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ABSTRACT: Regional projections of future climate with associated uncertainty estimates are increasingly being demanded.
Generally, such scenarios rely on a finite number of model projections and are accompanied by considerable uncertainties
which cannot be fully quantified. Consequently, probabilistic climate projections are conditioned on several subjective
assumptions which can be treated in a Bayesian framework. In this study, a recently developed Bayesian multi-model
combination algorithm is applied to regional climate model simulations from the ENSEMBLES project to generate
probabilistic projections for Switzerland. The seasonal temperature and precipitation scenarios are calculated relative to
1980–2009 for three 30-year scenario periods (centred at 2035, 2060, and 2085), three regions, and the A1B emission
scenario. Projections for two further emission scenarios are obtained by pattern scaling. Key to the Bayesian algorithm is
the determination of prior distributions about climatic parameters. It is shown that the prior choice of model projection
uncertainty ultimately determines the uncertainty in the climate change signal. Here, we assume that model uncertainty is
fully sampled by the climate models available. We have extended the algorithm such that internal decadal variability is also
included in all scenario calculations. The A1B scenarios show a significant rise in temperature increasing from 0.9–1.4 °C
by 2035 (depending upon region and season), to 2.0–2.9 °C by 2060, and to 2.7–4.1 °C by 2085. Mean precipitation
changes are subject to large uncertainties with median changes close to zero. Significant signals are seen towards the end
of the century with a summer drying of 18–24% depending on region, and a likely increase of winter precipitation in
Switzerland south of the Alps. The A2 scenario implies a warming of 3.2–4.8 °C, and a summer drying of 21–28% by
2085, while in case of the mitigation scenario RCP3PD, climate change could be stabilized to 1.2–1.8 °C of warming and
8–10% of drying. Copyright  2011 Royal Meteorological Society
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1. Introduction

Given the changes in the climate system that have been
observed worldwide during the past decades (IPCC,
2007), the demand for reliable and quantitative projec-
tions of future climate is continuously growing. The
magnitude and severity of climatic changes are thereby
expected to be spatially heterogeneous, and the induced
impacts upon society, economy, and ecosystems may
differ from region to region. For instance, it has been
shown that warming trends over western Europe are
much stronger than expected from climate model pro-
jections (van Oldenborgh, et al., 2009), and there are
indications that in particular, coastal, high-latitudinal, and
mountainous regions belong to the most affected and vul-
nerable areas (IPCC, 2007). Switzerland, for example,
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has experienced positive temperature trends over the past
30 years that were around 1.6 times larger than the mean
warming trend of the Northern Hemisphere (Ceppi, et al.,
2010). This underlines the importance for accurate cli-
mate change information on regional to local scales, i.e.
scales that are most relevant for end users and deci-
sion makers for effective climate adaptation and risk
management. Much of our knowledge about possible
future changes in the climate over Central Europe and
Switzerland is based on the analysis of high-resolution
regional climate model (RCM) projections. Within the
European projects EU FP5 PRUDENCE (Christensen
and Christensen, 2007; Jacob, et al., 2007) and EU FP6
ENSEMBLES (van der Linden and Mitchell, 2009), such
simulations were run in a coordinated multi-institutional
effort, bundling the expertise of multiple modelling cen-
tres. The conclusions of both projects agree in that they
project for all of Europe, by the end of this century,
an increase of temperature by several degrees, and for
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the Mediterranean as well as parts of Central Europe
a decrease in summer precipitation (Rowell and Jones,
2006; Christensen and Christensen, 2007). Along with
changes in the mean, several studies further find an
increase in variability of summer temperatures on inter-
annual to daily time scales, accompanied by an increase
in the frequency of heatwaves (e.g. Schär et al., 2004;
Scherrer et al., 2005; Vidale et al., 2007; Fischer and
Schär, 2009; Fischer and Schär, 2010) that can at least
partly be explained by land–atmosphere feedback pro-
cesses (Seneviratne et al., 2006; Fischer et al., 2007).

Several countries have started to disseminate national
climate change scenarios on a regular basis (e.g.
Lenderink et al., 2007; Jenkins et al., 2009; Klein Tank
and Lenderink, 2009). On the basis of state-of-the-art
climate model simulations carried out in the context of
the ENSEMBLES project, a report on expected changes
in physical climate in Switzerland has been published
(CH2011, 2011). It is the aim of this study to describe
some of the methodological background of this report.
As will become evident with what follows, the route
from raw model output to reliable projections of climate
change is not trivial but involves a range of assump-
tions and methodological challenges, some of them being
of rather fundamental nature. Here, we discuss these
assumptions and challenges, and we propose options of
how they can be accounted for. While the methodology
proposed is illustrated in the example of Switzerland, it
is, in principle, applicable to any region.

Despite large modelling efforts over the recent years
and substantial improvements in the understanding of
local processes and impacts related to climate change,
future climate projections are still associated with large
uncertainties. While there has been substantial progress in
the characterisation of these uncertainties (Knutti et al.,
2008), less progress has been reached to reduce them
(Mearns, 2010). Uncertainties in climate change projec-
tions originate conceptually from three main sources:
(1) uncertainty in future anthropogenic emission path-
ways of greenhouse gases (GHG) and aerosols (‘emission
uncertainty’), (2) uncertainty in process understanding
and its limited representation by climate models (‘model
uncertainty’), and (3) uncertainty arising from natural
fluctuations that are independent from radiative forcing
(‘natural variability’ or ‘internal variability’) (Cox and
Stephenson, 2007). The relative importance of these three
main contributions depends on lead time, length of the
time intervals considered, region, season, spatial scale,
and parameter of interest. For instance, natural variabil-
ity is particularly large (in relative terms) for near-term
projections of precipitation on regional scales, while sce-
nario uncertainty dominates for temperature projections
for the end of the century (Cox and Stephenson, 2007;
Hawkins and Sutton, 2009, 2011).

These three sources of uncertainty need to be consid-
ered when calculating climate change scenarios. Internal
variability can be sampled through an ensemble of differ-
ent model initialisations (Stott et al., 2000) or by filter-
ing approaches (Hawkins and Sutton, 2009). Emission

uncertainty is typically addressed by conditioning the
projections on a limited number of emission scenarios.
A common and pragmatic way to address model uncer-
tainty is given by the concept of multi-model combination
(Tebaldi and Knutti, 2007; Weigel et al., 2008), i.e. by the
joint assessment of multiple climate models that should
be structurally independent. In reality, different models
share similar structural assumptions (Masson and Knutti,
2011) and, in particular, they share similar ‘unknown
unknowns’ in terms of process understanding, so that
one is typically left with a limited set of model projec-
tions which likely fail to sample the full uncertainty space
(Knutti et al., 2010). Any uncertainty estimate obtained
from a set of model projections is therefore necessarily
conditioned on several (subjective) assumptions, rang-
ing from assumptions concerning model independence
to assumptions concerning the future behaviour of sys-
tematic model biases. To treat this kind of conditional
uncertainty, a Bayesian framework is particularly appeal-
ing, since it allows decomposing the complex interrela-
tionships between observations, model projections, and
unavoidable (subjective) prior assumptions in a system-
atic and transparent way. A Bayesian approach is also
the method of choice in the present contribution.

The basis of this paper is the recently developed
Bayesian multi-model combination algorithm described
in Buser et al. (2009), which is an extension of the work
by Tebaldi et al. (2005). It is applied here to obtain
probabilistic projections of temperature and precipitation.
While the algorithm not only considers changes of
the mean signal but also changes of the inter-annual
variability, we restrict our analysis to changes in the
climate mean where the level of scientific understanding
is reasonably high. The algorithm of Buser et al. (2009)
has the specific advantage that it explicitly considers
systematic model biases. In particular, it provides three
options of how these biases may change in future:
(1) model biases are constant with time (‘constant bias’),
(2) model biases change linearly with time, depending on
how well the models reproduce inter-annual variability
during the control period (‘constant relationship’), and
(3) a mixture of these two assumptions as published in
Buser et al. (2010a). Bias assumption, i.e. the constant
bias assumption, is applied in most published climate
scenarios in literature (e.g. IPCC, 2007) and it will also
be used in the present study. It is important to stress
that the other bias assumptions may be equally justified,
with potentially significant impact on the outcomes
(Christensen et al., 2008; Buser et al., 2009; Buser et al.,
2010a).

The algorithm of Buser et al. (2009, 2010a) has sev-
eral other methodological limitations in that it assumes
that (1) the input data are normally distributed, (2) the
model data are uncorrelated between different models,
and (3) there is no internal variability. Here, we provide
several pragmatic approaches to overcome each of these
limitations, so that this contribution can also be consid-
ered as a methodological extension of the algorithm of
Buser et al. (2009, 2010a). Each of these extensions is
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associated with methodological challenges that we will
address in the paper in greater detail. To illustrate the
performance of the adapted Bayesian approach, the algo-
rithm is finally applied to RCM projections from the
ENSEMBLES project to produce a new set of proba-
bilistic climate change scenarios over the 21st century
for three distinct climatic regions in Switzerland.

The paper is structured as follows: Section 2 introduces
the model and observational data and their temporal and
spatial aggregation. It also evaluates the models in how
they reproduce observed climate over Switzerland during
the control period. The methodological chain applied to
calculate probabilistic scenarios is detailed in Section
3. This encompasses an introduction to the Bayesian
algorithm as well as data processing steps to be carried
out before and after its application. Section 4 presents
the obtained results of probabilistic temperature and
precipitation scenarios, which is followed by a discussion
(Section 5). Summary and conclusions are provided in
Section 6.

