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Abstract pattern scaling is a simple way to produce climate projections beyond the scenarios run with
expensive global climate models (GCMs). The simplest technique has known limitations and assumes that a
spatial climate anomaly pattern obtained from a GCM can be scaled by the global mean temperature (GMT)
anomaly. We propose alternatives and assess their skills and limitations. One approach which avoids scaling
is to consider a period in a different scenario with the same GMT change. It is attractive as it provides
patterns of any temporal resolution that are consistent across variables, and it does not distort variability.
Second, we extend the traditional approach with a land-sea contrast term, which provides the largest
improvements over the traditional technique. When interpolating between known bounding scenarios,
the proposed methods significantly improve the accuracy of the pattern scaled scenario with little
computational cost. The remaining errors are much smaller than the Coupled Model Intercomparison
Project Phase 5 model spread.

1. Introduction

Anthropogenic warming of the climate system is well established and very likely to continue, but its magni-
tude and patterns of regional amplification are still uncertain because models are imperfect and because soci-
etal, technological, and economic developments are uncertain [Intergovernmental Panel on Climate Change,
2013]. To address the latter, scenarios were developed to represent alternative possibilities of how the future
mightunfold [van Vuuren etal., 2011]. Four different Representative Concentration Pathways (RCPs) were intro-
duced prior to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC).
The RCPs are an internally consistent set of pathways named after the radiative forcing they reach by 2100 [Ebi
etal., 2013; Moss et al., 2010]. For impact studies in particular, four RCP scenarios are not sufficient to describe
the full range of climate futures that might be experienced. However, running fully coupled climate mod-
els for many scenarios is impractical and computationally infeasible. Hence, computationally cheap statistical
emulators for climate model output (among which pattern scaling is the most popular) are essential and used
widely. Pattern scaling was first introduced by Santer et al. [1990] with the goal to create additional scenarios
by scaling a (usually fixed) spatial response pattern to a forcing from a global climate model using a global
mean temperature (GMT) anomaly obtained from a much simpler energy balance climate model [Mitchell,
2003]. Anomalies are traditionally considered relative to a preindustrial climate state. The basic assumptions
of traditional pattern scaling have been shown to not always hold [e.g., Tebaldi and Arblaster, 2014]. In this
study, we propose and assess alternatives and extensions to the simplest traditional pattern scaling technique
and discuss the advantages and disadvantages associated with them. These approaches yield, in many cases,
higher skill compared to the traditional one. Our skill metric is the mean squared error, for which we compare
the field obtained by a global climate model (GCM) with a pattern scaled field.

2. Model and Data

For this study, GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) [Taylor et al., 2012]
were used. Most of our results are based on the following five GCMs: CESM1-CAM5, CCSM4, CSIRO-Mk3.6.0,
HadGEM2-ES, and MIROCS. For each model the mean of three ensemble members per RCP was used to rep-
resent future changes. For some results the multimodel mean of 21 GCMs available in CMIP5 is used with one
ensemble member per RCP and model (Table S1 in the supporting information). The data were regridded
onto a T42 grid, and projections are made for the average over years 2080-2100 while the reference period
is 1860-1880, which we consider to be a preindustrial period.
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3. Methods

3.1. Traditional Pattern Scaling Approach

The simplest traditional pattern scaling approach approximates future changes by the product of a
time-evolving GMT change and a pattern that varies spatially but is constant over time, scenario, and model
characteristics [Mitchell, 2003] (see Text S1 in the supporting information). One underlying assumption of this
approach is that responses to external forcing and internal variability are independent, implying that anthro-
pogenic forcings do not modify the internal variability of the climate system [Lopez et al., 2011]. So internal
variability is assumed to be constant and is not scaled. This assumption might be true on decadal time scales
and at smaller spatial scales. Lopez et al. [2013] found that it is unlikely that the external forcing will not modify
the internal variability in a highly nonlinear system, especially on longer time scales. More elaborate pattern
scaling techniques use a sum of several patterns that characterize the response to greenhouse gases and
aerosols separately [e.g., Frieler et al., 2012] where intermodel, interscenario, and interrun variability are taken
into account.

