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ABSTRACT

The estimated range of climate sensitivity, the equilibrium warming resulting from a doubling of the atmospheric carbon dioxide

concentration, has not decreased substantially in past decades. New statistical methods for estimating the climate sensitivity have been

proposed and provide a better quantification of relative probabilities of climate sensitivity within the almost canonical range of 2–

4.5 K; however, large uncertainties remain, in particular for the upper bound. Simple indices of spatial radiation patterns are used here

to establish a relationship between an observable radiative quantity and the equilibrium climate sensitivity. The indices are computed

for the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset and offer a possibility to constrain climate

sensitivity by considering radiation patterns in the climate system. High correlations between the indices and climate sensitivity are

found, for example, in the cloud radiative forcing of the incoming longwave surface radiation and in the clear-sky component of the

incoming surface shortwave flux, the net shortwave surface budget, and the atmospheric shortwave attenuation variable b. The climate

sensitivity was estimated from the mean of the indices during the years 1990–99 for the CMIP3 models. The surface radiative flux

dataset from the Clouds and the Earth’s Radiant Energy System (CERES) together with its top-of-atmosphere Energy Balanced and

Filled equivalent (CERES EBAF) are used as a reference observational dataset, resulting in a best estimate for climate sensitivity of

3.3 K with a likely range of 2.7–4.0 K. A comparison with other satellite and reanalysis datasets show similar likely ranges and best

estimates of 1.7–3.8 (3.3 K) [Earth Radiation Budget Experiment (ERBE)], 2.9–3.7 (3.3 K) [International Satellite Cloud Climatology

Project radiative surface flux data (ISCCP-FD)], 2.8–4.1 (3.5 K) [NASA’s Modern Era Retrospective-Analysis for Research and Appli-

cation (MERRA)], 3.0–4.2 (3.6 K) [Japanese 25-yr Reanalysis (JRA-25)], 2.7–3.9 (3.4 K) [European Centre for Medium-Range Weather

Forecasts Re-Analysis (ERA-Interim)], 3.0–4.0 (3.5 K) [ERA-40], and 3.1–4.7 (3.6 K) for the NCEP reanalysis. For each individual

reference dataset, the results suggest that values for the sensitivity below 1.7 K are not likely to be consistent with observed radiation

patterns given the structure of current climate models. For the aggregation of the reference datasets, the climate sensitivity is not likely to

be below 2.9 K within the framework of this study, whereas values exceeding 4.5 K cannot be excluded from this analysis. While these

ranges cannot be interpreted properly in terms of probability, they are consistent with other estimates of climate sensitivity and reaffirm

that the current climatology provides a strong constraint on the lower bound of climate sensitivity even in a set of structurally different

models.

1. Introduction

The earth’s climate system is almost entirely driven

by shortwave radiative energy coming from the sun.

Although temperature and precipitation are the most

widely recognized climate variables, it is basically the

radiation with its energy flows and balances within the

climate system that determines the earth’s climate and

thus drives its various internal processes and feedbacks.

Changes in the concentration of atmospheric constitu-

ents result in a perturbation of the earth’s radiation

balance; hence, the adequate representation of the ra-

diative fluxes in the climate system is a prerequisite for

any climate model. Local-to-global-scale observations

of the radiative fluxes include surface (SFC) radiation
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measurements, for example, the Baseline Surface Ra-

diation Network (BSRN; Ohmura et al. 1998) and the

Global Energy Balance Archive (GEBA; Ohmura and

Gilgen 1991) as well as satellite-derived data products

such as ERBE (refer to Table 2 for expansion of dataset

names; Ramanathan et al. 1989) and the CERES ex-

periment (Wielicki et al. 1996). The advent of improved

observational datasets and comprehensive radiative trans-

fer models recently allowed the production of the first

18-yr global gridded radiative flux profile dataset stem-

ming from the ISCCP-FD encompassing both full- and

clear-sky fluxes at five levels in the atmosphere, starting

from the surface up to the top-of-atmosphere (TOA)