2. Data source and model validation

2.1. Model data

We make use of projections from the ENSEMBLES
RCMs (research theme RT2B in van der Linden and
Mitchell, 2009) that were driven by different coupled
atmosphere–ocean general circulation models (GCMs).
Altogether, a suite of 8 GCMs and 11 RCMs was
employed, yielding an ensemble of 20 dynamically down-
scaled regional climate projections for Europe at a hori-
zontal resolution of 25 km (Figure 1 ). Note that we have
excluded the RCM-GCM chain ‘HIRHAM (DMI)’ driven
by ‘BCM (NERSC)’, as a serious simulation error was

reported by DMI at the time of the analysis. The 20 RCM-
GCM simulations were conducted in transient mode fol-
lowing the Intergovernmental Panel on Climate Change
(IPCC) A1B emission scenario (Nakicenovic and Swart,
2000) and covering at least the time period 1950–2050.
A subset of simulations (14 RCM-GCM chains with 6
GCMs involved) was run beyond 2050 to cover the full
21st century. Owing to limited computational resources,
not every combination of a driving GCM and a down-
scaling RCM could be simulated. In fact, the RCM-GCM
combination matrix (in table V.1 in van der Linden and
Mitchell, 2009) reveals considerable gaps and unequal
numbers of RCMs per driving GCM. Note that one GCM
(HadCM3) has been applied in three parameter con-
figurations corresponding to a low, standard, and high
climate sensitivity. These three configurations represent
a subset of a larger ensemble, namely the METO-HC
GCM-perturbed physics ensemble (Murphy et al., 2004
give more details on the approach). In terms of their cor-
relation structure and projection characteristics over the
Alpine domain, these three model configurations can be
interpreted as three independent GCMs, at least for the
purpose of the present study.

2.2. Observational data
Our primary source of observational reference data is the
ENSEMBLES gridded observational dataset for precip-
itation and temperature (referred to as ‘E-OBS’ hence-
forth) in monthly resolution. This includes data from a
heterogeneous station network, which has been interpo-
lated onto the same 25 × 25 km rotated pole grid that
is used for the RCM integrations, thus making it par-
ticularly suitable for the validation of the ENSEMBLES
RCM simulations (Haylock et al., 2008). We used ver-
sion 3.0 of the dataset that spans the period 1950–2009
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Figure 1. ENSEMBLES RCM-GCM chains (colour coded according to driving GCM) used for the study. Asterisks behind bars mark those
simulations that run until 2100. Note that the GCM HadCM3 is run in three sensitivity configurations. The abbreviations in brackets denote the

main centre responsible for the corresponding model simulation.
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(available at: http://eca.knmi.nl/). Note that limitations of
the dataset have been unveiled recently that mainly con-
cern the data in daily resolution (e.g. Hofstra et al., 2010;
Kysely and Plavcova, 2010). Monthly or even season-
ally aggregated data are not strongly affected by these
limitations.

To quantify internal variability of the observed cli-
mate in Switzerland (detailed in Section 3.1.1.), we
used homogenized station data from MeteoSwiss (Begert
et al., 2005) that go back to 1860.

2.3. Temporal and regional aggregation

The 20 RCM-GCM chains employed in this study pro-
vide data output in daily resolution for grid cells of
25 km width. To enhance the statistical robustness of the
projections, the output of each model chain as well as
the observational data have been aggregated to seasonal
and regional averages. In terms of temporal aggregation,
the following seasons have been considered: Decem-
ber–February (DJF), March–May (MAM), June–August
(JJA) and September–November (SON). In terms of spa-
tial aggregation, climatologically similar grid points were
aggregated into three Swiss regions of similar size as
shown in Figure 2 : northeastern Switzerland (CHNE),
western Switzerland (CHW), and Switzerland south of
the Alps (CHS). The spatial extent of these three regions

was determined semi-empirically on the basis of the spa-
tial correlation structure of temperature and precipitation.
First, three core regions in northeastern, western and
southern Switzerland have been defined (black dots in
the two lower rows of Figure 2 ). Then, for each season,
each model (including the E-OBS data), and each variable
(precipitation and temperature), the seasonal averages of
these core regions have been correlated with the sea-
sonal averages of the surrounding grid points. On the
basis of this procedure, grid points could be identified
which are climatologically similar to the core regions,
and which can, therefore, be used to extend the core
regions to enhance statistical robustness. This procedure
includes grid points outside of Switzerland. As an exam-
ple, the correlation patterns for E-OBS, averaged across
all four seasons, are shown in Figure 2. In general, cor-
relations of temperature are much higher than in case
of precipitation, where the values drop rapidly with dis-
tance from the core region. Temperature remains highly
correlated across the Swiss plateau north of the Alps, and
in a rotated U-shape pattern along the southern side. By
analysing the correlation structures, the regions CHNE,
CHW, and CHS have been defined as presented in the
top row of Figure 2. Since the correlation patterns vary
between models (including E-OBS), seasons, and vari-
ables, the exact definition of the regions CHNE, CHW
and CHS represents an ultimately subjective compromise
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Figure 2. Upper row: Spatial extent of the three different regions that are mapped onto the grid and topography of E-OBS for illustration. Middle
and lower rows: At each grid cell, the correlation with the spatial average of the core region is shown for seasonal temperature (middle row)
and for seasonal precipitation (lower row). The core regions are marked with black symbols. Shown are the correlation coefficients averaged

across the four seasons in E-OBS.
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between the different correlation maps obtained for each
season, variable, and model. The three final regions have
been defined such that they have about the same num-
ber of grid points (31 in CHS, 33 in CHW, and 35 in
CHNE) and, hence, a comparable sampling uncertainty.
The high-elevation Alpine region has been excluded from
the analysis, since (1) averaging the highly localized and
complex nature of Alpine climate is not meaningful,
and (2) the RCMs suffer from representing the complex
topography realistically. For instance, the height of the
peak model Alpine topography is substantially lower than
in reality (e.g. Ceppi et al., 2010).

The scenarios are intended to provide information on
climatic changes over the 21st century with respect to
a reference period characterizing present climate. As a
reference period, the 30-year interval 1980–2009 has
been chosen. As scenario periods, the three 30-year
intervals 2020–2049, 2045–2074, and 2070–2099 have
been considered. For simplicity, throughout the study,
these periods are denoted with the corresponding central
year of the time window (i.e. 2035, 2060, and 2085).

2.4. Model evaluation

An in-depth assessment of the performance of the
ENSEMBLES models is beyond the scope of this study.
Here, the ability of the models to reproduce the annual
cycle of seasonal mean temperature and precipitation over
the three Swiss regions is inspected. Figure 3 shows sea-
sonal mean temperature and precipitation as simulated
by the 20 RCM-GCM model chains, and from E-OBS
for the three regions defined above during the reference
period. The models simulate temperature reasonably well
in terms of the qualitative reproduction of the annual
cycle. In absolute terms, considerable biases are observed
in the range of about −5 and +2 K (5–95% quantile of
the model ensemble). For the annual cycle in precipita-
tion, biases are in the range between −15 and 145% rela-
tive to the corresponding E-OBS values (5–95% quantile
of the model ensemble). The majority of the models
have a tendency to be too cool and too wet. This is
in good agreement with the findings of Kjellström et al.
(2010). However, the ranges are markedly larger than
those reported by Jacob et al. (2007) for the model chains
of the PRUDENCE project (a predecessor project of
ENSEMBLES) over the Alpine region (between around
−2.5 and +2 K for temperature, and between −35 and
+25% for precipitation). While the smaller biases in the
older PRUDENCE project may appear paradoxical at first
sight, this discrepancy can likely be explained by the fol-
lowing reasons: Biases in RCM-GCM chains are to a
large degree directly related to errors in the represen-
tation of the large-scale circulation in the GCMs and
in particular to biases in the simulation of sea surface
temperatures (SSTs) and sea-ice cover (Kjellström et al.,
2010). For the control period, the PRUDENCE simula-
tions were run using prescribed observational SSTs and
sea-ice cover data, while the ENSEMBLES GCMs were
coupled to a free-running ocean model. This implies sub-
stantially reduced biases in the large-scale circulation of

the PRUDENCE models. An additional reason could be
the smaller size of the evaluation domain in the present
study.

As can be seen from Figure 3, within the set of
ENSEMBLES models, we also encounter models with
exceptionally large biases. For instance, one RCM-GCM
chain exhibits temperature biases of more than 7 K (in
spring over all regions) while another chain simulates
precipitation 3.5 times, and in one case even 6 times
larger than E-OBS (over CHS during winter). The reasons
for these particularly large systematic errors in these two
chains (with potentially large impacts on the modelled
local physics) remain unclear, but their investigation lies
beyond the scope of this study.

Despite the obvious existence of large systematic
biases, none of the 20 model chains has been excluded
from the ensemble, nor have the models been weighted
according to their skill. This is for three reasons: Firstly,
none of the models performs consistently bad over all
aspects of the validation. For instance, those models
which perform worst in terms of precipitation perform
reasonably well in terms of temperature. Secondly, those
models revealing large biases during the control period
behave inconspicuously in terms of their projected cli-
mate change signal. This is consistent with the fact that,
at present, it is not known how, or whether at all, metrics
of global model performance during the control period
correlate with future model projections (Räisänen, 2007;
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Figure 3. Boxplots of seasonally averaged temperature (precipitation)
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Knutti et al., 2010). Third, a recent conceptual study
has shown that uncertainties in the weights applied to
the individual models may lead to multi-model projec-
tions which have lower skill than if no weights had been
applied at all (Weigel et al., 2010).

3. Methods: Derivation of probabilistic scenarios

The core of our methodology is the recently developed
Bayesian algorithm of Buser et al. (2009) (in the follow-
ing referred to as ‘BAB’) – an algorithm which allows
the joint assessment of multiple model output in a prob-
abilistic framework. The algorithm combines observa-
tional data with model simulations of past and future
climate, yielding probabilistic projections of expected
changes in seasonal mean temperature and precipitation.
It is described in Section 3.2. Despite its conceptual ele-
gance, the applicability of the BAB to the ENSEMBLES
GCM-RCM chains is associated with three constraints:
Firstly, the BAB requires that the data are normally dis-
tributed, which is not necessarily the case in reality (e.g.
for precipitation). Secondly, the BAB requires that data
stemming from individual RCM-GCM chains are inde-
pendent from each other, which is not the case if several
RCMs have been driven by the same GCM. Thirdly, the
BAB assumes that the disagreement between individual
model projections is entirely due to model uncertainty,
thus ignoring the fact that model discrepancies may also
be due to internal variability. These constraints require
the application of several pragmatic pre-processing (Sec-
tion 3.1.) and post-processing (Section 3.3.) steps so
that the algorithm becomes applicable to ENSEMBLES
model data. These steps are explained in what follows.

A schematic illustration of the entire processing chain
is provided in Figure 4. The order of the sections
and subsections follows the order of the processing
stages of the data. More specifically, the following
steps are undertaken: First, since internal variability

is not explicitly considered within the algorithm, it is
removed from the original time series by a filtering
approach prior to model combination (Section 3.1.1.)
and then added to the posterior projections after the
Bayesian multi-model combination has been carried out
(Section 3.3.2.). Second, to ensure that input data are
normally distributed, an appropriate transformation is
applied where required (Section 3.1.2.), and the posterior
distribution is retransformed accordingly (Section 3.3.1.).
Finally, the independence requirement of model data can
be partly satisfied by averaging those RCM simulations
driven by the same GCM (Section 3.1.3.). The BAB
itself is described in Section 3.2.1. Of central importance
for the application of the BAB is the specification of
prior assumptions concerning the magnitude of model
uncertainty (Section 3.2.2.).