Levyetal. [2013] found that traditional pattern scaling breaks down in the presence of significant aerosol forc-
ing. Aerosol forcing is regionally variable and also influences precipitation. Generally, scaling of variables with
high spatial variability has lower skill [Tebaldi and Arblaster, 2014]. Scaling is also less accurate for strong miti-
gation scenarios such as RCP2.6 [May, 2012]. The geographical distribution of warming changes as the climate
system approaches equilibrium. Manabe and Wetherald [1980] explained this by the difference between the
transient and the equilibrium response pattern, which is caused by the long adjustment time of the deep
ocean. Moreover, scaling fails to capture changes in sea ice extent and snow cover [Collins et al., 2013] which
behave more like a boundary that moves poleward rather than a pattern that scales. Traditional pattern scal-
ing only addresses the forced response, which implies that natural variability has to be treated separately
[Lopezetal., 2013]. Currently, it does not account for time-varying covariance between climate variables in the
system [Holden and Edwards, 2010].

We first assess the skill of the traditional approach by quantifying the error in the emulated surface temper-
ature change relative to the simulated RCP for 21 different models (e.g., by scaling RCP8.5 in the time period
2080-2100 to RCP4.5 and comparing this pattern to RCP4.5 obtained directly from the GCM). Figure S1 in the
supporting information shows the error in the scaling of the multimodel patterns, but we observe a substan-
tial intermodel spread in the error pattern for individual models. The general patterns showing the land-sea
temperature contrast are consistent, but local errors of up to 0.5°C are seen in areas of deep water formation,
sea ice, and in Central Asia. The biases could arise due to nonlinearities in model response to forcing, differ-
ing relative forcing contributions, and the fact that some scenarios are closer to equilibrium than others. To
quantify the dominant effects, we apply a joint empirical orthogonal function (EOF) analysis to the four RCPs
in 2080-2100 (with reference period 1860- 1880, grid points weighted by their respective areas). All the RCPs
were put together to form one large covariance matrix (where covariance is assessed in the domain defined
by the gridded spatial points, and the four-member RCP ensemble). The mean of 21 models from the CMIP5
archive (one ensemble member per model and RCP, Table S1) was used.

The first EOF shown in Figure 1a explains the largest difference between the RCPs and simply reflects the larger
global mean warming signal for the higher RCPs. This is effectively the pattern which is scaled in a traditional
pattern scaling approach. This is confirmed in Figure 1d, where the first principal component (PC) is shown to
be proportional to the GMT in the corresponding RCP. We see a stronger warming over land than over oceanin
the firstloading, partially explained by the larger heat capacity of the ocean which leads to a delayed response
[Joshi et al., 2008]. This differential warming between land and ocean regions is robust across models [Fasullo,
2010]. The reduced warming in the North Atlantic can be explained by the projected reduction of the Atlantic
Meridional Overturning Circulation as the climate warms [Weaver et al., 2012].

The second EOF (Figure 1b) explains the largest fraction of variance across the RCPs that is not captured in
Figure 1a and represents the largest errors introduced by traditional pattern scaling. EOFs do not necessarily
corresponded to specific processes, and we interpret this pattern as a combination of three main phenomena:
(1) The land area warms up even more for the high RCPs, whereas some parts of the ocean surface are cooler
than expected from the first EOF, owing to the different heat capacities of land and ocean. As a result of polar
amplification from ice- and snow-albedo feedbacks, land areas in high northern latitudes show the strongest
warming in the first mode, but the second loading shows that for higher forcing scenarios this effect is rela-
tively less because some fraction of the snow and ice is already lost. Moreover, loading two gives a retarding of
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Figure 1. EOF analysis of the area-weighted temperature fields (2080-2100) of the four RCPs with reference period
1860-1880. The loadings of the (a) first and (b) second EOF are shown. (c) The first principal component (PC1) versus
PC2. (d) PC1 plotted against the GMT, T, of the RCPs and (e) PC2 versus the land-sea temperature contrast (f in
equation (S3) in the supporting information). Linear regressions were fitted to the four points. Twenty-one models from
the CMIP5 archive with one ensemble member per scenario were used.