(Zhang et al. 2004). Reanalyses are a powerful tool to

combine satellite measurements and data output from

numerical models and provide a comprehensive repre-

sentation of the radiative fluxes in climate system. Among

the most recent reanalyses are the National Aeronautics

and Space Administration (NASA)’s MERRA project

(available online at http://gmao.gsfc.nasa.gov/research/

merra/), the ECMWF Re-Analysis (ERA-Interim, avail-

able online at http://www.ecmwf.int/research/era/do/get/

era-interim), and JRA-25 (Onogi et al. 2007). In terms

of modeling the radiative fluxes, a review of the devel-

opments in radiation budget modeling in general circu-

lation models (GCMs) from a surface perspective over

the last few decades, up to the latest generation of GCMs

used in the Fourth Assessment Report (AR4) of the

Intergovernmental Panel on Climate Change (IPCC)

can be found in Wild (2008). A long-standing problem of

AOGCMs is that they overestimate the shortwave and

underestimate the longwave downward radiation at the

surface (Wild 2008).

Simple indices of surface air temperature patterns,

such as the global-mean, the land–ocean contrast, the

annual cycle (AC), and the interhemispheric difference

(NS), were used in previous studies to describe global

climate variability and change (Karoly and Braganza

2001; Braganza et al. 2003, 2004). The observed tem-

perature, radiation fields, and trends have been exten-

sively used to constrain climate sensitivity and future

temperature projections (Forest et al. 2002; Harvey and

Kaufmann 2002; Knutti et al. 2002; Gregory et al. 2004;

Murphy et al. 2004; Knutti et al. 2006, 2008; Sanderson

et al. 2008a). Here we use and extend the indices defined

in Braganza et al. (2003) and look at surface and TOA

radiation patterns during the period lasting from 1990

to 1999 for the multimodel dataset of the World Climate

Research Programme Coupled Model Intercomparison

Project phase 3 (WCRP CMIP3) and correlate them

with the corresponding climate sensitivities of the dif-

ferent climate models. An estimate of climate sensitivity

is inferred by comparing the linear relationship described

above to observational reference data for the corre-

sponding period. To relate some of the radiative indices

to physical feedbacks, we compute the same indices for

the total cloud cover, the column-integrated atmospheric

water vapor content, and the sea ice concentration.

Despite an unprecedented effort in climate modeling

and an increase in computing power and observational

data, the uncertainty in predicting the response of the

climate system to a doubling of atmospheric carbon di-

oxide levels, defined as equilibrium climate sensitivity,

has not substantially decreased (Meehl et al. 2007). The

AR4 estimated a likely range for climate sensitivity of

2–4.5 K, similar to the range of 1.5–4.5 K estimated in

the Third Assessment Report (TAR), but with a slight

increase of the lower bound. Probability distribution

functions indicate nonzero probabilities for climate sen-

sitivities outside that range (Knutti and Hegerl 2008).

While the spread of climate sensitivity derived from

various multimodel ensembles mostly resulted in the

range between 2 and 4.5 K, the multi-thousand-member

ensemble from Climateprediction.net (CPDN) sampled

a broader range from 2 to more than 11 K (Stainforth

et al. 2005). Several studies employing the CPDN per-

turbed physics ensemble find a best estimate of climate

sensitivity of around 3.3 and between 3 and 3.5 K (Piani

et al. 2005; Knutti et al. 2006). Despite the broad range

of possible climate sensitivities suggested by the CPDN

models, the best estimates still lie in the range of 2–4.5 K

encompassed by the multimodel ensembles. The long-

standing, main uncertainty for both equilibrium and

transient runs stems from the representation of cloud

feedbacks, with the spread in cloud feedbacks as com-

puted by various GCMs being roughly 3 times larger

than the one accounting for the combined water vapor–

lapse-rate feedback, the radiative forcing, or the ocean

heat uptake (Cess et al. 1989; Dufresne and Bony 2008).

A review of the concept of the equilibrium climate

sensitivity and the methods to estimate its range can

be found in Knutti and Hegerl (2008) and Allen et al.

(2006).