While the ENSEMBLES regional climate projections
have only been calculated for the A1B emission scenario,
this study also seeks to provide information for other
emission scenarios. These are obtained from the A1B
scenarios by the technique of pattern scaling. Section
3.4. provides a description of this technique, and how it is
integrated into the processing chain described in Sections
3.1.–3.3.

The entire processing chain described in the following
is applied separately to each season (DJF, MAM, JJA,
SON), each region (CHNE, CHW, CHS), each variable
(temperature and precipitation), and each scenario period
(2035, 2060, 2085), taking 1980–2009 as reference. In
total, this results in 72 independent probabilistic estimates
of climate change for the A1B emission scenario. Strictly
speaking, each of the variables introduced in the follow-
ing should therefore be supplied with indices for scenario
period, season, and region. However, for better readabil-
ity these are omitted henceforth. Note that, in practice, the
regions, seasons and variables are not fully independent.
At the example of PRUDENCE simulations, Buser et al.
(2010b) extended the BAB to also project changes in the
combined distribution of temperature and precipitation.

Figure 4. Schematic overview of the methodology detailed in Section 3. The numbers indicate the corresponding sections. The steps denoted in
italics only apply to precipitation data.

Copyright  2011 Royal Meteorological Society Int. J. Climatol. (2011)



CLIMATE CHANGE PROJECTIONS FOR SWITZERLAND

Yet, a robust quantitative assessment of the change in the
correlation structure is difficult due to the small number
of independent GCMs available.

3.1. Pre-processing of data

The starting point of the processing chain are seasonal
and regional averages of model output and observation
data. In the following, X̂

(0)
0,t denotes the seasonal-regional

average of the E-OBS observations in year t , while X̂
(0)
m,t

is the seasonal-regional average of the output of model
m in year t . For the former, t can only assume values in
the past, while for the latter t can assume values both in
the past and in the future. The hat (∧) symbolizes pre-
processed data (i.e. before application to the Bayesian
algorithm). The superscript (0) indicates that these are
raw data which have not yet been further processed. By
construction, the BAB requires that the input data (i.e.
regional-seasonal averages of observations and model
output) are: (1) free of internal variability, (2) normally
distributed, and (3) independent. These criteria have been
checked beforehand and, where necessary, appropriate
adjustments have been applied to the data, i.e. to X̂

(0)
0,t

and X̂
(0)
m,t . To facilitate the discussions to follow, the

superscript index of the data is incremented by 1 for
each processing step described in the following (i.e.
‘(1)’ in Section 3.1.1., ‘(2)’ in Section 3.1.2., and
‘(3)’ in Section 3.1.3.). Also note that, as illustrated in
Figure 4, some pre-processing steps are complemented
by corresponding post-processing steps applied to the
posterior distributions obtained from the BAB (Section
3.3.).

3.1.1. Internal variability

The BAB makes the implicit assumption that changes in
climate mean are not affected by internal variability, an
assumption which is not consistent with reality (Hawkins
and Sutton, 2009). To circumvent this inconsistency, we
remove the internal variability component from E-OBS
and the 20 RCM-GCM chains beforehand, and add the
variability component again after applying the BAB.

Following Hawkins and Sutton (2009), we decompose
the time series of temperature and precipitation (X̂) for

each RCM-GCM chain (m), and E-OBS (0) into a slowly
varying component representing anthropogenic climate
change (x), and the remaining fluctuations representing
year-to-year variability and other internal variability such
as decadal oscillations (ε)

X̂
(0)
0,t = x0,t + ε0,t

X̂
(0)
m,t = xm,t + εm,t (1)

Again, the superscript ‘(0)’ indicates that original data are
not yet processed. As in Hawkins and Sutton (2009), the
slowly varying components xm,t and x0,t have been deter-
mined by a fourth-order polynomial fit to the times series
of observations X̂

(0)
0,t and model data X̂

(0)
m,t , respectively.

The fit reflects in our case the atmospheric long-
term response to perturbations in the Earth’s radiation
balance. For E-OBS, the fit is estimated over the time
span 1950–2009 and for the models from 1955 up to
the end of the simulation, i.e. to 2050 for the unstarred
models in Figure 1, and to 2099 for the starred models in
Figure 1. An example of such a polynomial fit is shown
in Figure 5 (a) for the model chain CLM-HadCM3Q0.
Since the climate change scenarios in the BAB are
constructed from a reference and a scenario period of
30 years each, we need to account for the effects of
natural variability on exactly this time scale. This is done
by a two-step procedure: First, the natural fluctuations on
the 30-year scale are calculated by applying a 30-year
moving average on the annual fluctuations ε, yielding
time series < εm,t >30yr and < ε0,t >30yr as illustrated
in Figure 5 (b). For simplicity, the variability of these
30-year fluctuations is henceforth referred to as decadal
variability. As a second step, these 30-year fluctuations
are then subtracted from the original time series, yielding
new data time series X̂

(1)
0,t and X̂

(1)
m,t which lack decadal

variability (illustrated for 1980–2009 in Figure 5 (c), red
curve)

X̂
(1)
0,t = x0,t + ε0,t− < ε0,t >30yr

X̂
(1)
m,t = xm,t + εm,t− < εm,t >30yr (2)

Note that, by doing so, we implicitly assume that the
decadal variability (in absolute terms) does not depend
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Figure 5. Winter temperature (in °C) over CHNE for the CLM-HadCM3Q0 model chain. (a) Raw data (thin line) together with a 4th-order
polynomial fit (bold dashed line) over 1955–2100; (b) Residuals as output from the regression model (thin line) and filtered with a 30-year
moving average (bold solid line); (c) model time series original (black) and after removing the internal decadal variability (red) over the time
window 1980–2009. The time window has been reduced here for illustrative purposes. It is displayed in orange in the left and middle panels.
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on the lead time and hence remains constant over the
full simulation period. Also note again that the decadal
variability removed will be added again after model
combination (Section 3.3.2.).

How large is decadal variability for the model and
observation data applied in this study? Figure 6(a) com-
pares the magnitude of the decadal variability of tem-
perature (standard deviation) in all RCM-GCM simula-
tions and observations. Generally, over all three regions,
the temperature variability in E-OBS (asterisks) and
in the models is largest during winter, reflecting the
enhanced dynamical variability on the synoptic scale
during this season (e.g. Hurrell and van Loon, 1997;
Ceppi et al., 2010). Variability estimates differ between
models particularly for summer (∼0.05–0.25 K), when
convective processes and land–surface atmosphere inter-
actions become important. Overall, the obtained estimates
of decadal temperature variability seem to be consis-
tent with estimates by Hawkins and Sutton (2009), who
reported a value of 0.16 K for the modelled European
mean temperature filtered with 20-year moving aver-
ages.

Figure 6 (b) shows the corresponding comparison for
precipitation. For E-OBS, no distinct annual cycle that is
common to all three regions is observed. Considering
the three regions and four seasons (note the different
vertical axis for CHS), variability is smallest over CHW
during summer (∼1 mm/month) and largest for spring
and autumn over CHS (close to 3 mm/month). Expressed
as percentage of seasonal mean precipitation, the decadal
variability within E-OBS varies between around 1 and
3%, which is again consistent with Figure 8 in Hawkins

and Sutton (2011), given that they analyse 10-year
averages but over a much larger domain. The decadal
variability of the ENSEMBLES models does not exhibit
a pronounced annual cycle either, but shows minima in
summer over CHW and CHS, just as the observations.
Differences among the models are largest during DJF
and some positive outlier models (with values up to
4–5 times bigger than E-OBS) are apparent in all
regions.

Generally, the decadal variability of E-OBS is at the
lower end of the range of variability estimates among
the models. This is particularly true for temperature
but also for precipitation in all seasons and regions.
This discrepancy between models and E-OBS could, at
least partially, be an effect of fitting a polynomial to a
much shorter time series in case of E-OBS (1950–2009).
For this reason, we made the same analyses using
homogenized station observations that go back to 1864
(Begert et al., 2005). To represent the region of CHW
(CHNE) we averaged the two stations, Berne and Geneva
(Basel and Zurich), and used the single station of
Lugano for CHS. As shown in Figure 6 (a) and (b), the
decadal variability estimates of these long-term time
series (marked by triangles) are larger than in E-OBS
and, in general, lie near the centre or at the upper end
of the model regional ensemble (exceptions are winter
precipitation in all regions and summer precipitation over
CHNE and CHW). Besides the aforementioned fitting
effect due to the longer time series, this higher decadal
variability may also partially be attributed to the fact
that only one or two single stations have been analysed
instead of a regional average as in E-OBS. This may
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Figure 6. (a) Annual cycle of internal decadal variability of temperature (standard deviation) in 20 individual RCM-GCM chains (boxplots),
E-OBS observation (asterisks) and representative station observations (triangles). The station observations represent the average of two selected
stations in CHNE and CHW, and one selected station in CHS. Note that model and E-OBS data are averaged over the regions CHNE, CHW,

and CHS. (b) is as (a), but for precipitation. Note the different axis on the right hand side for precipitation over CHS.
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be particularly relevant for precipitation where spatial
correlations between the selected meteorological stations
are generally lower and the effect of regional averaging
thus larger than for temperature. Note that the increase
in variability is not seasonally uniform, leading also to
differences in the qualitative shape of the annual cycle as
compared to E-OBS.

3.1.2. Normal distribution and autocorrelation

As will be discussed more in detail in Section 3.2.1.,
the input data into the BAB are observed and mod-
elled regional–seasonal averages of temperature and
precipitation during the control period, and modelled
regional–seasonal averages during the scenario periods.
Within each of these 30-year intervals, the BAB requires
that (1) the data are normally distributed, and (2) that
they have no year-to-year autocorrelation. To check the
autocorrelation condition, lagged correlations coefficients
have been tested (at the 5% significance level) against
the null-hypothesis of a normal distribution with zero
mean and variance 1/N , where N represents the sample
size (Chatfield, 2004). Since the null-hypothesis could
not be rejected, the modelled and observed temperature
and precipitation time series are treated as not autocor-
related, implying that no further adjustments to the data
are necessary in this respect.

