1. Later tasks will dive more into the CE. For now, just look a bit at the plots and think for

3Python scripts can be run in different ways, including: from within jupyterlab (see introduction), from within an ipython
command prompt using ’%run MyScript.py’, from within a python command prompt using ’exec(open("./MyScrip.py").read())’,
at the command prompt of your computer as such using ’python MyScript.py’. For the last case, the first line in MyScript.py
must read something like #!/usr/bin/env python3. For more details see e.g. here, https://realpython.com/run-python-scripts/
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yourself what the plots tell you. You can close the plots on your screen again using ’plt.close("all")’
from the matplotlib module (first import the module by typing ’import matplotlib.pyplot as plt’).

c) Get an idea of what is around using some built-in python functions, dir(), type(), help(). Type
dir(). What do you see? Learn more about specific variables (e.g. sisi or T_AT). Type dir(sisi) or
type(sisi) or help(sisi). What do you see? How about other variables?

d) Examine more closely the variables ’Y_AT’ and ’T_AT’ (actually ’globals.Y_AT’ and ’glob-
als.T_AT’; outputs from the CE, year and global annual mean temperature change of the at-
mosphere, relative to year 1850). What variable type are they? What is their dimension (length,
size, shape)? What is the array index of year 1980? [Hint: do it by hand, using ’try and error’,
or use numpy.where()] What is the atmospheric temperature change T_AT in 1980? What is the
temperature change averaged over 1960 to 1989?

e) Use matplotlib (see introductory material) to plot T_AT (y-axis) as function of Y_AT (x-axis).
[Hint: plt.figure() and plt.plot() ; do not forget to import (parts of) matplotlib] Repeat the plot, but
change it [line color / style / width; annotate the x- and y-axis; add figure title; add a grid; set axis
range by hand; change font sizes; save figure to png-file]

f) For hand-in, Task1.py: Put what you did under point e) in a python script file ’Task1.py’ that
you can run after having run Figs4Paper.py [Hint: Use the Task1Skeleton.py file as a starting
point. Rename it to Task1.py. Make sure you have globals.py in the same directory / folder. To
run, use again the syntax %run Figs4Paper.py and %run Task1.py. ]

3.2 Task 2: pandas data frames

The CE uses pandas data frames4 to bundle various information for a specific test case. Pandas
data frames are useful as they allow you to bundle all sorts of information. In the case of the CE
this comprises, for example, basic information on the test as such (e.g. what test problem?), concrete
choices of parameter values, benchmark data (what is the expected outcome of the test?), but also
results from the simulations that are being tested against these benchmark data. In terms of python,
pandas data frames allow you to bundle strings, floats, (numpy) arrays, lists, but also more complex
structures like dictionaries or, as you will learn, instances of classes (you already encountered an
instance of a class: sisi in task 1).

Basically, you can think of a pandas data frame as a two dimensional table with rows and columns.
Each column designates some property to be listed in the data frame. A three column example could
be the name of a mammal species, its average weight in kg, and on which continent(s) it can be found.
Each row is an entry to the data frame. Sticking with the example, a first row could be ’cougar’, 50,
’America’. A second row may be ’house mouse’, 0.02, ’Africa, America, Asia, Australia, Europe’. As
you can see, a single entry may combine a single name (string with or without blanks), a number (an
integer or a float), and a list of names (the different continents). The data frame can be accessed in
various ways: get all data on the house mouse or get the range of weights of all the beasts listed.

The present task aims at familiarizing you with pandas data frames. The task consists of two
sub-tasks: after a short introduction to the basics of pandas data frames (sub-task 1), you should
go to the TestDefs.py from the CE and add additional simulations (e.g. different choice of simulation
parameters) to the pre-defined tests (e.g. CMIP5 RCP85; Coupled Model Intercomparison Project
Phase 5; Representative Concentration Pathway for a forcing of 8.5 W/m2 in 2100).