Our goal is to account for model biases in the esti-

mation of climate sensitivity by establishing statistically

significant regressions between simulated sensitivities and

model biases, and then applying observed constraints

to these regressions. The focus of our efforts will be on

regions and fluxes that are key in explaining the spread

of GCM radiative feedbacks under climate change.

This paper is structured as follows. Section 2 outlines

the model and observational data employed in this

study. It also introduces the radiative indices and the

notion of constraining unmeasurable quantities in the

climate system, such as the equilibrium climate sensi-

tivity by using an intermodel correlation obtained from
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the radiative indices and the climate sensitivities com-

puted by the CMIP3 multimodel dataset. These indices,

the intermodel correlations to climate sensitivity, and

the kernel density estimates for the latter are shown

in section 3, where also some illustrative examples are

depicted. Section 4 discusses some issues of uncertainty

involved in our method. A summary and conclusions are

presented in section 5.

2. Data and methods

a. Model data

This study employs AOGCM model output for the

twentieth-century integrations obtained from the CMIP3

data archive (available online at http://www-pcmdi.llnl.

gov/ipcc/about_ipcc.php). All available all-sky (as) and

clear-sky (cs) radiation fields were taken into account.

Because of the inconsistency of aerosol forcing agents

across the CMIP3 models, as shown in Table 10.1 of

Meehl et al. (2007), we did not use any aerosol data.

In addition to the radiation fields, we used the monthly

averaged fields of the total cloud cover (variable clt), the

atmospheric water vapor (prw), and sea ice concentration

(sic). To have a homogeneous set of grids and consis-

tency with the zonal definition of the indices, the avail-

able monthly averaged fields were interpolated to a T42

grid. The models and their corresponding climate sen-

sitivities are listed in Table 1.

b. Observational and reanalysis datasets

As an observational dataset, we employ the 5-yr cli-

matological radiation fields for the surface and TOA

fluxes derived from CERES (Wielicki et al. 1996). Raw

CERES data from the Terra FM1 instrument were used

for the surface fluxes and the EBAF fields (CERES

EBAF) for the TOA fluxes. For the CERES surface

data, clear-sky incoming and outgoing fluxes were not

available, only the clear-sky net shortwave and long-

wave budgets. We use a modified CERES dataset that

matches the TOA imbalance by Hansen et al. (2005)

(refer to section 4). As a satellite reference dataset for

the TOA, we also use the data from the ERBE dur-

ing the years 1985–1989. Because of the failure of the

National Oceanic and Atmospheric Administration’s

NOAA-9 satellite, we employ here the ocean-to-land

energy-transport-adjusted ERBE product of Fasullo and

Trenberth (2008), which incorporates also an adjustment

to the outgoing longwave TOA radiation. The compre-

hensive radiative surface and TOA flux dataset from

the ISCCP-FD (Zhang et al. 2004) is also taken into

account. The ISCCP-FD dataset is the successor of the

previous ISCCP-FC project and incorporates both an

improved NASA Goddard Institute for Space Studies

(GISS) radiative transfer model as well as more advanced

satellite-retrieval algorithms. Moreover, the observations

specifying the input for the radiative transfer model have

also improved. Because of the surface and TOA biases

in the ISCCP-FD dataset (Zhang et al. 2004) and errors

in the angular distribution models of ERBE, the use of

CERES data is deemed superior.

In terms of reanalysis data, the satellite data products

of CERES, ERBE, and ISCCP-FD are complemented

by NASA’s Global Modeling and Assimilation Office

(GMAO) MERRA covering the years 1979 to present

(available online at http://gmao.gsfc.nasa.gov/research/

merra/intro.php) and JRA-25, which was developed at

the Japan Meteorological Agency (JMA) and Central

Research Institute of Electric Power Industry (CRIEPI).

Six-hourly forecast radiation datasets were available

for the period 1979–2009 (Onogi et al. 2007). We also use

data from the ERA-40 project, which is a 45-yr reanal-

ysis of the global atmosphere and surface conditions

from September 1957 to August 2002, carried out by the

ECMWF in Reading, United Kingdom (Uppala et al.