To test whether the data are normally distributed,
we applied the Shapiro-Wilks test on each 30-year set
of data values considered. For temperature, the normal
assumption holds for almost all models and seasons.
Hence, a transformation is not necessary, and we have

X̂
(2)
0,t = X̂

(1)
0,t and X̂

(2)
m,t = X̂

(1)
m,t (3)

Precipitation data, on the other hand, have been found
to be often positively skewed. To find the optimal trans-
formation for precipitation data, we performed several
box-cox transformations (Box and Cox, 1964) iterating
over a range of lambda parameters. A simple square root
transformation leads in most cases to data which are
sufficiently normal. Moreover, due to the considerable
biases of modelled precipitation (Figure 3 ), and due to
the fact that modelled precipitation variance often scales
with precipitation bias, the raw model data are linearly
scaled such that their means during the control period are
identical to the observational means. This facilitates the
further processing steps significantly. Hence, the precipi-
tation data after this second pre-processing step have the
following format:

X̂
(2)
m,t =

√√√√X̂
(1)
m,t · < X̂

(1)
0,1980 – 2009 >

< X̂
(1)
m,1980 – 2009 >

X̂
(2)
0,t =

√
X̂

(1)
0,t (4)

with < X̂
(1)
m,1980 – 2009 > and < X̂

(1)
0,1980 – 2009 > being

mean observed and modelled precipitation during the
reference period.

3.1.3. Inter-model correlations

Independence between data stemming from different
models is another requirement of the BAB. This require-
ment is violated by construction, since several RCMs
are driven by the same GCM and hence highly corre-
lated (see also Kjellström et al., 2010). One option to
circumvent this problem is to only consider a subset of
the available model chains, such that only one RCM per
driving GCM is taken (Buser et al., 2010a). Here a differ-
ent approach has been chosen which allows all available
ENSEMBLES RCM-GCM chains to be included in the
evaluations: Independence is obtained by simply averag-
ing all RCMs that have been driven by the same GCM.
This pre-processing step then yields both for temperature
and precipitation

X̂
(3)
i,t =

ni∑
m=1

X̂
(2)
m,t

ni

(5)

Here, variable ‘ni’ denotes the number of RCMs driven
by the i-th GCM. Note that this averaging procedure
reduces the number of independent model datasets fed
into the BAB to an ensemble of 8 (6) simulations
up to 2050 (beyond 2050). In the following, these
averaged simulations are indexed by letter ‘i’. It should
be noted that aggregating RCMs according to driving
GCM does not fully resolve the model independence
problem. This is for two reasons: (1) Many GCMs have
similar structures and similar biases, and are based on
similar parameterisations of unresolved processes (e.g.
Masson and Knutti, 2011). (2) In the ENSEMBLES
matrix, in some cases, the same RCM (e.g. ‘RCA’ model)
is driven by several GCMs (Figure 1 ). In addition,
the aggregation removes some of the inter-model RCM
spread that is particularly relevant during the summer
season.

3.2. Bayesian algorithm of Buser et al. (2009)

3.2.1. Formulation of the Bayesian algorithm

For details on the BAB, the reader is referred to the
paper of Buser et al. (2009). Here, only a summary is
provided. The BAB generates probability distributions of
various climatic parameters of interest, �, conditioned
on the data available: p(�|Data). ‘Data’ here, refers to
observation data during the reference period, and model
data during the reference and scenario periods, while �

refers to a set of parameters characterizing the data (e.g.
model bias and climate mean shift). The BAB computes
p(�|Data) on the basis of the Bayes theorem, which
states that p(�|Data), i.e. the posterior distribution, can
be formulated as a product of the likelihood p(Data|�)

and the prior distribution of the parameters, p(�):

p(�|Data) ∝ p(Data|�) × p(�) (6)

As high-dimensional distributions are involved, the com-
putation of the posterior density for a single parameter
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cannot be performed analytically but relies on approxi-
mative sampling techniques (Markov Chain Monte Carlo
techniques; Gilks et al., 1996). In the present study, a
so-called Gibbs-sampler has been applied in the config-
uration as described in Buser et al. (2009).

As ‘Data’, we use our pre-processed time series of
Section 3.1. (i.e. X̂

(2)
0,t , X̂

(3)
i,t ). For simplicity, in the fol-

lowing, the superscript ‘(2)’ and ‘(3)’ are omitted. To
be consistent with the notation of Buser et al. (2009),
X0,t and Xi,t are henceforth only used to describe obser-
vation and model data (seasonal averages of tempera-
ture and precipitation) during the reference period, with
t = 1, . . . 30 indexing the respective year within the 30-
year reference period (1980–2009). To denote model
data and (unknown) ‘observation’ data during the sce-
nario periods, Yi,t and Y0,t are used, where t = 1, . . . 30
is the index of the respective year within the 30-year
scenario period considered. Index i denotes the different
driving GCMs. One has i = 1, . . . 8 for the short-term
scenario period (2035), and i = 1, . . . 6 for the medium
and long-range scenario periods (2060 and 2085, respec-
tively). It is assumed that X0,t , Xi,t , Y0,t , and Yi,t are
normally distributed and independent (Sections 3.1.2. and
3.1.3.). To keep the notation simple, it is in the follow-
ing assumed that the data within the reference period and
the data within the scenario periods have been detrended
beforehand. In practice, linear trends within the individ-
ual 30-year intervals are modelled by the BAB by means
of an explicit trend parameter (Buser et al., 2009).

Following the notation of Buser et al. (2009), the
likelihood p(Data|�), i.e. the distribution of model
and observational data given the climatic parameters, is
modelled as follows:

X0,t ∼ N(µ, σ 2
X0

)

Xi,t ∼ N(µ + βi, σ
2
Xi

)

Y0,t ∼ N(µ + �µ, σ 2
Y0

)

Yi,t ∼ N(µ + βi + �µ + �βi, σ
2
Yi

) (7)

where ∼ N(µ, σ 2) means ‘randomly sampled from a
normal distribution with mean µ and variance σ 2’. The
statistical model in Equation (7) is specified by several
parameters describing central tendency and year-to-year
variability of the data. µ is the central tendency of the
observed climate during the reference period, X0,t . As
outlined above, models are subject to systematic biases
and the central tendency of the model data during the
reference period, Xi,t , may be shifted with respect to µ.
This model-dependent shift is modelled by an error term
βi . As has been mentioned above, it is here assumed that
βi stays constant with time (‘constant bias assumption’),
but other options are, in principle, possible (Buser et al.,
2009; Buser et al., 2010a). The distribution of future
observations (Y0,t ), which, of course, are not yet known,
is assumed to be shifted by a climate change signal �µ

with respect to µ, so that the distribution of Y0,t is centred
at µ + �µ. It is this climate change parameter �µ which

is of most interest for the study here. If the participating
climate models were perfect (apart from a systematic bias
βi), the future model projections (Yi,t ) should be centred
at µ + �µ + βi . In reality, however, different climate
models are subject to different assumptions and errors
and have different climate sensitivities, so that they react
differently to changes in greenhouse gas concentrations.
In Equation (7) this is modelled by an additional model-
dependent error term �βi , which can be interpreted as
‘model projection errors’ (note that the sum �µ + �βi

represents the expectation value of Yi,t − Xi,t ). In fact,
these model projection errors represent an important
contribution to the still substantial uncertainties inherent
to the generation of climate scenarios (referred to as
‘model uncertainty in Section 1.).

Similar to the central tendencies, the inter-annual vari-
abilities σ 2

X0
, σ 2

Xi
, σ 2

Y0
, σ 2

Yi
can be decomposed into

parameters describing the observed inter-annual variabil-
ity during the reference period, systematic model biases,
climate change signal, and projection errors. However,
since inter-annual variability is not further evaluated in
this study, the reader is referred to Buser et al. (2009) for
a detailed discussion on these parameters.

Note that the BAB inherently assumes that any dif-
ferences between observed and modelled climate means
are exclusively due to bias and projection error terms βi

and �βi . However, in reality some of these discrepancies
may also be due to internal decadal variability, i.e. nat-
ural variations of the central tendencies of observed and
modelled climate. Here, this conceptual deficiency of the
BAB has been circumvented pragmatically by subtract-
ing internal variability prior to applying the BAB (Section
3.1.1.), and re-adding it after Bayesian model combina-
tion (Section 3.3.2.). A formal extension of the BAB to
directly account for internal variability is left for future
research. Among other changes, this would require that
the likelihood is extended by a further additive parameter
describing these natural fluctuations in observations and
individual models separately.

To calculate the posterior distributions of each of
the parameters of interest (in particular, �µ), the BAB
requires that prior distributions are specified for all
parameters. For the prior distributions of the additive
parameters, i.e. p(µ), p(�µ), p(βi), p(�βi), the BAB
assumes a normal distribution with mean and variance
being specified by so-called hyper-parameters. Whenever
possible, large values are chosen for the prior variances,
so that the priors become essentially flat and non-
informative, and the posterior distributions are mainly
determined by the likelihood. This strategy works well
for the prior distributions of µ, �µ and βi . Table I. and
II present our choices of the hyper-parameters used for
temperature and square root transformed precipitation,
respectively. As can be seen, the priors for X0,t are
centred close to the observed climatological means.
By that, a prior variance of ‘only’ 25 K∧2 is wide
enough to be considered as non-informative. For the prior
distributions of the multiplicative parameters, which are
related to year-to-year variability, as well as of the trend
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parameters – both of these are not explicitly expressed
in Equation (7) – we refer to Table II in Buser et al.
(2009).

Regarding the projection error term �βi (in Buser
et al., 2009 referred to as bias change), the situation is
more complicated since an informative prior definition
is required. The reason is that only the sum �µ + �βi

is identifiable from the data, but not the two parameters
�µ and �βi alone. In other words, without restricting
the variance of the prior for �βi , the posterior distribu-
tion of �µ would be uninformative, since any specific
value of �µ could in principle be compensated by a
�βi term of similar magnitude but opposite sign (Buser
et al., 2009 for a detailed discussion of this identifia-
bility problem). Reasonably sharp posterior distributions
of �µ are only obtained if the model projection errors
are, a priori, assumed to be within certain bounds. This
is a general problem in climate projections, and one is
forced to make partly subjective prior assumptions con-
cerning the magnitude of the tolerable model projection
errors.