the warming, which may be a result of cold deep water upwelling. (2) The overall pattern resembles the Pacific
Decadal Oscillation (PDO), which is a long-lived pattern of climate variability in the Pacific, with El-Nifio-like
features [Zhang et al., 1997] in the tropical Pacific. The sea surface temperature in the North Pacific is strongly
influenced by the PDO. However, using the PDO index for pattern scaling purposes was found to be difficult
as models differ in their skill to represent the PDO correctly. This implies a large, model-dependent variability
which projects onto this pattern. (3) An interesting pattern is observed in the North Atlantic, which shows a
warming in that region, but the cause of it is unclear. It is model dependent and not consistent enough to be
used as a predictor. A consistency analysis across the five models is shown in Figure S2.

The first and second PCs are almost perfectly correlated (Figure 1c), but they are not proportional. Account-
ing for some of the variance captured in the second loading can still increase the skill by accounting for any
variables which are not proportional to global surface temperature change. The second EOF analysis suggests
that the land-sea temperature contrast should be used as second predictor, as it is the largest feature and
most consistent across models among those identified above. Figure 1e shows that the PCs of the second EOF
scale well with the land-sea temperature contrast (see section 3.3).

Figure 1b suggests that errors are introduced in traditional pattern scaling because land and ocean regions
warm at different rates, and these differences are influenced both by the amplitude and rate of warming.
If a prediction over land is most relevant for impact studies then the simplest way to address this is a pattern
scaling approach using global land temperature instead of GMT as a predictor. This approach turns out to
have in almost all cases smaller mean squared errors, but only by a few percent (see Text S4). Hence, we focus
on approaches with larger improvements in skill in the remainder of this study.

3.2. Time Shift Approach

To predict temperatures in RCP4.5 in 2080-2100 with the traditional approach, we can, for example, scale
down RCP8.5 in 2080-2100 based on the GMT change. An alternative is to apply the “time shift” approach,
which finds the time segment in RCP8.5 in which the average temperature matches the required global mean
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surface temperature. Hence, no scaling is needed, and the time window is simply chosen appropriately, which
makes the approach easy to apply. This approach has some important advantages: Consistency between mul-
tiple variables (e.g., physical relationship between temperature and precipitation) and correlation in space
and time is fully preserved. The internal variability does not have to be scaled in magnitude and is consis-
tent with the global temperature change. In addition, consistency is ensured even for quantities that do not
scale (e.g., the edge of Arctic sea ice) to the degree that regional changes depend on global temperature and
are adequately represented in the model. Finally, it is highly unlikely that the resulting pattern shows some-
thing completely nonphysical, because no scaling is required. However, this technique also has limitations.
For example, it is impossible to use a time period from RCP2.6 to predict RCP8.5 in 2080-2100 because the
RCP2.6 scenario never reaches the GMT of RCP8.5. This approach makes the assumption that the pattern at
a given GMT change is independent of the rate of temperature change. On short time scales, this underly-
ing assumption must be justified in a case by case basis. If the rate of change of forcing (or the nature of the
forcing itself) differs significantly between the predicted time period and the predictor simulation, this could
potentially introduce error into the approach. Nevertheless, those assumptions appear to be less problematic
than those made by scaling patterns for fixed time periods (see section 4).

3.3. Approach With Multiple Predictors

If the traditional pattern scaling is primarily limited by its inability to represent nonlinear feedbacks, those
could be resolved by a second-order (quadratic) term in GMT to better fit some nonlinearities in the sys-
tem. This is a purely mathematically motivated approach, and we do not claim that those nonlinearities are
expected to scale quadratically with GMT. We tested this idea but due to its lack of physical justification and
bad performance for extrapolation, we only briefly discuss it in Text S6 of the supporting information.

