
Integrated Practical: Python in Geosciences

Mathias Hauser, Doris Folini, Victor Wattin Hakansson

TAs: Stefanie Börsig, Svenja Seeber

Former lecturers, cotributors and TAs

Chahan Kropf, Alessio Cullo, Urs Beyerle, Sylvaine Ferrachat
Boriana Chtirkova, Shuchang Liu , Ruolan Xiang

Objectives

• Enable you to write python code for your own needs

• Use own laptop (become independent of pre-set environment)

• Write quality code (clean and re-usable, for you and others)

• Handle and visualize geoscience data (wide spread data formats,
geographical maps)

• Collaborate in teams (team work, version control, commenting)

• Scripting (for efficient, robust, and transparent work-flow)

Contents & Schedule

• Install python on your laptop

• Python basics

• Project work
• 3 real-world projects

• teams of 2-3 for 6 half-days

• select by end of Tuesday

date half-day topic

Mo 11.3. HD1
Welcome, project presentation & set
up

Tu 12.3. HD2 python intro (+ select project)

We 13.3. HD3 python intro + questions

HD4 work on project

Mo 18.3. HD5 work on project

Tu 19.3. HD6
mid-term status and questions
+ work on project

We 20.3. HD7 work on project

HD8 work on project

Mo 25.3. HD9 work on project

Tu 26.3. HD10 Presentations

Bold = attendance required

Course requirements

• To get the 2 ECTS:
1. participate in introduction and mid-term question round

2. hand in working and commented python code

3. present your work (~10 min) on the last half-day

4. be present in CHN E46 on 5 half-days:
Mo 11.3. / Tu 12.3. / We 13.3. (morning) / Tu 19.3. / Tu 26.3.

Presentation

• On the last half day

• > 10 min overview of the project
• What did work? Interesting parts? What did you learn?

• What did not work? Challenges?

Projects

• Climate Risk: estimate damage costs of storms hitting settlements

• CMIP Data: look at simulation data behind the IPCC reports

• Climate in Climate Economics: simple climate models for carbon
taxes

Python

• a high level programming
language, similar to matlab or R

• popular, wide spread, has a large
and growing user community

• behind many open source
projects – a universe of modules
for different purposes

Python applications

• analyze and plot existing data

• write numerical simulations (e.g.
a computer code to calculate pi)
and produce data

• front-end code (what PhD
student sees / edits) of large
simulation codes (e.g. climate
model, 106 lines of Fortran or C
code for ‘number crunching’)

Using python

• jupyter: ‘web interface’, integrates code and results (text, images)

• ipython: command line interface, run (develop, test) python code

• python: command line interface like ipython, but even more basic