To specify the prior of �βi , here we make the follow-
ing assumptions: (1) the projection errors are centred at
zero, implying that positive and negative projection errors
are a priori considered equally plausible (an assump-
tion, inherent to most published climate projections, e.g.
IPCC (2007)); (2) the variance of projection uncertainty
is given by a hyper-parameter σ 2

�β , which is obtained
from the assumption that the projection uncertainty is
fully sampled by the available model runs (details in
Section 3.2.2.). The prior for �βi is then formally given
by

�βi ∼ N(0, σ 2
�β) (8)

In the following, σ 2
�β is referred to as model projection

uncertainty.

Table I. Hyper-parameters for the prior distributions of
temperature.

Parameter Expectation value
µ0 (in °C)

Variance
σ 2

0 (in K2)
95% Confidence
interval (in °C)

µ (DJF) 0 25 [−9.8, 9.8]
µ (MAM) 7 25 [−2.8, 16.8]
µ (JJA) 15 25 [5.2, 24.8]
µ (SON) 9 25 [−0.8, 18.8]
�µ 0 16 [−7.8, 7.8]
βi 0 25 [−9.8, 9.8]

3.2.2. Quantification of model projection uncertainty

As already pointed out in Buser et al. (2009), the prior
assumption of projection uncertainty, σ 2

�β , has a strong
impact on the uncertainty range in the posterior distri-
bution of climate mean shift �µ. Before outlining how
σ 2

�β is chosen in the present study, we first investigate
this relationship more in detail by controlled sensitivity
experiments, using the BAB with different prior settings
of σ 2

�β while keeping the corresponding hyper-parameters
for �µ constant. The analyses are carried out at the
example of pre-processed model data (X̂(3)

i,t ) of tempera-
ture over the CHNE region. Figure 7 (a) shows the raw
model output and the 95% confidence interval of the
posterior distribution of �µ for projections of winter
mean temperature for the three scenario periods and for
four different choices of σ 2

�β . The width of the confi-
dence intervals increases with larger prior settings (from
∼0.5 K at σ 2

�β = 0.1 K2 to almost 4 K at σ 2
�β = 7 K2),

eventually exceeding the range spanned by the avail-
able raw model projections. The central tendency of �µ

remains almost unaffected by the choice of σ 2
�β , while

the uncertainty range is strongly determined by the mag-
nitude of this prior. This is true regardless which scenario
period is considered. This reflects the identifiability prob-
lem mentioned above, and indicates that the likelihood of
the data has only a minor impact on the width of the pos-
terior distribution. This is also evident from Figure 7 (b),
where the posterior uncertainty of �µ is plotted as a
function of σ 2

�β for the three different scenario peri-
ods and all four seasons. The uncertainty of �µ does
only marginally depend on the season and time inter-
val considered. Yet, the uncertainty range is to a large
degree affected by the number of participating models. As
shown in Figure 7 (c), a reduction of the model sample
size from eight models down to two (arbitrarily chosen)
models systematically increases the uncertainty in �µ

at each prior setting of σ 2
�β . These findings are hardly

affected by the choice of models (not shown). Overall,
Figure 7 shows that the posterior uncertainty of �µ is
directly linked to the (ultimately subjective) prior setting
of σ 2

�β and the number of models available, while the
likelihood (i.e. the actual data values) are only of minor
importance. This result is consistent with the sensitiv-
ity analysis conducted by Buser et al. (2009, Figure 11).
Within the current study, it motivates further considera-
tions when defining the hyper-parameter σ 2

�β .
In Buser et al. (2009), the hyper-parameter σ 2

�β for
temperature was set to a fixed value of 0.5 K2, corre-
sponding to allowed projections in the range −1.4 to

Table II. Hyper-parameters for the prior distributions of (square root transformed) precipitation.

Parameter Expectation value
µ0 (in

√
mm/month)

Variance σ 2
0

(in mm/month)
95% Confidence

interval (in
√

mm/month)

µ (for all seasons) 10 25 [0.2, 19.8]
�µ 0 25 [−9.8, 9.8]
βi 0 25 [ −9.8, 9.8]
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Figure 7. Uncertainty in the posteriori distribution of the climate change parameter (�µ) as a function of the prior choice of model projection
uncertainty (variance σ 2

�β ) for temperature over CHNE. In (a) winter changes for three scenario periods (blue: 2035, red: 2060, green: 2085)
are shown. The bars indicate the 95% confidence interval of �µ with the median as bold horizontal line, while the coloured circles are the
raw model output (averaged according to the driving GCM). (b) Width of 95 % confidence intervals of �µ as a function of σ 2

�β for the three
scenario periods (colours are as in panel a) and four seasons (DJF: circle, MAM: triangle, JJA: plus, SON: cross). (c) Width of 95% confidence
intervals of �µ as a function of σ 2

�β for summer and for scenario period 2035 with a varying number of arbitrarily selected models (from N = 2
models to N = 8 models) used in the BAB.

+1.4K (95% confidence interval). As a justification, it
was argued that the model projection errors should be
comparable or smaller than typical biases in the control
period (note that their analysis was based on PRUDENCE
RCM simulations with smaller biases than the ENSEM-
BLES model runs used here, see Section 2.3.). However,
as has been illustrated by the experiments above, apply-
ing one fixed (and more or less arbitrary) prior value
of σ 2

�β leads to relatively similar posterior uncertainty

estimates of �µ, regardless which region, season and
lead time is considered. This is inconsistent with the fact
that the raw projections reveal an inter-model spread and,
thus, projection uncertainties which (1) usually increase
with lead time, and (2) may vary significantly from sea-
son to season and region to region. To circumvent this
obvious inconsistency, we apply the more flexible prior
assumption that model error uncertainty is fully sampled
by the available model runs. As will be outlined below,
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Figure 8. 4th-order polynomial fits (with respect to the central year of 1980–2009) of winter temperature (left, in °C) and summer precipitation
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√
mm/month) over CHNE: (a) Time series averaged according to the driving GCM (different colours indicate a different GCM).

The inter-model variance at a scenario-period of interest (illustrated by the brackets) is used as a prior estimate for GCM-uncertainty σ 2
�GCM .

(b) Time series of RCM simulations driven by ECHAM5 (black) and HadCM3Q0 (red). The bold line is the corresponding RCM-average. The
average of the intra-GCM variances (illustrated by the brackets) is used as a prior for RCM-uncertainty σ 2

�RCM .

this assumption allows applying individual values of the
hyper-parameter σ 2

�β for each projection context, i.e. for
each combination of lead time, season, region, and vari-
able. Of course, this assumption is still subjective and
there are arguments against it. For instance, it ignores
the fact that climate models may share similar struc-
tural assumptions and the same ‘unknown unknowns’ in
terms of our physical process understanding which can
lead to correlated errors (e.g. Jun et al., 2008). How-
ever, since with the data and methods at hand it is not
possible to quantify the uncertainty of these ‘unknown
unknowns’, we will stick to this assumption for lack
of better alternatives, and we stress that the posterior
projection uncertainties obtained can only be consid-
ered as lower estimates of the true model uncertainty
ranges.

To determine prior values of σ 2
�β , we assume that it can

be decomposed into two components: one characterizing
the uncertainty originating from the large-scale driving
fields of the GCMs (‘GCM uncertainty’ σ 2

�GCM ), and
the other characterizing the uncertainty of limited-area
models that translate the large-scale projections onto
a localized scale (‘RCM uncertainty’ σ 2

�RCM ). This
decomposition is motivated by the fact that the number
of RCMs per driving GCM is highly variable (from 5
RCMs driven by 1 GCM down to 1 RCM only, shown
in Figure 1 ), so that the model projections applied in the

BAB, X̂
(3)
i,t ), are affected by both GCM uncertainty and

RCM uncertainty.
To estimate GCM uncertainty, the divergence of the

model projections, averaged according to driving GCM
(i.e. X̂

(3)
i,t ), is analysed. To exclude natural fluctuations,

only the smooth fourth-order polynomial fits (Section
3.1.1.) through X̂

(3)
i,t are considered for the analysis. Since

we are interested in the model divergence that has built
up with respect to the reference period, the smooth fits
obtained are shifted such that they overlap in 1995, i.e.
the centre of the reference period. This is illustrated in
Figure 8 (a). For a given parameter, region, season, and
lead time, σ 2

�GCM is then estimated by the corresponding
inter-model variance at the centre of the scenario period
of interest (2035 in the example of Figure 8 (a)).

To assess RCM uncertainty, σ 2
�RCM , the average ‘intra-

GCM’ spread is considered. That is, for each driving
GCM, the spread of the RCM time series X̂

(2)
m,t driven by

this GCM is evaluated, and the average of these spread
values is used as an estimate for σ 2

�RCM . Again, the time
series are smoothed by a polynomial fit and evaluated
with respect to a common reference in 1995. This is
illustrated in Figure 8 (b) for the RCMs driven by 2
GCMs. Of course, this approach requires that a sufficient
number of RCMs (at least 5) is available that have been
driven by the same GCM. For the ENSEMBLES models,
this is only the case for ECHAM5 and HadCM3Q0
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Table III. Hyper-parameters estimated for model projection uncertainty (hyper-parameter σ 2
�β ) in temperature (in K2) and (square

root transformed) precipitation (in mm/month) according to region, scenario period and season. The numbers in italic indicate the
fraction of σ 2

�β (in %) explained by GCM uncertainty and by RCM uncertainty. Note that for 2060 and 2085 the estimates are
based on 14 instead of 20 RCM-GCM chains with a reduced number of GCMs (see text).