2005), and the NCEP–NCAR reanalysis starting in 1948

(Kalnay et al. 1996). Further, the ERA-Interim data-

set is taken into account, which is the successor of the

ERA-15 and ERA-40 reanalyses. ERA-Interim covers

the period 1989 to present (available online at http://www.

ecmwf.int/research/era/do/get/era-interim). This new re-

analysis dataset has more extensive features than the

previous datasets; that is, it includes additional cloud

parameters and more pressure levels. Both the ERA-40

TABLE 1. The climate models and their corresponding equilib-

rium climate sensitivities used in this study. Model identifications

(IDs) and climate sensitivity values are taken from Table 8.2 of

Randall et al. (2007). Further information on the models can be

found in Table 8.1. of Randall et al. (2007).

Model ID Equilibrium climate sensitivity (8C)

CCSM3 2.7

CGCM3.1(T47) 3.4

CSIRO-MK3.0 3.1

CGCM3.1(T63) 3.4

ECHAM5/MPI-OM 3.4

ECHO-G 3.2

FGOALS-g1.0 2.3

GFDL-CM2.0 2.9

GFDL-CM2.0 3.4

INM-CM3.0 2.1

IPSL-CM4 4.4

MIROC3.2(hires) 4.3

MIROC3.2(medres) 4.0

MRI-CGCM2.3.2 3.2

PCM 2.1

UKMO-HadCM3 3.3

UKMO-HadGEM1 4.4
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and ERA-Interim datasets do not contain solar clear-

sky downward and upward surface fluxes. The online

distribution of ERA-40 data does not contain the in-

coming shortwave flux at the TOA and instead the

corresponding ERA-Interim field is used, which seems

adequate since we consider only the mean climate state.

An overview of the observational reference datasets

employed in this study is given in Table 2.

Both the satellite-derived radiation fields and the

reanalysis fields were interpolated to a T42 grid and

where possible, both all-sky and clear-sky fluxes were

used. The period considered are the years 1990–99 for all

the observational reference datasets. The land–sea mask

applied to both model and observational data is the least

common denominator of the different land–sea masks

of the CMIP3 climate models, which were interpolated

on a T42 grid.

c. Indices

Simple indices describing global climate change using

surface air temperature patterns have been investigated

in previous studies (Karoly and Braganza 2001). Braganza

et al. (2003, 2004) examined the correlation structure

of various indices and their internal variability during

the twentieth century in the context of detection and

attribution of climate change. The indices are chosen

to capture and represent the spatial patterns of surface

air temperature change due to the enhanced greenhouse

effect. The key features of temperature change include

the global temperature increase, larger warming over

land than over ocean, greater warming at high latitudes

than at low latitudes, a reduction in the magnitude of

the annual cycle of temperature over land, and a differ-

ence in the warming between the Northern and South-

ern Hemisphere (NH and SH, respectively) arising from

differences in the effects of aerosols and ocean mixing

(Karoly and Braganza 2001). The indices, their defini-

tions, and the abbreviations adopted in this paper are

given in Table 3. Because of the similarities and mutual

influence between temperature and radiation, the indices

in this study were computed for all radiation variables,

including surface and TOA fluxes. We introduce a new

radiation variable called the ‘‘atmospheric longwave

absorption and emission variable,’’ denoted in the fol-

lowing sections as a, which is simply the difference be-

tween the outgoing longwave radiation at the TOA

(LW[TOA) and the incoming longwave radiation at

the surface (LWYSFC). The corresponding shortwave

attenuation variable, denoted by b, is the difference

between the incoming solar radiation at the TOA

(SWYTOA) and the incoming shortwave radiation at the

surface (SWYSFC). An overview of the radiation variables

employed in this study is listed in Table 4.

For a deeper insight into variations in space and sur-

face types, the indices defined globally in Braganza

et al. (2003) were computed separately here for land

TABLE 2. Observational reference datasets and their corresponding periods used in this study. See text for further details and references.