A more physically motivated approach is the use of a second predictor representing the land-sea tempera-
ture contrast to account for some of the patterns which are ignored by traditional pattern scaling, as already
suggested by Joshi et al. [2013]. They included the land-sea surface warming ratio T,,,4/ T, in addition to the
transient climate response of the climate models to explain the intermodel variance between 22 GCMs from
the CMIP3 archive. In contrast, we here do not aim to explain the variance between models but introduce a
second predictor which increases the skill in creating new scenarios. With a second predictor, two scenarios
are needed to calculate the scaling factors. This approach basically consists of two equations (one equation
per RCP) with two unknowns (scaling factors), see Text S5 in the supporting information.

We define our land-sea contrast term, §, as a dimensionless factor which describes the differential warm-
ing of land and ocean and represents the component of land-sea contrast which is not explained by global
mean warming. It is the land temperature deviation from the preindustrial state divided by the sea surface
temperature anomaly. Figure 1e shows that there is a strong relationship between g and PC2.

In Figure S4b in Text S7, we present the smoothed temporal evolution of the multimodel mean g between
1966 and 2100 for the historical data and the four RCPs. Because we expect the land-sea temperature differ-
ence to be larger in a simulation with rapidly increasing forcing (where the land would be adjusting rapidly,
but the ocean response would be delayed), we can interpret f§ as characterizing the system’s disequilibrium.
It turns out to be very sensitive to different properties of land and oceans. In the historical data we identify
two large volcanic eruptions and the different character of each RCP is clearly reflected in the time series
of p. The curve of RCP8.5 flattens out toward the end of the century as a constant growth rate is reached,
and for RCP2.6 the overshoot is visible. This strongly suggests that f is related to the rate of warming and
contains information which is independent of the absolute value of the warming, making it a promising
second predictor.

4, Results and Discussion

The traditional pattern scaling, the time shift approach, and the bivariate approach with land-sea contrast
were tested for all possible combinations of RCPs and discussed in this section. To illustrate our results we
present error maps (pattern scaled surface temperature and precipitation fields minus fields obtained with
GCM:s) for the case of predicting RCP4.5 in 2080-2100 when RCP2.6 and RCP8.5 are known (Figure 2). Three
different pattern scaling techniques were applied: Traditional pattern scaling (Figures 2a and 2d), time shift
approach (Figures 2b and 2e), and the bivariate approach with the land-sea contrast as second predictor
(Figures 2cand 2f). The largest errors in surface temperature are observed in the North Atlantic and the regions
with substantial sea ice extent changes. The predicted land temperatures in Figures 2a and 2b are too high.
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Figure 2. Error plots obtained with (a and d) the traditional pattern scaling approach, (b and e) the time shift approach, and (c and f) the bivariate approach with
the land-sea contrast term. In all the cases, the multimodel mean of 21 GCMs is used and we assume that only RCP2.6 and RCP8.5 are known. RCP4.5 in
2080-2100 is predicted. The results are shown for surface temperature (Figures 2a-2c) and precipitation (Figures 2d - 2f).

This is no longer the case in Figure 2¢, where the land-sea temperature contrast is taken into account. The
errors in the pattern scaled fields decrease from Figures 2a to 2c and from Figures 2d to 2f. For precipitation,
the largest errors occur in the Intertropical Convergence Zone (ITCZ) and in the Indian Ocean. It suggests that
a shift of the ITCZ cannot be well represented by pattern scaling.

We repeated this analysis for all the proposed pattern scaling approaches and possible RCP combinations.
The result is summarized in Figure 3. The boxes represent the spread in error introduced by pattern scaling in
five different GCMs. Brackets on top of the corresponding box indicate the number of failed pattern scaling
approaches out of five. A pattern scaling approach was considered “failed” when the error in one model was
more than 10 times larger than the average of the errors obtained with the other four models. The asterisks
represent the results when the multimodel mean of 21 GCMs was used.

