
Uncertainties in the timing of unprecedented
climates
ARISING FROM C. Mora et al. Nature 502, 183–187 (2013)

The question of when the signal of climate change will emerge from
the background noise of climate variability—the ‘time of emergence’—
is potentially important for adaptation planning. Mora et al.1 presented
precise projections of the time of emergence of unprecedented regional
climates. However, their methodology produces artificially early dates
at which specific regions will permanently experience unprecedented
climates and artificially low uncertainty in those dates everywhere. This
overconfidence could impair the effectiveness of climate risk manage-
ment decisions2. There is a Reply to this Brief Communication Arising

by Mora, C. et al. Nature 511, http://dx.doi.org/10.1038/nature13524
(2014).

Any human-induced changes in climate will be modulated by nat-
ural fluctuations of the oceans and atmosphere (for example, El Niño
events). These fluctuations occur randomly and independently, in both
reality and individual model-based projections, and act to obscure the
climate change signal3–5. Mora et al.1 discuss projections of when changes
in climate emerge permanently above the levels of such fluctuations (a
metric first considered in ref. 6). However, by ignoring the irreducible
limits imposed by these same random fluctuations, Mora et al.1 express
their emergence dates with too much certainty.

Several methodological oversights contribute to the erroneous un-
certainty quantification. First, Mora et al.1 ignore the possibility that
emergence dates before the end of the simulations are not permanent
deviations from the historical range6 (termed ‘pseudo-emergence’). In
many regions where emergence has not occurred by the year 2100,
Mora et al.1 artificially set the emergence date to equal 2100. This over-
sight produces several effects, including: (1) early and overconfident
estimates of regional temperature emergence; and (2) implausible emer-
gence dates for precipitation of exactly 2100 with zero uncertainty almost
everywhere.

Second, Mora et al.1 estimate precision of regional emergence tim-
ing using the standard error of the ensemble mean (s/!N), where N
(539) is the number of simulations and s is their standard deviation.
While the estimate of the ensemble-mean becomes more precise with
larger ensemble size, natural fluctuations of the climate (such as El Niño)
dictate that the future evolution of climate will not behave like the en-
semble mean, but as a single realization from a range of outcomes5,7.
The use of s/!N greatly underestimates8 this irreducible uncertainty,
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Figure 1 | The year of unprecedented emergence for surface air temperature
using RCP4.5. a, Lower panel: the cumulative fraction of the planet that has
emerged by any particular year for 13 different GCMs when restricting the
simulations to end in 2100 (solid lines, as in ref. 1) and in 2300 (dashed lines).
The grey shaded region highlights that the end-of-simulation pseudo-
emergence effect probably also affects the post-2100 emergence dates after
about 2250. For CSIRO Mk3.6 (black curve), spatial variations in the grid-point
emergence values are given by the global mean 6 1s (black circle and bar,
as in ref. 1) and a more appropriate 16–84% range of emergence times in which
68% of the grid points lie (black bar and star). The grey shading around the
black curve represents the range in coverage for the period 2000–2100 amongst
the 30 CSIRO Mk3.6 simulations analysed in b–e. a, Upper panel: the year of
global emergence using means and data up to 2100 (as in ref. 1, coloured
circles), medians and data up to 2100 (coloured squares), and medians and data
up to 2300 (coloured stars), showing a substantial delay for several models
which do not show median emergence until well after 2100. b, The mean (as in
the approach of ref. 1) and c, median (when considering data up to 2115)
emergence year using 30 simulations of CSIRO Mk3.6 GCM. Stippling in
b shows where at least 1 simulation (of 30) emerges beyond 2100; as such the
mean must be estimated by arbitrarily setting post-2100 emergence dates to
2100 (61% by area). Grey regions in c show where more than half the
simulations emerge after 2100 and hence no median emergence value can be
determined (28% by area). Stippling in c indicates where all members show
emergence beyond 2100 (8% by area). d, The standard error about the mean
(as in the approach of ref. 1) and e, the more appropriate and much larger
16–84% range about the median, with grey regions showing where less than
84% of the simulations have emerged by 2100 and hence no 16–84% range can
be estimated (44% by area).
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as well as the climate-response uncertainty given by the inter-model
spread, and is therefore inappropriate for use in emergence estimates.
Given N 5 39 simulations, there is greater than 85% chance that the
actual emergence time at any location will fall outside the uncertainty
values of ref. 1, and an infinite number of simulations would implau-
sibly suggest zero uncertainty in the projected emergence time. Nor
can the standard error simply be scaled to a more appropriate uncer-
tainty range (for example, a 16%–84% range, equivalent to 61s for a
normal distribution), partly because the ‘right-censored’ emergence results
of ref. 1 have an explicit upper-bound of 2100, making their distribu-
tion highly non-normal.