Dataset Period

Clouds and the Earth’s Radiant Energy System (CERES) (surface) and Energy Balanced and Filled

Equivalent (EBAF) (TOA)

2000–05

Earth Radiation Budget Experiment (ERBE) 1985–88

The International Satellite Cloud Climatology Project radiative surface flux data (ISCCP-FD) 1984–99

NASA’s Modern Era Retrospective-Analysis for Research and Applications (MERRA) 1979–99

Japanese 25-yr Reanalysis (JRA-25) 1979–99

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim Reanalysis (ERA-I) 1989–99

The 40-yr ECMWF Re-Analysis (ERA-40) 1958–99

The National Centers for Environmental Prediction–National Center for Atmospheric Research

(NCAR; NCEP) reanalysis project

1948–99

TABLE 3. The indices, their definitions, and abbreviations used in this study.

Index Definition Abbreviation

Annual mean The area-weighted AM radiation flux AM

Land–ocean ratio The ratio between the mean field over land and the mean field over ocean LO

Interhemispheric difference The difference between the mean NH field and the mean SH field NS

Annual cycle The magnitude of the AC was calculated for each hemisphere by subtracting

the mean winter field from the mean summer field over land. These quantities

were then area weighted by the fraction of global land surface area in the

respective hemisphere and combined into a single index:

AC 5 wNH(JJA 2 DJF) 1 wSH(DJF 2 JJA)

AC
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and ocean and were divided into zonal bands defined

as follows: northern high latitudes (NH H: 908–608N),

northern midlatitudes (NH M: 608–308N), northern tropics

(NH T: 308N–08), southern tropics (SH T: 08–308S),

southern midlatitudes (SH M: 308–608S), and southern

high latitudes (SH H: 608–908S) where compatible with

the definition that resulted in 50 indices. The indices

were computed for the mean radiation of the period

between the years 1990 and 1999. An overview of the

indices used in this study to estimate climate sensitivity is

shown in Fig. 1.

Both by definition and by chance, some of the in-

dices are expected to be correlated. The 34 radiation

variables and 50 indices for each of these radiation vari-

ables amount to a total of 1700 indices; thus, the corre-

lation matrix has dimensions of 1700 3 1700 and cannot

be visualized appropriately. An empirical orthogonal

function (EOF) analysis of the correlation matrix—

regarded as a spatial field—showed that 95% of the var-

iance of the correlation matrix field can be explained

by the first eight EOFs. On the one hand, this implies

that the 1700 indices are highly correlated. On the other

hand, the fact that at least eight EOFs are needed to

explain most of the variance of the correlation matrix

suggests that there is not a single pattern governing the

correlations between all the indices.

d. Estimating climate sensitivity

The basic idea of this paper is illustrated in Fig. 1,

where the indices for all radiation variables as computed

by the CMIP3 multimodel set and their correlations to

their corresponding climate sensitivities for the period

1990–99 are shown. The indices are not mutually inde-

pendent, and the correlation coefficients vary from

20.89 to 10.84. We considered all correlations that are

statistically significant at a 95% level. Three steps will

lead to an estimate of climate sensitivity. First, a linear

regression is carried out that determines the linear re-

lationship between the index and the climate sensitivity.

Subsequently, the quality of the linear relationship is

quantitatively assessed via bootstrapping, giving a range

of slopes between the radiative index and climate sensi-

tivity. In the end, the index is computed for the eight

observational datasets, which act as reference values.

The intersection between the reference value and the

bootstrapping sample gives a distribution of climate sen-

sitivity for a particular index and a particular radiation

variable.

The significance level of the correlation coefficient de-

pends on the assumption of climate model independence.

Previous studies noted that the CMIP3 multimodel en-

semble constitutes an ‘‘ensemble of opportunity’’ rather

than an independent set of models (Tebaldi and Knutti

2007; Knutti et al. 2010; Knutti 2010; Jun et al. 2008a,b).

An example of this is the fact that some models are

identical except for their resolution. Hence, the assump-

tion of model independence is not correct. Therefore,

we emphasize that the distributions of climate sensitivity

estimates derived here cannot be regarded as proper

probability distribution functions since the prerequisite

of independence of both the climate models and the

indices is not fulfilled in the framework of this study.