CHNE CHW CHS

2035 2060 2085 2035 2060 2085 2035 2060 2085

GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM GCM RCM

Temperature DJF 0.28 0.48 0.89 0.27 0.44 0.83 0.32 0.77 1.46
83 17 79 21 84 16 78 22 81 19 87 13 78 22 86 14 79 21

MAM 0.54 0.68 1.04 0.47 0.67 1.03 0.58 0.63 0.90
96 4 99 1 98 2 93 7 97 3 97 3 93 7 95 5 97 3

JJA 0.39 0.65 1.57 0.42 0.75 1.69 0.44 0.84 1.81
93 7 94 6 83 17 88 12 95 5 84 16 78 22 93 7 84 16

SON 0.43 0.95 1.82 0.44 1.02 1.90 0.43 0.88 1.69
92 8 98 2 99 1 92 8 98 2 98 2 90 10 97 3 96 4

Precipitation DJF 0.46 0.14 0.12 0.46 0.12 0.12 0.21 0.40 0.51
77 23 95 5 88 12 67 33 96 4 88 12 42 58 94 6 90 10

MAM 0.12 0.12 0.25 0.12 0.05 0.17 0.26 0.13 0.19
47 53 88 12 92 8 53 47 90 10 95 5 75 25 42 58 58 42

JJA 0.19 0.12 0.35 0.16 0.08 0.27 0.25 0.10 0.39
67 33 53 47 55 45 62 38 51 49 69 31 29 71 70 30 55 45

SON 0.19 0.29 0.46 0.17 0.23 0.36 0.22 0.37 0.81
77 23 93 7 87 13 70 30 93 7 90 10 54 46 86 14 93 7

driven runs if lead times up to 2050 are considered.
Even worse, for lead times beyond 2050 it is only
ECHAM5 which has driven enough RCMs. Hence, in
this study, for the 2035 projections σ 2

�RCM is estimated
by the average between the intra-ECHAM5 variance and
the intra-HadCM3Q0 variance (Figure 8 (b)), while for
the 2060 and 2085 projections only the intra-ECHAM5
variance is used.

With this, the prior of total model projection uncer-
tainty can be obtained by summing up the two uncertainty
components

σ 2
�β = σ 2

�GCM + σ 2
�RCM (9)

Table III. provides a detailed overview of the σ 2
�β esti-

mates for each parameter, scenario period, region, and
season. Additionally, the table shows, in italics, the rel-
ative contributions of GCM and RCM uncertainty to the
estimates of σ 2

�β . For temperature, in general, the σ 2
�β

estimates obtained increase with lead time, and in most
cases they exceed the value of 0.5 proposed by Buser
et al. (2009) already for scenario period 2060. The largest
σ 2

�β values are seen for JJA and SON at the end of the
century, with estimates being about 4–5 times larger than
for 2035. Inter-regional differences in the estimates are
relatively small. One exception is CHS in winter during
the second half of the century, where model deviations
are much higher than for CHNE and CHW. In general, for
temperature, the variability across the GCMs, i.e. σ 2

�GCM ,
is the dominating contributor to model projection uncer-
tainty. This is qualitatively in line with the findings of
Déqué et al. (2007), which were based on data from the
PRUDENCE project. During DJF and JJA, the RCMs
explain at most up to 22% of the total model projec-
tion uncertainty, while for MAM and SON the fraction
is usually less than 10%.

For precipitation, the prior estimates of projection
uncertainty are also generally largest at the end of the cen-
tury. However, the increase is less continuous and shows
higher dependency on region and season than tempera-
ture. In many cases, the σ 2

�β estimates for 2035 are as
high as, or even higher than for the 2060 scenarios. This is
most evident for winter over CHNE and CHW, where the
variance estimates for the 2035 projections are almost 4
times larger than for the 2060 and 2085 scenarios. These
differences are partly due to sampling uncertainty aris-
ing from the small number of model chains available,
particularly for the second half of the 21st century. As
will be discussed later, seasonal mean precipitation in
Switzerland is (in contrast to temperature) only moder-
ately affected by global warming and associated with low
signal-to-noise ratios. In consequence also, the underly-
ing model uncertainty is only moderately dependent on
the lead time, and hence, estimates of model uncertainty
are likely dominated by sampling uncertainty. Apart from
that, the differences in variance might also be an indi-
cation that a 30-year moving average time window is
not wide enough to fully remove natural variability from
precipitation.

For precipitation, the contribution of the RCM compo-
nent to projection uncertainty is, at least for 2035, with
values between 23 and 71% much larger than in case of
temperature. Especially for summer, the choice of RCM
remains a large source of uncertainty also until the end of
the century (between around 30 and 45%). This is again
consistent with the analyses of Déqué et al. (2007).

3.3. Post-processing of the posterior distribution

Through the application of all methodological steps so far
explained (Section 3.1.–3.2.), we derive posterior distri-
butions of all parameters specified in Equation (7). For
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the climate scenarios presented in this study, it is particu-
larly the posterior distribution of climate mean shift (�µ)
which is of central interest. However, two further post-
processing steps are required. Firstly, for precipitation,
it is common practice to formulate climate projections
of precipitation in terms of relative precipitation change.
This requires an appropriate transformation of �µ, since
�µ represents the square root of absolute precipitation
change (Section 3.1.2.). Secondly, internal decadal vari-
ability is not yet included in the uncertainty estimates
and therefore needs to be re-added. These two steps are
explained more in detail in what follows.

3.3.1. Re-transformation of precipitation posterior
densities

As mentioned above, �µ represents the expected change
of root-mean-transformed precipitation values. Owing
to the nonlinearity of the square root operator, the
change of absolute precipitation cannot be expressed
by simply squaring �µ. Rather, the square operator
needs to be applied on the posterior estimate of total
square root precipitation, µ + �µ, with µ being the
posterior estimate of mean square root precipitation
during the reference period. The projected change of
absolute precipitation is then given by the difference
(µ + �µ)2 − µ2, and the expected change of relative
precipitation (which will be used in the next sections)
becomes

�µNEW = (µ + �µ)2 − µ2

µ2 (10)

Note that the nonlinear re-transformation affects not only
the central tendency, but also the variance of the posterior
outcome in a nonlinear way.

3.3.2. Recombination of internal variability

As discussed in Section 3.1.1., the BAB has required
internal decadal variability (i.e. < ε0,t >30yr and
< εm,t <30yr ) to be removed prior to model combina-
tion. For the final probabilistic temperature and precip-
itation scenarios, this subtracted variability contribution
needs to be recombined with the posterior distribution of
�µ. This is technically done by summating the individ-
ual samples of �µ as obtained from the Gibbs sampler
in the BAB with randomly sampled values of observed
internal decadal variability (< ε0,t >30yr ) to yield the
new re-combined mean change (�µMod+IV ):

�µMod+IV = �µ+ < ε0,t >30yr

with < ε0,t >30yr∼ N(0, 2σ 2
IV ) (11)

Since �µ describes the difference between ‘observations’
expected for the future and observations made during
the control period, internal variability needs to be added
twice, i.e. the simulated values of internal decadal vari-
ability are generated using twice the variance estimate of
observed variability (i.e. 2σ 2

IV ). To obtain more robust
estimates of observed internal variability, σ 2

IV has been

estimated from historical homogenized surface measure-
ments of MeteoSwiss, ranging back to 1864 (Begert et al.
2005), rather than from E-OBS data which are available
only back to 1950. The methodology is as described in
Section 3.1.1. First, a smooth 4th-order polynomial is fit
to the observational time series from 1864 to 2009, and
in a second step the 30-year mean residuals from this
smooth fit are calculated. σ 2

IV is given by the variance
of these residuals. In this study, station data at Basel and
Zurich are used to estimate σ 2

IV for CHNE; the stations
at Geneva and Berne are used for CHW, and the station
at Lugano for CHS.

3.4. Estimating changes for other emission scenarios

Climate change projections are conditioned on assump-
tions how global emissions of greenhouse gases and
aerosols as well as land use changes evolve in the future.
The choice of emission scenario significantly affects the
magnitude of climate change especially towards the end
of the century (IPCC, 2007). Since the ENSEMBLES
RCM model chains are all conditioned on the A1B emis-
sion scenario, the sensitivity of the projections to different
emission assumptions cannot be explored on the basis of
RCM data alone. To overcome this deficiency, a pattern-
scaling approach has been applied (Santer et al., 1990;
Mitchell, 2003; Fowler et al., 2007). This method, as used
here, is based on the assumption that regional temperature
and precipitation changes can be approximated by multi-
plying a spatially invariant change pattern, normalized to
a one degree global temperature change, with the global
mean temperature change of any emission scenario as
obtained from GCMs or energy balance models (EBMs).

We use this technique to scale the projections obtained
from the A1B ENSEMBLES runs to two other scenar-
ios: a non-intervention scenario with high fossil fuel
emissions (A2; Nakicenovic and Swart, 2000), and a
strong carbon mitigation scenario which likely prevents
global warming of more than 2 °C with respect to the
pre-industrial period (RCP3PD, van Vuuren et al., 2007).
Since we assume that internal variability is not affected
by the choice of emission scenario, the scaling must be
applied prior to re-adding internal variability (Section
3.3.2.).

Starting from climate change projections obtained for
the A1B emission scenario, �µA1B , the pattern-scaled
estimates of the projections for the A2 and RCP3PD
scenarios are obtained with the following equation:

�µ[A2,RCP 3PD] = < �T 2[A2,RCP 3PD]
global >

< �T 2A1B
global >

· �µA1B

(12)

Here, the magnitude of global warming (�T 2global) to
be expected for the A1B and A2 emission scenarios
are estimated from the multi-model mean of coupled
GCMs (IPCC, 2007), while that to be expected for
the RCP3PD emission scenario are estimated from the
reduced complexity coupled climate-carbon cycle model
MAGICC (Meinshausen et al., 2009). The scaling factors
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Table IV. Pattern-scaling factors (based on global tempera-
ture) applied to probabilistic ENSEMBLES projections (A1B
scenario) to estimate probabilistic scenarios for the A2 and

RCP3PD emission scenario for the three target periods.

2035 2060 2085

A2 0.89 0.98 1.17
RCP3PD 0.95 0.60 0.43

obtained for the A2 and RCP3PD emission scenarios for
the three periods considered are listed in Table IV. In
comparison to the A1B scenario, a future world according
to the A2 scenario would imply a global warming that is
enhanced by 17% in 2085. On the other hand, by 2035,
the warming is reduced by around 10% compared to the
A1B scenario. The reason for these scaling factors with
opposing signs lies in the global emission pathways of the
A2 and A1B scenario over the 21st century (Nakicenovic
and Swart, 2000). The mitigation scenario RCP3PD leads
to a stabilisation of global mean temperature rises such
that the warming by 2060 (2085) is around 40% (57%)
lower than in case of the A1B scenario.

Although pattern scaling is a widely used technique in
climate and impact studies (e.g. Jenkins et al., 2009), it
is important to stress that it comes with several limita-
tions (Mitchell, 2003). By definition, the method is only
valid as long as the response linearly scales with global
mean temperature. For spatial scales such as analysed
here, this might not always be the case due to a number of
nonlinearities induced by feedback processes or threshold
effects (e.g. associated with soil moisture or snow dynam-
ics). The applicability is further questionable when lin-
early scaling precipitation changes from a non-mitigation
scenario to an aggressive mitigation scenario (Wu et al.,
2010). Yet, for the lack of a better alternative, pattern
scaling still remains the best available method at hand.

