ETH zürich

Weather and Climate Models

Course Information:

Taught by:

- Christoph Schär (<u>schaer@env.ethz.ch</u>)
- David Leutwyler (<u>david.leutwyler@meteoswiss.ch</u>)
- Martin Wild (<u>martin.wild@env.ethz.ch</u>)

Tutorials: lead supervisor:

- Tuule Müürsepp (tuule.mueuersepp@env.ethz.ch)
- Course takes place on Thursday:
- Lectures: 14:15-16:00, Lecture Hall HG D7.1 (every week)
- Tutorials: 16:15-18:00, Lecture Hall HG D7.1 (five 2-hour sessions)

Questions can be asked in class or on Piazza: <u>https://piazza.com/ethz.ch/spring2024/7011216001</u>

Spring Term 2024 ETH 701-1216-00 https://iac.ethz.ch/edu/courses/master/modules/weather-and-climate-models.html

Lectures and tutorials

Lectures:

- In class
- ➢ Recordings:
 - For most of the lectures, recordings are available from 2022. The link is https://www.video.ethz.ch/lectures/d-usys/2022/spring/701-1216-00L.html
 - Access with special password as provided on the course website

Tutorials:

- In class strongly recommended
- There are no up-to-date recordings. In case you are unable to attend the tutorial, we might be able to provide some old recordings. Please contact Tuule Müürsepp (tuule.mueuersepp@env.ethz.ch)

Questions:

For lectures and tutorials: In class or using Piazza: https://piazza.com/ethz.ch/spring2024/701121600l

Aims of course

Understand ...

... how weather and climate models are formulated based on governing physical principles, and how they are used for climate and weather prediction purposes.

From *governing equations* to *numerical models* to *applications*.

This involves:

- Numerical aspects (repetition of basic finite differencing, spectral methods)
- Dynamical aspects (atmospheric dynamics, computational fluid dynamics)
- Physical aspects (cloud physics, atmospheric radiation, boundary layer)
- Coupled climate system (atmosphere / oceans / land surfaces)
- Weather forecasting (predictability and chaos theory, data assimilation)
- Climate modeling (anthropogenic versus natural drivers)

Schedule

		Idionalo
22.02.2024	Outline, Introduction (CS = Christoph Schär)	
	Dynamics and numerics	
29.02.2024	Repetition Numerical methods (CS)	
07.03.2024	Adiabatic model formulation: Shallow water system (CS)	Python Intro
14.03.2024	Adiabatic model formulation: Vertical coordinates (CS)	
21.03.2024	Adiabatic model formulation: Horizontal discretization (CS)	Tutorial 1
	Parameterizations of physical processes	
28.03.2024	Introduction, parameterization of the planetary boundary layer (MW)	Tutorial 2
04.04.2024	No class: Easter break	
11.04.2024	Parameterization of radiation (MW = Martin Wild)	Tutorial 3
18.04.2024	Data Assimilation (CS)	
25.04.2024	Parameterization of large-scale clouds (DL = David Leutwyler)	Tutorial 4
02.05.2024	Parameterization of convection (DL)	Tutorial 5
09.05.2024	No class: Ascension Day	
	Application of models	
16.05.2024	Predictability, weather and ensemble prediction (CS)	
23.05.2024	Earth Systems Models (MW)	
30.05.2024	Outlook	

Tutorials

Prerequisites

• Mathematics:

essential (including partial differential equations)

- Atmospheric dynamics and processes: basic introduction e.g. lecture courses "Wettersysteme" or "Atmosphärenphysik". Recommended book:
 - John M. Wallace and Peter V. Hobbs: Atmospheric Science: An Introductory Survey Academic Press, 2nd Ed. (2006), digital Version available from ETH Library
- Numerical methods: basic finite difference methods essential. Brief repetation provided in 2nd lecture. Available materials:
 - ETH course "Numerische Methoden in der Umweltphysik", lecture notes in German: https://www.iac.ethz.ch/edu/courses/bachelor/vertiefung/numerical_methods_in_environmental_physics_
 - Riddaway (2001), most relevant are chapters 1-3 and 6, download at above link.
 - Durran (1998), extract from Dale Durran's book, download at above link.

Programming:

some programming experience is essential, PYTHON experience is helpful but not required.