The idea of correlating an observable variable to a

predicted quantity was illustrated, for example, by Hall

and Qu (2006), where they examined the case of the

snow albedo feedback and noticed that large intermodel

variations in the snow albedo feedback strength in cli-

mate change are well correlated with comparably large

intermodel variations in the feedback strength in the

context of the seasonal cycle. The high correlation leads

to the conclusion that eliminating the model errors in

the seasonal cycle will directly lead to a reduction in the

spread of feedback strength in climate change; hence, it

has the ability to reduce the spread in simulations of the

TABLE 4. Definitions of symbols representing the shortwave, longwave, and net radiative fluxes for as and cs conditions as well as for cloud

radiative forcing (crf).

Symbol Definition

LWYSFC
as Downward longwave radiation at SFC for as conditions

LWYSFC
cs Downward longwave radiation at SFC for cs conditions

LWYSFC
crf Downward longwave radiation at SFC crf, equal to LWYSFC

as � LWYSFC
cs

LW[SFC
as Upward longwave radiation at the SFC for as conditions

LW[TOA
as , LW[TOA

cs , LW[TOA
crf Upward longwave radiation at TOA

SWYSFC
as , SWYSFC

cs , SWYSFC
crf Downward shortwave radiation at SFC

SW[SFC
as , SW[SFC

cs , SW[SFC
crf Upward shortwave radiation at SFC

DLWSFC
as , DLWSFC

cs , DLWSFC
crf Net longwave radiation at SFC

DSWSFC
as , DSWSFC

cs , DSWSFC
crf Net shortwave radiation at SFC

DSFC
as , DSFC

cs , DSFC
crf Net radiation at SFC, equal to DSW 1 DLW

aas, acs, acrf Atmospheric longwave absorption and emission variable, equal to LWYSFC 2 LW[TOA

bas, bcs, bcrf Atmospheric shortwave attenuation variable, equal to SWYTOA 2 SWYSFC

1038 J O U R N A L O F C L I M A T E VOLUME 24



climate sensitivity, to the extent that snow cover feed-

backs are a major driver of these differences. A similar

approach was used to constrain climate sensitivity from

the seasonal cycle in surface temperature (Knutti et al.

2006). Climate sensitivity was shown to relate to aspects

of present-day climatology also in several other studies

(Piani et al. 2005; Sanderson et al. 2008a,b). Sanderson

et al. (2008a; see Fig. 7) in particular showed that current

patterns of radiation provide a constraint on climate sen-

sitivity in the Climateprediction.net ensemble.

FIG. 1. Overview of the correlations between the indices (ordinate) for all radiation variables (abscissa) and the equilibrium climate

sensitivities. The correlation coefficients are indicated in the color bar, and only the indices that are significant at a 95% level are shown.

The indices were computed from the 1990 to 1999 climatology for the CMIP3 models (see text for details). The spatial grid was divided into

zonal bands as defined in section 2 and separated into land and ocean. The symbols of the radiation variables are given in Table 4.
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The assumption here is that the correlation across

models does not simply reflect the similarity of the

models and uniformity of the underlying parameteri-

zations but an intrinsic behavior resulting from physi-

cal processes. Of course this is difficult to prove, but

support for that assumption is given by the fact that the

CMIP3 models are structurally different (in contrast to

the Climateprediction.net ensemble) and by the fact

that the relations presented here can be understood in

terms of physical processes. Moreover, the fact that high

correlations are seen in different variables and regions

and the consistency across the indices enhance the

confidence in this method. Of course radiation indices

can be changed in various ways, for example, by chang-

ing an albedo value of a land surface, which would

probably not affect climate sensitivity. However, such

changes are very likely to be random and uncorrelated

across different models and would tend to weaken the

observed correlation rather than spuriously introduc-

ing it. It is therefore very likely that the correlations

indeed represent real variations in feedbacks. Note also

that a strong correlation does not necessarily imply that

the particular feedback is strong nor does it imply that

it explains a large fraction of the climate sensitivity

variation in CMIP3. A correlation may be strong, for

example, in the high latitude, indicating a clear relation

between the albedo feedback and climate sensitivity

(Hall and Qu 2006) even though the spread in the albedo

feedback is a relatively small contribution to the spread

of the total feedback in the CMIP3 models (Soden and

Held 2006).