Error ratios (estimated at the grid box and combined in an area-weighted average) for scaling surface temper-
ature (Figures 3a-3d) and precipitation (Figures 3e—3h) are shown. The ratio consists of the errors obtained
through pattern scaling relative to the intermodel spread (five GCMs) in the prediction of the respective RCP,
i.e., the mean squared errors (MSE) between pattern scaling and the true model and relative to the MSE
between each combination of models. In contrast to errors introduced by the pattern scaling, the intermodel
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Figure 3. Comparison of the different pattern scaling approaches for (a—d) temperature and (e—h) precipitation. The
RCPs in 2080-2100 were predicted using five GCMs (three ensemble members per model). The number of models, in
which the pattern scaling approach failed (out of five) is shown in brackets above the corresponding box plot. The
asterisks represent the results of scaling the multimodel mean (21 models with one ensemble member per RCP). Errors
are expressed as ratios between the error introduced by pattern scaling approach and the mean intermodel spread.
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spread should not be regarded as an error. The differences between the models are caused by differences in
processes included or neglected and by internal variability. Ratios below 1 mean that the error introduced
by pattern scaling is small compared to the intermodel spread. Smaller error ratios imply higher skill of the
corresponding pattern scaling technique. We find in almost all cases that the errors introduced by pattern
scaling are significantly smaller than the differences between GCM:s (see also Figure S5).

4.1. Interpolation Versus Extrapolation

Interpolation (Figures 3b, 3¢, 3f, and 3g) is found to have higher skill than extrapolation (Figures 3a, 3d, 3e,
and 3h) for the two-predictor approach. Unsurprisingly, the traditional approach works best when the known
scenario is close to the predicted one (see also Figure S1). For the bivariate prediction, the skill is highest when
the known scenarios bound the predicted one. Additionally, the skill increases with larger difference between
the two known scenarios when extrapolating. The time shift approach also works better when the known
and predicted scenarios have similar radiative forcings. The derived time segment in the known RCP then lies
closer to the predicted one, and less errors caused by different warming rates are introduced.

4.2. Robustness

The time shift method is robust in the sense that it is skillful and effective in most cases, provided that a time
period with matching temperature is available. In contrast to the other techniques, no scaling is applied and
all output fields are taken directly from existing simulations, making the patterns physically self-consistent (to
the degree that the relevant processes are correctly represented in the GCM). It outperforms the traditional
approach in most of the cases. In the other approaches, temperature and precipitation are scaled separately
and physical relationships between multiple variables are not preserved. The approach with the land-sea
contrast rarely shows unrealistic results when extrapolating and often outperforms the techniques with only
one predictor.

4.3. Variability Scaling

Pattern scaling only applies to the externally forced climate response and not to the natural variability [Collins
et al., 2013]. The correct representation of internal variability is particularly important on small spatial scales
and on short time scales [Hawkins and Sutton, 2009]. Depending on how many simulations are available and
the interest of the end user, natural variability can be estimated separately and added to the scaled forced
response [e.g., Lopez et al., 2013]. Alternatively, variability can be estimated from long control simulations, but
this assumes that variability does not change with external forcing. A recent paper by Screen [2014] showed
a decrease in variability with increasing GMT, which is largest in middle and high latitudes. For extrapolation
far into the future, it is essential to account for this change in variability. The time shift approach is the only
method which preserves variability. The results for scaling the multimodel mean are shown as asterisks in
Figure 3. It is evident that the error ratio is smaller when considering the multimodel mean, where the inter-
nal variability is significantly reduced. Nonetheless, the above mentioned advantages and drawbacks of the
different pattern scaling approaches still hold.