To demonstrate the impact of these oversights, we have replicated
the analysis of ref. 1 for surface air temperature using: (1) a multi-
model ensemble of simulations that extends to the year 2300; and (2) a
large ensemble of simulations from a single model that extends to 2115.

Mora et al.1 report that their ‘‘index has a global mean of 2069 (618
years s.d.) for near-surface air temperature’’ in the RCP4.5 forcing
pathway, where ‘‘s.d.’’ refers to the spatial standard deviation of their
grid-point means. However, the end-of-simulation effects invalidate
the concept of a global mean permanent emergence date. Even apparent
emergence years as early as 2050 may not actually permanently emerge
until post-2100, as evidenced by the time of divergence between dashed
and solid lines in Fig. 1a. Further, 41% (multi-model median) of the
pre-2100 emergence values (by area) are either pseudo-emergent (31%)
or artificially set to 2100 (10%). We also find that no model shows per-
manent emergence everywhere by 2100, or even by 2250. The large frac-
tion of grid points exhibiting post-2100 emergence also highlights the
underestimation of spatial emergence variability: whereas Mora et al.1

report a spatial s.d. of 618 years, the 16–84% grid-point range is
.150 years for virtually all of the models (see specific example for
CSIRO Mk3.6 model in Fig. 1a). Finally, while some global-median emer-
gence estimates using post-2100 data are similar to the global-mean (and
global-median) estimates using only pre-2100 data, such agreement is
fortuitous—as evidenced by the substantial delay in several models
(compare coloured circles and stars in Fig. 1a)—and should not be
expected a priori for the multi-model mean values from ref. 1.

The large single-model ensemble helps clarify the spatial pattern of
irreducible uncertainty (Fig. 1b). In this ensemble, 61% of the planet
exhibits the possibility of post-2100 emergence, thwarting the calcula-
tion of mean emergence and biological impacts in these regions (includ-
ing Amazonia and the Southern Ocean which are in the biodiversity
hotspots of ref. 1). In addition, the standard errors (as used by Mora et al.1)
are less than 6 years everywhere, whereas the irreducible 16–84% uncer-
tainty range is more than 6 years everywhere, and 75% of the planet has
a 16–84% range of more than 20 years. Note that inter-model uncer-
tainty will further increase the spread in grid-point emergence times
(compare the multi-model spread with the shaded intra-model spread
in Fig. 1a), and decrease the coverage of well-defined grid-point averages.
Finally, while the delay in emergence and increase in uncertainty is
evident for annual temperatures (the primary metric of ref. 1), it will be
more pronounced for other variables analysed1, such as monthly tem-
peratures and precipitation, but less pronounced for annual tempera-
tures in higher forcing pathways.

Last, the main conclusion of ref. 1—of early tropical emergence—is
already a key summary statement in the Intergovernmental Panel on
Climate Change (IPCC) 5th Assessment Report (AR5): ‘‘Relative to nat-
ural internal variability, near-term increases in seasonal mean and annual
mean temperatures are expected to be larger in the tropics and subtropics
than in mid-latitudes (high confidence)’’ (ref. 9). The reason for ‘high
confidence’ is that tropical temperature emergence has already been
seen in observations6,10–12 and in many previous studies examining cli-
mate simulations3,4,6,11,13–18, none of which were cited by ref. 1. While
projections of emergence times are clearly important for estimating a

wide range of impacts (as demonstrated for food security17, biodiversity
hotspots18 and ocean biogeochemistry19), they need to be quantified
within a framework that incorporates climate variability, as illustrated
in the large body of literature that has already examined this issue.

METHODS
We use simulations of surface air temperature from 13 global climate models (GCMs)
given historical radiative forcings from 1860–2005 and the RCP4.5 forcing pathway
from 2006–2300. We estimate the unprecedented emergence time for every grid
point in each simulation independently. The cumulative fraction of emergence
(Fig. 1a) shows the proportion of the surface area of the planet that has emerged by
each year. The emergence calculations are repeated while restricting the data to end
in either 2100 or 2300. We also use an ensemble of 30 simulations of the CSIRO
Mk3.6 GCM20 which were given the same radiative forcings for the period 1860–
2115. The CSIRO GCM is chosen because of the availability of the large ensemble
of simulations and its similarity to the multi-model mean/median behaviour. This
ensemble of emergence years is used to estimate the grid-point averages and un-
certainty ranges (Figs 1b–e).
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Mora et al. reply
REPLYING TO E. Hawkins et al. Nature 511, http://dx.doi.org/10.1038/nature13523 (2014)

In the accompanying Comment, Hawkins et al.1 suggest that our index2

of the projected timing of climate departure from recent variability is
biased to occur too early and is given with overestimated confidence.
We contest their assertions and maintain that our findings are conser-
vative and remain unaltered in light of their analysis.