3. Results

a. Relation of the radiative indices to clouds,
atmospheric water vapor, and sea ice concentration

The radiative fluxes in the climate system are func-

tions of its physical properties, for example, those of

clouds, atmospheric water vapor, and sea ice concen-

tration. Changes in these quantities can alter the radiative

fluxes and induce radiative feedbacks that can dampen or

amplify the initial perturbation. Here we show the indices

defined above for the total cloud cover, the column-

integrated amount of water vapor and sea ice concen-

tration and correlate them to the radiative indices to

relate particular indices to possible feedbacks that in

turn can give insight into the correlations of the indices

to climate sensitivity. These variables together with the

relative humidity were used in a recent study by Fasullo

(2010), who assessed the energy and water cycle feed-

backs with respect to the land–ocean contrast.

The land–ocean contrast of clouds, water vapor, and

sea ice is related to the land–ocean (LO) index of the

radiation variables as shown Fig. 2. On a global level, we

found that a high land–ocean contrast in total cloud

cover in a model implies a high cloud radiative forcing

(crf) for the incoming longwave radiation (LWYTOA
crf )

and the outgoing shortwave flux at the TOA (SW[TOA
crf ).

In contrast, more clouds lead to less shortwave radiation

reaching the surface (SWYSFC
as ). These relations can be

explained by the absorptive and reflective properties of

clouds. In the tropics, Fig. 2 indicates that a strong spa-

tial land–ocean gradient in water vapor is related to a

stronger clear-sky longwave surface flux (LWYSFC
cs ) over

land than over ocean. The opposite is the case for the

outgoing longwave flux at the TOA (LW[TOA
as ). The

bottom panel of Fig. 2 illustrates that the sea ice con-

centration is positively correlated with the land–ocean

contrast of the incoming all-sky and clear-sky shortwave

surface radiation (SWYSFC
as and SWYSFC

cs ) because of the

reflective properties of the sea ice surface. Overall, the

correlations suggest that intermodel differences in phys-

ical properties and feedbacks induced by clouds, water

vapor, and sea ice are at least partly reflected in the in-

dices, even though a complete discussion of each of the

hundreds of relations is not feasible.

b. Indices and correlations

Figure 1 illustrates the correlations between climate

sensitivity and the 50 indices in the 34 radiation variables

used in this study, which are significant at a 95% level.

Since the CMIP3 dataset does not include clear-sky up-

ward longwave fluxes at the surface, the net longwave

cloud radiative forcing (DLWSFC
crf ) is approximated by

LWYSFC
cs � LW[SFC

as . This approximation is also carried

out for the reference datasets where possible. The cor-

relation coefficients cover a range from 20.89 to 10.84,

and we chose three of them in the following sections

to illustrate the method of estimating climate sensitivity

using a correlation between an observable radiative index

and the climate sensitivity as computed by the CMIP3

models. The illustrative examples are cases where the

correlation is significant and where the behavior can be

understood in terms of known physical processes, that

is, where the correlation is unlikely to be purely a sta-

tistical artifact resulting from calculating a large number

of correlations.

Four radiation variables dominate the correlation

structure in Fig. 1 by exhibiting significant correlations

throughout most of the indices. These variables of in-

terest are the cloud radiative forcing of the incoming

longwave radiation at the surface LWYSFC
crf , the clear-sky

incoming shortwave flux SWYSFC
cs , the net clear-sky

shortwave surface budget DSWSFC
cs , and the clear-sky at-

mospheric shortwave attenuation bcs.
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The regional partitioning of the indices highlight spe-

cial regions of interest where correlations are apparent

in almost all radiation variables, such as the southern

tropics and southern midlatitudes along with the north-

ern high latitudes. Some indices and their correlations

appear to be governed by a particular kind of radiation—

for example, the annual cycle index—mostly by the

shortwave radiation, as can be seen at the bottom part

of Fig. 1. The land–ocean index and the annual cycle

index seem to represent useful indices to connect many

radiation fluxes with climate sensitivity. Moreover, the

atmospheric longwave absorption and emission vari-

able a and atmospheric shortwave attenuation variable b

feature significant correlations throughout almost all the

indices, as shown in the right part of Fig. 1.

