Integrated Practical: Python in Geosciences

Mathias Hauser, Doris Folini, Victor Wattin Hakansson

TAs: Stefanie Börsig, Svenja Seeber

Former lecturers, cotributors and TAs

Chahan Kropf, Alessio Cullo, Urs Beyerle, Sylvaine Ferrachat Boriana Chtirkova, Shuchang Liu, Ruolan Xiang

Objectives

- Enable you to write python code for your own needs
- Use own laptop (become independent of pre-set environment)
- Write quality code (clean and re-usable, for you and others)
- Handle and visualize geoscience data (wide spread data formats, geographical maps)
- Collaborate in teams (team work, version control, commenting)
- Scripting (for efficient, robust, and transparent work-flow)

Contents & Schedule

- Install python on your laptop
- Python basics
- Project work
 - 3 real-world projects
 - teams of 2-3 for 6 half-days
 - select by end of Tuesday

date	half-day	topic
Mo 11.3.	HD1	Welcome, project presentation & set up
Tu 12.3.	HD2	python intro (+ select project)
We 13.3.	HD3	python intro + questions
	HD4	work on project
Mo 18.3.	HD5	work on project
Tu 19.3.	HD6	mid-term status and questions + work on project
We 20.3.	HD7	work on project
	HD8	work on project
Mo 25.3.	HD9	work on project
Tu 26.3.	HD10	Presentations

Bold = attendance required

Course requirements

- To get the 2 ECTS:
 - 1. participate in introduction and mid-term question round
 - 2. hand in working and commented python code
 - 3. present your work (~10 min) on the last half-day
 - be present in CHN E46 on 5 half-days: Mo 11.3. / Tu 12.3. / We 13.3. (morning) / Tu 19.3. / Tu 26.3.

Presentation

- On the last half day
- > 10 min overview of the project
 - What did work? Interesting parts? What did you learn?
 - What did not work? Challenges?

Projects

- Climate Risk: estimate damage costs of storms hitting settlements
- CMIP Data: look at simulation data behind the IPCC reports
- Climate in Climate Economics: simple climate models for carbon taxes

Python

- a high level programming language, similar to matlab or R
- popular, wide spread, has a large and growing user community
- behind many open source projects – a universe of modules for different purposes

Python applications

- analyze and plot existing data
- write numerical simulations (e.g. a computer code to calculate pi) and produce data
- front-end code (what PhD student sees / edits) of large simulation codes (e.g. climate model, 106 lines of Fortran or C code for 'number crunching')

Using python

- jupyter: 'web interface', integrates code and results (text, images)
- ipython: command line interface, run (develop, test) python code
- python: command line interface like ipython, but even more basic

```
(base) mathause@poisson:~$ python
Python 3.10.13 | packaged by conda
Type "help", "copyright", "credits
>>> a = 5
>>> h = 7
>>> a
5
>>> print(b)
          (base) mathause@poisson:~$ ipython
>>>
         Python 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0]
         Type 'copyright', 'credits' or 'license' for more information
         IPvthon 8.22.2 -- An enhanced Interactive Pvthon. Type '?' for help.
         In [1]: a = 5
         In [2]: b = 7
         In [3]: b
         Out[3]: 7
         In [4]: print(a + b)
         12
         In [5]:
```