For the purpose of the present study, we evaluated
the pattern scaling method by scaling the A1B posterior
distribution of �µ from one scenario period to another
(i.e. scaling �µ at 2085 toward 2035). The comparison
of the scaled projections with the actual probabilistic
estimates as obtained with the BAB has revealed that
the pattern-scaling approach works reasonably well for
both temperature and precipitation. In general, differences
between the scaled projections and the BAB estimates are
small. The largest discrepancies of the median changes
are seen during the summer season and amount to about
0.2 K for temperature and 6% for precipitation. This is
likely due to nonlinear responses in the regional climate
over the 21st century during this season. However,
these differences are small in comparison to the other
uncertainties present in the climate scenario cascade.

4. Results: Temperature and precipitation scenarios
over Switzerland

The resulting probabilistic scenarios for seasonal temper-
ature and precipitation changes over the 21st century are

displayed in Figure 9 and 10. The uncertainty ranges are
shown, expressed as 95% confidence intervals (coloured
bars), together with the median estimate (bold horizon-
tal line) for the 3 emission scenarios and the 3 regions.
The underlying model projections are superimposed onto
the bars of the A1B scenario. This is raw model output,
averaged according to the driving GCM, and including
internal decadal variability. Note again that each of the
individual confidence intervals results from a separate
calculation applying the methodological steps discussed
in Section 3.

4.1. Probabilistic temperature projections

The probabilistic projections show that temperature
changes in Switzerland are positive for all seasons,
regions, and emission scenarios analysed. For the A1B
and A2 emission scenarios, the warming signal increases
with lead time, while the projected temperature changes
of the RCP3PD scenario stabilize in the second half of
the century.

For the A1B emission scenario, depending on region
and season, the median estimates indicate a warming of
0.9–1.4 °C by 2035 that further increases by about 1 °C
(by about 2 °C) by 2060 (by 2085). In summer, however,
this increase is considerably stronger (up to 1.5 °C by
2060) than during the other seasons, so that seasonal
differences in the warming signal become more evident
towards the end of the century. By then, also interregional
differences, such as a more pronounced warming over
CHS compared to north of the Alps, become apparent.
For example, by 2085, the median estimates for CHS
indicate a warming of 3.3 °C (DJF), 3.1 °C (MAM), 4.1 °C
(JJA) and 3.2 °C (SON), while for the two regions north
of the Alps this amounts to around 3.1 °C (DJF), 2.8 °C
(MAM), 3.8 °C (JJA), and 3.2 °C (SON). So overall, the
range of warming (median estimates) across the different
regions and seasons for the A1B scenario is on the
range of 0.9–1.4 °C by 2035, 2.0–2.9 °C by 2060, and
2.7–4.1 °C by 2085 (all relative to 1980–2009).

Up to 2035, the choice of the emission scenario has
only a weak impact on the projected changes. How-
ever, for longer projection times, the different scenarios
increasingly diverge. By 2085, the impact of the emission
scenario on the projected temperature change is to the
order of several degrees. For instance, while the median
estimates of temperature increase for the A2 emission
scenario are within the range of 3.2–4.8 °C (depending on
region and season considered), the projected temperature
change of the RCP3PD scenario is around 1.2–1.8 °C.

The uncertainty range in temperature changes generally
increases with lead time for the A1B scenario. This was
to be expected, as it reflects the increasing divergence of
model projections over the century and, hence, our prior
estimates of σ 2

�β (Table III), which largely determine
the uncertainty in the climate change signal (Section
3.2.2.). However, due to the recombination of internal
decadal variability with the posterior distribution (Section
3.3.2.), the relative magnitudes of the σ 2

�β estimates
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Figure 9. Probabilistic temperature change scenarios (in °C) according to emission scenarios (row) and regions (columns). The coloured bars
represent the 95% confidence interval in the climate shift parameter (including internal decadal variability) with the median as bold horizontal
line. The crosses in the middle row are the raw model projections (averaged according to driving GCM and including internal decadal variability).

across different regions, seasons and lead times may
differ from the relative magnitudes of uncertainty ranges
in the probabilistic scenarios.

For the A1B scenario, by 2085, the lower end of the
uncertainty bars amounts to 1.8–3.0 °C warming (across
all regions and seasons) and the upper end to 3.6–5.3 °C.
Note that some individual model projections lie well out-
side the uncertainty bars. This indicates that the BAB
considers them to be unlikely. Whether or not a model is
treated as an outlier is solely based on the likelihood
(Equation (7)), on the magnitude of decadal variabil-
ity, and on our prior assumptions (in particular σ 2

�β ,
Figure 7). This is, for instance, the case for two model
projections, with one significantly above and one below
the majority of models in 2060 and 2085. Also note that
an outlier such as the model projection that suggests

a cooling by 2035 in spring over CHNE and CHW is
considered unlikely, given the other 7 positive tempera-
ture model projections. A similar effect had already been
observed by Buser et al. (2009).

The choice of emission scenario not only affects the
mean estimate but also the uncertainty range that, in
case of the A2 scenario, by the end of the century is
substantially larger than in the first half of the century.
In case of the RCP3PD scenario, the uncertainty ranges
in the second half of the century are similar to those by
2035, but somewhat reduced in spring north of the Alps.

4.2. Probabilistic precipitation projections

The uncertainty ranges of regional precipitation projec-
tions for Switzerland are generally large. In fact, in win-
ter, spring, and autumn, even the sign of the change signal
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Figure 10. As in Figure 9, but for precipitation changes (in %).

can either be positive or negative and remains uncer-
tain in all of the analysed regions and emission scenarios
(Figure 10). The exception is summer when a significant
decrease in precipitation in the second half of the cen-
tury is expected for A2 and A1B over all regions and for
RCP3PD over CHW.

For the A1B scenario, this decrease amounts to
10–17% by 2060, and 18–24% by 2085, with the change
signal being strongest over CHW. Moreover, south of the
Alps, there is an indication of an upward trend in win-
ter precipitation in the course of the century. By 2085,
the median estimates lie at +20%, but negative changes
cannot be ruled out. Apart from that, the median pre-
cipitation changes are generally close to zero with an
uncertainty range of 20–40% covering both an increase
and decrease. The probabilistic scenarios obtained with
the BAB seem to be fully consistent with the individual

projections of the model set: whenever the uncertainty
bars indicate that changes in both directions are possi-
ble, there is at least one model with zero or an opposite
change signal compared to the rest of the models. Another
example of consistency is the very large uncertainty bar
for CHS in winter by 2085, which can be explained by
the fact that 2 (out of 6) models exhibit a precipitation
change of around +40% and are hence regarded as plau-
sible outcome by the BAB.

In general, for the A1B and A2 scenario, the uncer-
tainty range increases with lead time. However, the
increase is less apparent than it is for temperature. For
winter over CHW and CHNE, between the scenario peri-
ods 2035 and 2060, uncertainty even decreases. This
reflects to some degree the behaviour of prior estimates
of σ 2

�β in Table III (much higher value in 2035 than
in 2060). As for temperature, internal variability has in
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many cases a significant impact on the projection uncer-
tainty as well.

Differences due to the choice of emission scenario
become especially evident towards the end of the century.
For instance, in 2035, summer precipitation over CHW
varies by less than 1% across the three different scenarios,
while by 2085, the projections range from a decrease of
10% for the RCP3PD scenario to a decrease of 28% for
the A2 scenario.

5. Discussion

The probabilistic scenarios presented in Section 4 pro-
vide an essential update on climate change informa-
tion over Switzerland making use of the latest set of
highly resolved model simulations over Europe and using
a state-of-the-art multi-model combination algorithm.
While the temperature projections show a pronounced
warming signal with a magnitude that is consistent with
earlier projections for Switzerland (Frei, 2004; OcCC,
2007), the projections of precipitation do not reveal a
clear tendency in terms of the expected sign of change
for all seasons except summer where a drying is pro-
jected. Any precipitation change signal that may exist
for spring, autumn, and winter appears to be shadowed
by the large uncertainty ranges that are generally larger
for precipitation than for temperature (Hawkins and Sut-
ton, 2009, 2011). In fact, even on a global scale there
are still considerable uncertainties concerning past and
future changes in the water cycle (e.g. Allan and Soden,
2007; Zhang et al., 2007). Moreover, two further factors
are responsible for the lack of signal in precipitation: the
large magnitude of internal variability (not shown) and
the geographic location of Switzerland at the transition
zone between two larger-scale patterns of precipitation
change. To better understand these large-scale processes,
we proceed with a short analysis of the patterns of tem-
perature and precipitation change over Europe.

Figure 11 displays the projected temperature changes
under the A1B emission scenario. Shown is the multi-
model mean (RCMs have been averaged according
to driving GCM prior to determining the multi-model
mean) which indicates a large-scale warming pattern over
Europe across the 21st century. The strongest increase
is projected for northern Europe in winter and southern
Europe in summer. Consistent with this pan-European
warming, Switzerland will experience a continuous rise
in temperature that is amplified with lead-time (see also
Figure 9 ). In contrast to temperature, the large-scale
relative precipitation changes over Europe (Figure 12 )
are characterized by a pronounced north-south contrast
that grows with lead time: precipitation is projected to
increase in northern Europe and to decrease in southern
Europe. This large-scale change pattern can be explained
both by circulation changes and thermodynamic factors
(Rowell and Jones, 2006; van Ulden and van Oldenborgh,
2006). While the changes are still moderate by 2035, the
bipolar structure of the change pattern intensifies towards

the end of the century. The location of the transition zone
separating the northern European precipitation increase
and the southern European precipitation decrease reveals
a pronounced seasonal cycle, shifting northwards in sum-
mer and southwards in winter. In summer, the transition
zone is in northern Europe, so that Switzerland is located
well within the large-scale pattern of southern European
drying. In fact, the largest changes are to be expected
for the region west of Switzerland (France and the north-
ern Iberian Peninsula). This intensification towards the
west is reflected in the drying signal over Switzerland,
which is stronger over CHW than over CHNE and CHS
(Figure 10). During the other seasons (spring, autumn,
winter), Switzerland and much of Central Europe is
located at or near the transition zone, implying that the
projected precipitation changes for Switzerland are com-
paratively small, or at least uncertain, for these seasons.
This essentially explains why neither the mean projec-
tions nor the model uncertainties reveal a pronounced
signal, and why the projections are almost independent
from lead time.