4.4. Implications for the Experimental Design

Scenarios provide important climate projections to support a variety of research fields, such as adaptation,
mitigation, and impacts. Because GCM simulations are computationally expensive, and other communities
require many scenarios, our results should be considered in the process of the experimental design of sce-
narios. Figure 3 shows that the bivariate pattern scaling technique has highest skill if bounding scenarios
exist. This finding could be exploited in future experimental design of scenarios. Skill decreases quickly
for extrapolation.

5. Conclusions

In this present study we propose and test new methods to complement the traditional pattern scaling
approach. The “time shift” approach finds a time segment with matching GMT from an already existing simu-
lation to approximate a period in a desired scenario. The consistency between variables and the correlation in
space and time is preserved, and internal variability does not require scaling. However, if climate patterns are
a function of both the absolute value of global mean warming and the rate of warming, then those effects will
not be represented in a time shift method. This might not be a problem when the desired and known time
segments are close. On longer time scales, neglecting the scenario-dependent rate of warming might lead to
decreased skill. However, for the scenarios tested, this is less problematic than scaling patterns for fixed time
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periods as in the traditional approach. The approach can also only be used if a period of comparable GMT is
available in an existing simulation.

As an alternative, we propose a bivariate pattern scaling method. We consider the ratio of land-sea temper-
ature difference to global mean warming, motivated by the finding that the error fields from a traditional
pattern scaling show that a portion of the land-sea contrast does not scale linearly with GMT. This contrast is
effectively a proxy for the climate system’s rate of change of warming. With the land-sea temperature contrast
as a second predictor, the skill significantly exceeds that of the traditional one when the two known scenarios
bound the predicted one and produces better or comparable results in extrapolation.

In all our analyses we applied the pattern scaling techniques to the mean signal and ignored the internal
variability, which is assumed to be constant under traditional pattern scaling. However, recent studies show
that this is not fully justified, as temperature variability in middle and high latitudes was found to decrease
with increasing GMT [Screen, 2014; Fischer and Knutti, 2014]. Any study attempting to incorporate variability
information into pattern scaled results would likely need to take these effects into account. We tested our
approaches on a T42 grid and applied them to 20 year mean temperature and precipitation fields. Whether
our approaches can deliver skillful information at decision relevant spatial and temporal scales need further
investigations, but those limitations apply equally to GCM results without pattern scaling.

We find, in conclusion, that in most cases, the traditional approach with only GMT as a predictor can be sig-
nificantly improved using the time shift approach (if possible) or a bivariate predictor using a component of
land-sea temperature contrast in addition to GMT. Given a set of two bounding scenarios (in this case, RCP2.6
and RCP8.5), this study suggests that we can significantly increase the accuracy of the predicted response
for forcing levels between these two values. Skill in predicting surface temperature and precipitation can be
increased by a factor of up to 4 and 3, respectively. As an interpolant, the bivariate approach requires the
end user to compute both land and ocean temperatures in a simple model, but our findings suggest that
this small increase in complexity is worthwhile. The Model for the Assessment of Greenhouse-gas Induced
Climate Change/ A Regional Climate Scenario Generator (MAGICC/SCENGEN) is an example of such a simple
modeling tool [Meinshausen et al., 2011].

The error introduced by pattern scaling is small (1-15% for temperature and 2-30% for precipitation) com-
pared to the intermodel spread in the variable itself. The former is therefore largely insignificant relative to
the large uncertainty in the predicted future by different models. The irreducible error defined as the spread
between ensemble members is similar to one of the pattern scaling approaches (see Figure S5). The errors
of pattern scaling for temperature and precipitation are larger than the irreducible one but almost an order
of magnitude smaller than the CMIP5 model uncertainty. Impact modelers and other end users are inter-
ested in having a wide range of possible futures to assess risk. Our proposed pattern scaling techniques
could potentially improve the mean state predictions for pattern scaled estimates of future climate change,
allowing the simulation of a variety of future climate outcomes within two bounding scenarios at very low
computational cost.
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