4A relatively simple intro to pandas data frames may be found here:
https://www.tutorialspoint.com/python_pandas/python_pandas_dataframe.htm
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Figure 2: Top: Sketch of pandas data frame. Bottom: Three python code examples of (simple) pandas
data frames. See Task 2.

a) Go to where you put the *.py files. Launch ipython by typing at your command prompt ipython

b) Get an impression of pandas data frames in the CE. Type %run Figs4Paper.py. This will return
you a pandas data frame, named df2. Examine it. Start with simply typing df2. What do you
see? Type df2.c4 or df2.label or df2.c4[1] - what do you see? Use what you learned in task
1 (built-in python functions dir(), type(), len(), help()) to get a better impression of df2 and of
what it contains. To see more details, you may also go to the Figs4.Paper.py file and search for
df2=td.BenchMarkTDEmiOrConc(CMIP=’RCP26_EMI’).

c) For hand-in, Task2.py: Build your own pandas data frame. Use the file ’Task2Skeleton.py’ as
a starting point. Copy it to ’Task2.py’ and add the example data frame code given in Figure 2. Also
add a data frame for the data in the top part of Figure 2 (mammals), add some more columns
to it (e.g. average age or heart beat rate). Examine the data frames you just created. For
example, type df or df[’Model’] or df[’Model’][0] or df[’Model’][1:2] or df[’linecolor’] or df[’linecolor’][:]
or df[’linecolor’][:]0]. What do you see?

d) Change an existing pandas data frame in the CE. Open the file TestDefs.py and search for
if (prb=="TD_emiCO2"):. There you see pandas data frame entries for the test simulations you
saw before, in the figures produced by %run Figs4Paper.py. In these figures (maybe re-run
Figs4Paper.py), can you say which line belongs to which entry in the pandas data frame? Du-
plicate one of the existing entries (e.g. the one with label ’CDICE-HadGEM2-ES’), then modify
the duplicated entry slightly (change the entry for ’t2xco2’ from 4.55 to 6.66; change the linestyle
entry ’ls’ from ’solid’ to ’dashed’). Check what this does by executing again Figs4Paper.py, i.e.
type again %run Figs4Paper.py. What do you see?
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Figure 3: Top: Cartopy map projection examples. See Task 3. Bottom: Pattern scaling. Regional
temperature change per degree global mean temperature change <T>. If the global mean temperature
increases by one degree, poles warm more, the equator less. Land warms more than oceans.

3.3 Task 3: cartopy

It is often convenient, even necessary, to show data on a geographical map. One way to do so in
python is to use the module cartopy. The goal of this task is to introduce you to cartopy. The task again
consists of essentially two parts. In a first part, you look only at map projections without any data. This
includes drawing coast lines, rivers, and other geographical data that comes with cartopy. Get an idea
of the many different ways the 3D Earth can be projected onto a 2D map.

In the second part, you will add data to the 2D map projection. More specifically, you will add
2D temperature data from the CE, described in more detail below. Note that you now have to take
care about two coordinate reference systems: the one describing your data (the temperature data will
come on an equidistant latitude / longitude grid) and the coordinate system that comes with the map
projection you choose (e.g. Mercator is a well known map projection). You inform cartopy about both
coordinate systems: what map projection you would like to see on your screen, and what coordinate
system the data uses that you wish to plot. With this information given, cartopy can then transform
your data to the map projection you wish to see. Note that typically you cannot change the coordinate
reference system of your data. The data and the its coordinate system belong to each other, they
cannot be separated. But you are typically free to pick whatever map projection you would like to see
on the screen.

The concrete 2D temperature change data from the CE is obtained via pattern scaling. The CE
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computes the change in global mean temperature for changing atmospheric CO2 concentrations, for
example following the RCP85 from CMIP5. But global warming is not spatially homogeneous: the
poles warm more strongly than the equator. This behavior can be approximately captured by pattern
scaling, by providing a 2D map showing the local warming per degree warming in the global mean.
More details can be found in the file PatternScaling.py

a) Go to where you put the *.py files. Launch ipython by typing at your command prompt ipython

b) Science context. Get an impression of maps (done using cartopy) in the CE. Edit the file
’Figs4.Paper.py’: set F_RCP26E = ’no’ and PS_RCP85E = ’yes’. Run the script by typing %run
Figs4Paper.py. You should see a map showing the temperature change under RCP85 in the year
2080, with respect to the base year 1850. Take a moment to look at the map. What do you see?