We presented an index2 that quantifies the year after which the cli-
mate continuously exceeds the bounds of historical variability, using 39
CMIP5 Earth System Models. Uncertainty in climate projections from
these models arises chiefly from natural (‘internal’) climate variability,
model error and uncertainty in the future evolution of greenhouse gas
concentrations3. Hawkins et al.1 suggest that by ‘‘ignoring the irreduc-
ible limits imposed by… random fluctuations, Mora et al.2 express their
emergence dates with too much certainty’’. However, our index was
calculated independently for individual model simulations, which include
internal variability. By considering individual simulations (internal var-
iability) from each of 39 models (model-to-model error), under two
emission pathways (scenario uncertainty), our results account for the
three major sources of uncertainty in climate projections.

Our analysis of climate departure included only projections to the
year 2100 due to their greater availability (only a third of the CMIP5
models have projections beyond 2100). Hawkins et al.1 assert that the
use of model projections to the year 2100 reduces the global mean
timing of climate departure because we assigned the year 2100 to cells
where unprecedented climates might occur after 2100. This is a valid
constraint, and thus, climate departure at 2100 in our results should be
interpreted as emergence that will occur in 2100 or later, or not at all.

The implications of using projections to 2100 are, however, exag-
gerated by Hawkins et al.1. First, we recalculated our index using the
multi-model median, which is less affected than the mean by outlier
projections of climate departure after 2100, and found only small dif-
ferences. The global median temperature departure was 2076 under
RCP4.5 (the reported global mean was 2069) and 2045 under RCP8.5
(the reported global mean was 2047). The multi-model median deli-
vers similar results to the mean, even if projections to 2300 are used.
For instance, the analysis in ref. 1 shows that 7 out of 13 models exhibit
similar or even earlier global median temperature departures using pro-
jections to 2300 compared to global mean based on projections to 2100
(upper plot in figure 1a in ref. 1). Second, Hawkins et al.1 chose RCP4.5,
stating that the limitation is ‘‘less pronounced for annual temperatures
in higher forcing pathways’’. Indeed, by 2080, 97% of the planet will
face temperature departure for the remainder of the twenty-first century

under RCP8.5. Under the RCP4.5 pathway, 67% of the planet will face
temperature departure by 2080, highlighting the imminent departure
of Earth’s climate even under an optimistic mitigation scenario. Finally,
from a global biological and social perspective, the potential limitation
associated with climate departures beyond 2100 is small, as it is relevant
only to high latitudes and not for areas where the majority of people and
species on the planet live.

Any statistical value should be interpreted based on the metric it
represents. Hawkins et al.1 claim that by reporting the standard error
of the mean our results are given with too much confidence. Our paper
is transparent and clearly states that the standard error of the mean was
our metric of uncertainty among models, and although the values
provided should be interpreted in the context of that metric, they can
easily be converted to another choice of statistic if so desired (for example,
our standard error can be multiplied by

ffiffiffiffi

N
p

to obtain the standard
deviation). Hawkins et al.1 further suggest that the standard error is the
wrong choice as ‘‘the future evolution of climate will not behave like
the mean, but as a single realization from a range of outcomes’’. In other
words, all models’ simulations are equally likely, and thus, statistics that
describe the broad range of projections are more suitable. This premise,
however, conflicts with findings that it is the multi-model average that
best approximates mean observed conditions, often better than any indi-
vidual model, as demonstrated by prior studies4 and confirmed in our
paper2. Although there is no established ‘‘correct’’ way to express uncer-
tainty, at least for the results from Earth System Models that can be verified,
metrics of variability around the consensus mean are more appropriate.

Hawkins et al.1 also suggested that the standard deviation cannot be
scaled to their suggested 16–84% range multi-model dispersion as the
climate departures are not normally distributed. However, ‘‘contrary
to popular misconception, the standard deviation is a valid measure of
variability regardless of the distribution. About 95% of observations
on any distribution usually fall within 2 standard deviation limits…’’5.
We recalculated multi-model uncertainty as the standard deviation
and as the 16–84% range among model projections for temperature
and found small differences. The global median multi-model uncer-
tainty estimates by these two metrics differ by 2.5 years under RCP4.5
and 1.6 years under RCP8.5.

Our paper2 used all (not a subset) of the latest generation of Earth
System Models that have complete projections for RCP4.5, RCP8.5 and
historical experiments, under very conservative criteria for estimating
climate departure (for example, using the minimum and maximum
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historical values to set bounds, defining climate departure as the year
after which all subsequent years are out of historical bounds, and using
a historical period already affected by human greenhouse gas emis-
sions; we demonstrated that all these criteria delay the estimated year of
climate departure). We also used data on species distributions, pro-
tected areas and socio-economic conditions to show that the earliest
emergence of unprecedented climates will occur in areas with the
greatest number of species on Earth, where a large proportion of the
world’s human population lives and where conservation and economic
capacity to adapt are limited. These conclusions remain unaltered.
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