J. M. Wallace and P. V. Hobbs **Atmospheric Science***

D. R. Durran Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

A.P. Siebesma et al (Eds.)

Clouds and Climate*

Literature

T. T. Warner Numerical Weather and Climate Prediction*

Dale R. Durran

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

CLOUDS and

Climate Science's C

Prerequisites in atmospheric science

- If you did not have any courses, you will need to catch up with some of the material.
- Here an (incomplete) list of terms that you will need some familiarity with:

Thermodynamics:

- relative versus specific humidity, saturation vapor pressure
- potential temperature
- lapse-rate
- stable versus unstable versus conditionally stable atmospheric stratification
- adiabatic and moist-adiabatic ascent

Dynamics:

- advection operator (or transport operator)
- hydrostatic law
- vorticity
- geostrophic wind relation

Atmospheric processes:

- radiation balance, radiative transfer, short-wave versus long-wave radiation
- absorption, emission, transmission (scattering/reflection)
- planetary boundary layer, turbulence

Schär, ETH Zürich

Tutorials

• Term project:

Implementation of a two-dimensional isentropic model to study the nonlinear flow of a stratified atmosphere past a ridge. Consideration of dry and moist flows (with simple cloud microphysics).

- Programming language: PYTHON (introduction will be provided), Codes and visualization tools will be provided (website).
- Please install PYTHON on your own laptop. If you don't know PYTHON, we offer a 2hour introduction on March 7, 16:15-18:00
- Lead supervisor: Tuule Müürsepp (<u>tuule.mueuersepp@env.ethz.ch</u>) Assistants: Nicolai Krieger, Vishnu Selvakumar, Jan Zibell
- Dates: five 2-hour sessions, 16:15-18:00, HG D7.1, starts March 21
- Hand in a model verification plot after exercises 2 and 5.
- Hand in at end of term: Short summary (a few pages) including examples of simulations and their interpretation (upload pdf-file). Team work is encouraged, but individual reports are needed.

Tutorial project

Goal: Develop a two-dimensional model for the flow of a stratified atmosphere past a mountain ridge.

Example: flow from left to right over a bell-shaped mountain of 500m:

- color shading: velocity *u*
- contours: isentropes (θ=const), represent streamlines

Formulation: The model is formulated in isentropic coordinates: All variables are expressed as $u = u(x, \theta)$, where θ denotes potential temperature.

Tutorial: In the tutorial you will code the model in several steps. Initially we will consider dry flows, but later we will also address wet flows with stratified clouds and precipitation.

How to earn credits

- The tutorial is an integral part of the course and will help you to understand the lecture and pass the exam.
- Tutorial-Reports
 - Reports will be graded
 - Contributes 15% to final grade (it is possible to pass course without report)
- Attend written exam: Grade 4 is assigned for completion of >60% of tasks
- Credits are awarded if grade (exam plus report) ≥ 4 Course yields 4 ECTS credit points
- Same rules apply to BSc, MSc and PhD students (few exceptions for some ETH departments)

Tutorial Reports

• What should be in the report:

- demonstrate that you have understood and mastered the tutorial
- report does not need to cover all aspects of tutorial, you may focus on one specific aspect
- include key figures and your own interpretations
- no code (except if essential modifications, in appendix)
- Length: 3-6 pages (excluding title page, appendix), font 11 pt
- Tutorial will be graded:
 - weight ¹/₂ for nicely written reports (layout, figures)
 - weight ½ for creativity (interpretations, own experiments, modified code)
- Contribution to total grade: 15%
- Hand-in filename: <fist name>_<last name>.pdf
- **Due**: Date will follow, likely in early July 2024
- Feedback: will be provided before written exam

Written exams

- Exam: Session exam, in early August 2024 (date to follow)
- Contents of exams:
 - Consistent with the guiding principle of this course: "understand how weather and climate models are formulated from the governing physical principles and how they are used for climate and weather prediction purposes."
 - Focus is on understanding, mixture of text and math questions.
 - Non-trivial equations will be provided on exam sheets. Examples:
 - trivial equation: CFL-criterion
 - non-trivial equations: shallow-water equations
 - Materials that can be omitted for the exam:
 - Info will follow towards end of course
- Bring along:
 - 6-10 (one-sided) pages of hand-written notes on paper (printout of iPad notes is fine).
 - pocket calculator is not needed
- Question: on Piazza (use lecture tabs)