c) For hand-in, Task3.py: Draw your own maps. First only the map as such (coastlines etc.),
then add data (temperature change as you saw it under point b). Use the file ’Task3Skeleton.py’
as a starting point. Copy it it to ’Task3.py’. Add example code as given in Figure 3. Run
your code. Check a bit what is around. Use dir() to examine what coordinate systems the
Coordinate Reference Systems (crs) module of cartopy offers. Use type() to convince your-
self that crs is a module. Draw (add to ’Task3.py’) global maps with coastlines in different pro-
jections. Add features (e.g. rivers or borders) to these maps using the feature module from
cartopy (cartopy.feature). Use again dir() to examine what features are available from cartopy.
Likewise, use dir() and help() to find out what possibilities you have with your coordinate axis
(ax=plt.axes(projection=ccrs.PlateCarree()) ; dir(ax) ; help(ax))5. Add gridlines for longitude and
latitude.

d) For hand-in, Task3.py: Now add temperature data to the maps. Running ’Figs4Paper.py’
(see point b) should have got you arrays PS_lons, PS_lats, and PS_T2D_scal (and others; PS
for Pattern Scaling). Check their shape, size, type. Convince yourself that the data come in an
equidistant longitude / latitude (i.e. PlateCarree) coordinate reference system.
Now you have two coordinate reference systems: one from the data (you cannot change it; here
it is PlateCarree) and one from the map projection you choose for plotting (this you can choose;
take e.g. Mollweide). Extend the ’Task3.py’ script by yet another plot that combines data and
map. Use what you learned under point c and in the introduction. Use a Mollweide projection
for the map and plot the temperature data onto the map [Hint: ax.contourf(lons, lats, T2D_scal,
levels=10, cmap=’Reds’,transform=ccrs.PlateCarree())] Finally, try to add yet more things to your
plot: location of Zürich; hatching; contour lines; change the projcetion / number of contours / the
color map; add a color bar and annotate it. Ask google for help or check out the cartopy page. Or
look at the function PlotTempPat in the file ’PatternScaling.py’.

3.4 Task 4: netcdf files

In geosciences, netcdf6 is a wide spread data format (you are probably familiar with other data formats,
like *.csv, *.txt, *.pdf). An advantage of this file format is that it allows quick and easy access to its
data, even when the file is very big. This is achieved by ’clever organization’ of the data within the file.
Basically, you can think of the contents of a netcdf file being organized not unlike the files and folders

5For more information on projections, check out https://scitools.org.uk/cartopy/docs/latest/reference/projections.html
6It is worth noting that the netcdf data format is closely related to hdf, the hierarchical data format. In fact, modern versions

of netcdf are under the hood actually hdf5 files, as mentioned e.g. here
https://xarray.pydata.org/en/stable/user-guide/io.html
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Figure 4: Code snippets for use with task 4, devoted to netcdf files.

on your computer7. The goal of this task is to illustrate this point by letting you play a bit with netcdf
files. The task also introduces two other useful aspects of python: getting a listing of files on disk and
’regular expressions’. The latter can be used, for example, to find patterns in a given string.

a) Go to where you put the *.py files. Launch ipython by typing at your command prompt ipython

b) For hand-in, Task4.py: Get hands on experience with netcdf files. Use the file ’Task4Skeleton.py’
as a starting point. Copy it it to ’Task4.py’, then complement the three examples sketched with the
help of the code snippets in Figure 4. In the first example, get info on ds by just printing it. What
data type is pava? Print an individual value of pava, e.g. for the indexpair 20,30. In the second
example, have the number of longitudes and latitudes printed. In the third example, use pandas
data frame columns ’Model’, ’Nlon’, ’Nlat’, ’Pattern’, ’Climatology’ and fill the data accordingly.
[Hint: for the model name, check out Figure 4; for the climatological temperature pattern, go back
to the first example in this task, check out the contents of one data file by hand.]

3.5 Task 5: functions

Python allows you to define functions (or methods). This is useful to cleanly pack away ’stuff’ that is
re-occuring, that you want to re-use. The present task first provides some introduction to functions via
(very) simple examples (see Figure 5). Subsequently, you are encouraged to use what you learned
in tasks 1 to 3 (some basics of python, matplotlib, pandas, cartopy) to a) play with the CE and b) add
some new plotting functions to it.

a) Go to where you put the *.py files. Launch ipython by typing at your command prompt ipython

b) Start with a simple python script, not yet a function. Type print(’hello’) and hit enter. What do
you see? Pack what you just typed into a file ’hello1.py’. This is a python script, a collection of
commands you could also just type on the command prompt (see Figure 5, top left, hello1.py).
Run the script.