6. Summary and conclusion

The purpose of this study has been to illustrate how
a recently developed Bayesian methodology can be
applied to RCM output to obtain regional probabilistic
projections of temperature and precipitation change in
response to given greenhouse gas scenarios. This has
been done on the basis of the Bayesian multi-model
combination algorithm of Buser et al. (2009), BAB,
illustrated for the case of Switzerland. The scenarios are
based on the ENSEMBLES RCM projections and have
been calculated for three regions, four seasons, three lead
times, and three emission scenarios. The applicability
of the algorithm for the projection context discussed
in this study involves several major conceptual and
methodological challenges:

Firstly, how can internal decadal variability be
accounted for, given that the BAB, by construction,
assumes that discrepancies between different model pro-
jections are exclusively due to model uncertainty? We
have shown that this problem can be circumvented by
filtering out internal decadal variability from the obser-
vational and model time series prior to the model com-
bination and re-adding it to the posterior distribution of
the climate change signal after model combination.

Secondly, how can quantitative estimates be obtained
for different emission scenarios (here A1B, A2,
RCP3PD), given that a sufficient number of ENSEM-
BLES RCMs are only available for the A1B emission
scenario? This has been done by the technique of pattern
scaling, which has been applied to the posterior distribu-
tions of the climate change signals prior to recombination
with internal variability. By doing so, it has been assumed
that internal decadal variability is independent of global
mean temperature changes.

Thirdly, how can correlated model errors be minimized
(the BAB requires independence), given that several
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Figure 11. Temperature changes (in °C, relative to 1980–2009) over Europe in the multi-model mean (mean over the projections that were
averaged according to the driving GCM beforehand).

RCMs have been driven by the same GCM and therefore
reveal pronounced covariances? This requirement has
been pragmatically resolved by averaging all RCMs
driven by the same GCM, thus reducing the inter-model
correlations.

The most difficult challenge has been the choice of
a prior assumption on the magnitude of model error
uncertainty. We have shown that the choice of this value
is directly linked to the posterior projection uncertainty
obtained from the BAB and is thus of uttermost impor-
tance. In this study, these prior values have been obtained

from the assumption that the model runs available fully
sample the range of model uncertainty (given below).
More specifically, the prior has been assumed to be
decomposable into a sum of two variance estimates, one
comprising the variability across the different driving
GCMs, and one comprising the variability across differ-
ent RCMs driven by the same GCM.

On the basis of this methodology, and taking 1980–
2009 as reference period, probabilistic scenarios of tem-
perature and precipitation changes have been obtained
which can be summarized as follows:
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Figure 12. As in Figure 11, but for precipitation changes (in %). The black dots indicate those regions where at least 80% of the models agree
on sign.

(1) In the course of the 21st century, Switzerland will
experience significant changes in climatic conditions
(temperature and precipitation) as compared to the
observed climate of the past decades.

(2) The magnitude of climate change in Switzerland
depends on region and season, and particularly on
the pathway of future greenhouse gas emissions.

(3) If emissions follow a fuel-intensive non-intervention
emission scenario (A2), the median estimate indi-
cates (1) an increase of seasonal mean temperature of

3.2–4.8 °C by 2085, depending on region and season,
(2) a 21–28% decrease of summer mean precipita-
tion, depending on region, and (3) a 23% increase of
winter precipitation south of the Alps.

(4) If effective mitigation measures were implemented
to halve greenhouse gas emissions globally by about
50% by 2050 (RCP3PD scenario), climate would still
change in Switzerland over the next decades, but is
projected to stabilize at 1.2–1.8 °C warming, and an
8–10% summer drying by 2085.
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(5) For winter, north of the Alps, and spring and autumn
in all of Switzerland, precipitation scenarios do not
show a clear tendency for the sign of precipitation
change. This is due to the fact that, in these seasons,
Switzerland is located at or near the transition zone
between two large-scale regimes of precipitation
changes: decreases in southern Europe and increases
in northern Europe.

It should be emphasized again that probabilistic sce-
narios, such as those presented and communicated here,
are necessarily conditioned on a number of assumptions.
Consequently, the projections and uncertainty ranges
obtained are only valid to the degree that the underlying
assumptions hold or can at least be justified. This applies,
for instance, to the estimated projected changes according
to the A2 and RCP3PD emission scenarios that are valid
only as long as the regional climate response scales lin-
early with global mean temperature changes over the 21st
century (i.e. as long the prerequisites for pattern scaling
are satisfied).

On the route to probabilistic scenarios two other
fundamental assumptions were made, which we would
like to emphasize and revisit here. These are assumptions
which in fact are not specific to the methodology applied
in the presented study but inherent to many published
climate projections.

Assumption 1: The range of model uncertainty is fully
sampled by the available model projections.

This is probably the most critical assumption, mainly
for the following reasons:

a) The 20 RCM-GCM chains within the ENSEMBLES
matrix represent only a subset of all potential RCM-
GCM combinations and a subset of all potential GCM
projections currently in use worldwide (IPCC, 2007).
This is even aggravated in the second half of the
century with the reduced ENSEMBLES set (only
six GCMs). It is likely that the model data used in
this study only sample a portion of the total model
uncertainty, and that the estimates obtained are subject
to significant sampling uncertainty. A full exploration
of the uncertainty ranges would require (1) a larger
ensemble of driving GCMs, and (2) simulations of
all possible RCM-GCM combinations so that also the
uncertainties stemming from dynamical downscaling
can be assessed.

b) All state-of-the-art climate models share similar struc-
tural assumptions and the same ‘unknown unknowns’
in terms of physical process understanding implying
correlated error structures (Knutti et al., 2010; Masson
and Knutti, 2011). The quantification of this so-called
structural uncertainty remains an open issue in climate
science.

c) Climate models treat many processes and feedbacks
only in a simplistic manner. For instance, the still-
coarse resolution of the RCMs used in this study
does not allow to explicitly resolve convection and

associated feedbacks, and the associated uncertainties
are known to affect the magnitude and sign of regional
climate feedback processes (Hohenegger et al., 2009).
Other examples are the uncertainties in the carbon
cycle climate feedbacks that are not sampled in the
present setup because most GCMs are driven with
the same atmospheric CO2 concentrations. Those
feedbacks are particularly relevant at the upper end of
the climate change distribution (Knutti et al., 2008).
Moreover, there are indications that climate models
in general do not sample the full range of climate
sensitivity as estimated from various observational
constraints (Knutti and Hegerl, 2008).

Assumption 2: Systematic model biases do not change
with time.

This commonly applied (implicit) assumption is the
basis of most published climate projections (including
IPCC, 2007), and it has also been assumed in the present
study. Different bias assumptions may be equally jus-
tified. For instance, systematic biases may change with
temperature. This may have potentially significant impact
on the outcomes (Christensen et al., 2008; Buser et al.,
2009). In particular, for continental Europe, there is some
evidence from the aforementioned studies that summer
temperature change may be overestimated with the con-
stant bias assumption, while for Scandinavia winter tem-
perature change may be underestimated. However, with
the current observational and model data at hand, it is not
possible to clearly infer the development of model biases
over time. Therefore, the simplest assumption, i.e. the
constant bias assumption, has been chosen. It is impor-
tant to stress, however, that the current Bayesian frame-
work (in distinction to most other climate change studies)
actually allows for biases to change, but these changes
are minimized (relative to the constant bias assumption)
depending upon the prior assumptions. The demonstrated
sensitivity thus provides further motivation to investigate
other bias assumptions than adopted in the current study.

Both these fundamental assumptions have been made
not on the basis of strong scientific arguments, but for
lack of suitable alternatives. Given that the scenarios pre-
sented here involve a number of further assumptions – as
do all published climate projections – and given that
they are based on only a small number of GCMs, we
ultimately do not recommend to interpret the scenarios
obtained in a strictly probabilistic sense. The 2.5 and
97.5% quantiles shown should rather be considered as
a lower and upper estimate of pathways of future climate
evolution which are consistent with the data and method-
ology applied, but which may change as more informa-
tion becomes available and more sources of uncertainty
are included. The uncertainties are likely to be bigger
than those produced by the BAB for the reasons discussed
above.

Whether probabilistic results (e.g. Tebaldi et al., 2005;
Furrer et al., 2007) necessarily have to be presented to the
end user in a probabilistic form is another question that is
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not simple to answer. Some studies and national assess-
ments have argued for it and have even attempted to also
incorporate carbon cycle uncertainties, structural uncer-
tainties, and downscaling uncertainties into a Bayesian
framework (e.g. Murphy et al., 2007), while others have
argued that probabilistic information is not necessarily
required for decision making, and in the case of large
uncertainties may imply too much accuracy (e.g. Lempert
and Schlesinger, 2000; Kandlikar et al., 2005).

The presented scenarios of seasonal temperature and
precipitation changes and the associated methodology
give rise to further discussion and research. Other param-
eters, such as precipitation frequency and intensity could
give more insight to the changes in the hydrological
cycle. In principle, the study could be extended to other
regions in the Alps or in Europe, notably to regions with
different signal-to-noise ratios (noise referring here to
model uncertainty and internal variability). This would
allow for a differentiation between model uncertainty
and internal decadal variability in the climate-change sig-
nals under different climatic conditions. Further work
may aim towards extending the Bayesian algorithm such
that internal decadal variability and uncertainties aris-
ing from RCM and GCM projections are included as
additional terms to be explicitly modelled. That way,
estimation uncertainties that are inherent here in the pre-
processing part could be directly considered in the sta-
tistical model. From a user perspective, it would also be
very helpful, that a new extended version of the algo-
rithm will be capable of projecting climate change for
several future scenario periods in the same model. These
extensions could make the Bayesian algorithm of Buser
et al. (2009) even more valuable for the climate change
assessments at various spatial and temporal scales. As
has been demonstrated in this study, the advantage in
using such a Bayesian framework is not only that it
provides probabilistically sound uncertainty estimates of
climate change projections. The main advantage is that it
rather forces the user to formulate and justify the assump-
tions to be made, so that it becomes clear what the
probabilistic climate projections have been conditioned
upon. This strongly increases the transparency of climate
projections and facilitates their communication. Assump-
tions that are based on weak arguments can easily be
identified.
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