7For hdf5, this is nicely explained e.g. here
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
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Figure 5: Example function definitions (hellos.py and SumItUp.py; hello1.py is not a function but just an
ordinary python script). See task 5 for details.

c) For hand-in, hellos.py: Now, define a set of functions that say ’hello’ and use them. Look at
Figure 5, right. Pack the function definition for hello2 etc. into one file, ’hellos.py’. This collection
of functions is a python module. One way to make ’visible’ the functions you just defined is to run
’hellos.py’. Much like you run an ordinary python script (see point a above). Once you have done
this, you can use your functions by just typing hello2(). Try it. Check out all the hello functions.
For the **kwargs example, you may find more interesting examples on the internet that give a
better idea of how useful **kwargs can be.

d) The standard (and more elegant!) way to make ’visible’ the functions defined in ’hellos.py’ is
to use import. Exit ipython and re-launch ipython. Type import hellos as hs and hit enter. Type
again hello2(). What happens? Now try typing hs.hello2(). What do you see? Check out all
the hello-functions. If you change something in your module ’hellos.py’ but it does not seem to
take effect, you need to re-import the module. Type import importlib to get the necessary python
module, then type importlib.reload(hs). See the file ’Figs4Paper.py’ for examples. Alternatively,
you could also exit from ipython and re-launch ipython.

e) Now move to the CE. Science context. First play a bit with the CE. In the file Figs4Paper.py,
play with the different default options. Set the flags for different tests / figures to ’yes’ instead of
’no’. Look at the plots you get, think a bit about them, about the CE and what it can (not) tell you.

f) Back to python. You should have seen a series of pre-defined plots. Among them temperature
plots that focus on the global mean temperature of the atmosphere (as this was one of the ob-
jectives of the paper for which the code was used). The goal now is to also plot the temperature
of the ocean. Go to TestDefs.py, search for the PlotTDTemp function. You will see that it is hard
wired to the temperature of the atmosphere (index 0 in array T_of_t). Add a new, similar function
to TestDefs.py that allows you (the user) to plot either the temperature of the atmosphere or the
temperature of the ocean (index 1 in array T_of_t) or both (in separate figures).

g) Still within the context of the CE, you should have seen a 2D map in task 3 (cartopy). The
associated function is PlotTempPat in the file PatternScaling.py. If you look at the function defi-
nition, you see quite a number of arguments listed that are passed to the function, e.g. proj or
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Figure 6: Simple example of class definition and usage, task 6. Figure and image taken from
https://docs.python.org/3/tutorial/classes.html

addcont. Re-write the function such that instead of these explicit arguments it uses **kwargs
(keyword / argument pairs). To get an idea of how this maybe done, look into the file ClimDICE.py
and search for kwargs, used e.g. in the function ModCarbEmi.

h) If you feel up for more: write a function with which you can add more mammals to the pandas
data frame from task 2, point c. Or also remove mammals from the data frame. Or remove a
column of the data frame.

3.6 Task 6: classes

Classes provide a means of bundling data and functionality together. In the case of the CE, the data
comprises information on the equilibrium state of the system or on the exchange rates of carbon among
atmosphere and ocean. The functionality comprises, for example, methods for re-mapping emissions
per year to arbitrary time steps (other than one year) or also methods that ascertain consistency of
parameter changes (e.g. to ascertain that the total carbon mass is conserved numerically, that no
carbon is lost due to numerics instead of physics). Or simply numerical integrators to advance the
carbon cycle and the temperature equations with time. The file ClimDICE.py contains a class definition.

While classes are of key relevance for many applications, we do not go into any details here.
The present task just looks into a very simple example of a class definition, shown in Figure 68.
Put this class definition in a file (Chiens.py) and use import Chiens as ch to have the class visible.
Create (instantiate) a dog or two, a=ch.Dog(’Wuff’), and characterize some of the tricks it knows,
a.add_trick("sit"). Check the result via a.tricks and a.name. Add other functions to the class. Maybe try
adding properties of the dog, like color, weight etc. Or enable it to bark9.

A few more remarks on the example. The class Dog serves as a ’blue print’ to create concrete dogs
(instances of the class), one dog (instance) at a time with its properties. Upon initialization (instantia-
tion) of a concrete dog, the __init__ function of the class Dog is executed, leaving your concrete dog
with some initial, personal properties. The ’self’ refers to a concrete instance of the class Dog, to one
concrete dog.

A variant of the script, Chiens2.py, illustrates the pitfalls of (implicity) shallow copy as compared to
(explicit) deep copy in python. See the Chiens2.py file for details. See also Task 8 or the internet.

3.7 Task 7: team work

This tasks has two goals: repeat what you learned so far and train your skills in coding in a team,
i.e., write clean, documented, and re-usable code. As a team, build a code to create, manipulate,

8The example is from https://docs.python.org/3/tutorial/classes.html
9Rough idea on how to do this: def bark(nbark): for ib in range(nbark): print("WUFF! ", end=”) and then e.g. a.bark(3)
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and visualize a pandas data frame for country specific data (population, Gross Domestic Product GDP,
area, life expectancy, agricultural production, literacy, what else you want). One country per row, data
in columns. Search the internet for data you find interesting. Plots may be maps with countries color
coded according to data, or bar plots, line plots, scatter plots etc. Up to you.

A possible code structure is to have a python module containing functions AddRow2Df, AddCol2Df,
AddVal2Df that allow you to add a row / column / value to a data frame. Likewise, you may think of
functions MapPlotFromCol, BarPlotFromCol, ScatterFromCols etc. Then maybe have a python script
where you import this module, set up / manipulate your data frame and produce some plots. Split
the coding of the python script and python module (or however you wish to organize the task) among
yourselves as you wish. Try to rely mostly on the code as such, not on bothering your team mate with
(too many) questions.

Gather country specific data from the internet, e.g. GDP from Wikipedia. Get the data into your data
frame via ’enter by hand’ (using your functions) or write a function to read data (which you download
from the web) from disk. You could also try to combine gridded data with shape files for countries (their
borders) to calculate country averages from gridded data.

If you want, try to collaborate using a git-repository (e.g. gitlab, which is open source, or github,
which belongs to the Microsoft universe). Associated knowledge may come in handy in your future, but
as it is beyond the actual scope of the IPP, you would be on your own.

For hand-in: This is an advanced task. Therefore, it is not compelling that you hand-in something.
Still, it is highly encouraged that you either hand-in something or, better yet, present some results
(plots!) from this task on the last half day of the IP.

3.8 Task 8: more advanced topics

This final task contains further suggestions of what to do / try, but with less hints on how to do it.

a) Go back to Figs4Paper.py and PatternScaling.py. In Figs4Paper.py, instead of plotting only a
map for the year 2080, implement a loop over all years from 1850 to 2100. Change the plotting
function in PatternScaling.py such that the names of the png-files contain the year. Use python or
some other software (ffmpeg, mencoder) to produce a movie from the maps you got in this way.

b) As in a), but produce figures with two subplots: one showing the map (as in a) the other
showing e.g. the CO2 concentration as function of time and where in time you are (e.g. moving
marker or line growing with time. Again assemble all the plots into a movie.

c) In the function PatScalTemp in the file PatternScaling.py you see that there are different CMIP5
models available for pattern scaling. In Figs4Paper.py, add a loop over all these models and
produce a gallery of maps (on map per model) of how the year 2080 under RCP85 may look
like, depending on what model is used for pattern scaling. Complement this gallery with a gallery
of (normalized) histograms showing as a function of warming (x-axis) the fraction of grid boxes
(y-axis) undergoing this warming.

d) Instead of specifying the names of the models by hand, get them automatically. Make use
of python modules os, glob, re. From within python, get a listing of ’PATTERN*’ files in folder
’pattern_library’ using something like this files = sorted(glob.glob(os.path.join(folder,fileid))) (ap-
propriately adapted). Then use regular expressions (module re, re.split(), re.search() etc.) to
extract the model names from the file names.

e) Dive into numpy arrays, into views versus copies. Likewise, dive into the topic of ’deepcopy’.
In ClimDICE.py, you also find it is used (has to be used!). See e.g. these links:
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https://scipy-cookbook.readthedocs.io/items/ViewsVsCopies.html
https://www.programiz.com/python-programming/shallow-deep-copy used!).

f) Use scaling patterns remapped to the same (coarse) lat-lon-grid (folder pattern_scaling_cg) to
compare the patterns. Load them all, put them into a pandas data frame. Produce a map showing
the range of the patterns; the maximum warming; the minimum warming; color the maximum
(minimum) temperature change map by the model number (instead of coloring by temperature
change).
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