c. Global indices

The indices, their correlation coefficients to climate

sensitivity, and the correlation structure among the in-

dices are illustrated for the case of the global-mean

indices as depicted in Fig. 3. The indices and their re-

spective radiation variable are denoted in the bottom

panel of Fig. 3 at the left-hand side of the symmetric

correlation matrix. Red-colored blocks highlight posi-

tively correlated indices, whereas blue-shaded groups

show negative correlations. The correlations of these

indices with climate sensitivity are depicted in the top

panel. Some of the correlations among different indices

may appear by chance, whereas others result by defini-

tion of the indices; for example, it is assumed that for

a given radiation variable, the annual-mean (AM) ra-

diation over land is correlated with the global annual-

mean radiation. This situation is clearly visible in the

upper left corner of the correlation matrix where the an-

nual mean indices in the SWYSFC
cs radiation for the entire

globe (AM) and separately for land (AM land) and

ocean (AM ocean) are highly correlated. Despite show-

ing highly correlated indices, Fig. 3 also indicates that

there are independent indices with white-colored blocks.

Overall, the correlation matrix in Fig. 3 leads to the

conclusion that the climate sensitivity estimates derived

from the correlations of the indices in the top panel

of Fig. 3 are not independent. Moreover, Fig. 3 can be

used to infer the dominant fluxes in the radiation bud-

gets of the surface and the atmosphere. Considering

again the ‘‘cluster’’ of correlations in the AM index

for the SWYSFC
cs radiation variable, Fig. 3 shows that by

moving downward in the correlation matrix, it is the

SWYSFC
cs flux that governs the same indices in bcs.

We found that the annual-mean clear-sky shortwave

radiation budget at the surface (AM 3 DSWSFC
cs ) is re-

lated to climate sensitivity with a correlation coefficient of

r 5 0.84. The same is true for the annual cycle in this

radiation variable with r 5 0.76. The correlation matrix

FIG. 2. Correlations of the LO indices of the radiation variables (ordinate) and the total cloud cover, the atmospheric water vapor,

and sea ice concentration. The indices were computed for the mean state during the years 1950–99.
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FIG. 3. Correlation coefficients of global indices with climate sensitivity that are significant at a 95% level are shown together with the

correlation matrix of the indices. The size of the circles corresponds to the magnitude of the correlation. The red shading (blue circles)

denotes positive (negative) correlation coefficients.
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shows that these two indices are highly correlated. The

ratio in the incoming cloud radiative forcing at the sur-

face over land and ocean surfaces (LO 3 LWYSFC
crf )

exhibits a correlation of r 5 20.65 with climate sensi-

tivity. This index is independent of the annual mean

(AM 3 LWYSFC
crf ), which is also correlated to sensitivity

at r 5 20.66.

d. Zonal partition of the indices

The zonal partition of the indices gives a spatial in-

sight into the radiation patterns. Figure 4a shows the in-

dices, the radiation variables, and correlations of the

latter to climate sensitivity for the high latitudes. The

land–ocean ratio index in the Northern Hemisphere is

apparent throughout almost all shortwave and long-

wave radiation variables. A cluster of correlations is

found for the annual cycle of the outgoing longwave

radiation cloud radiative forcing at the TOA (LW[TOA
crf )

and for both the all-sky and clear-sky incoming short-

wave radiation at the surface (SWYSFC
as and SWYSFC

cs ).

These correlations also govern similar correlations for

the atmospheric absorption radiation variables a and b

in the annual cycle (as seen in Fig. 4a).

Figure 4b depicts the correlation of the Northern

Hemisphere land–ocean index of the all-sky incoming

longwave surface radiation to climate sensitivity (LO 3

LWYSFC
as ), the climate sensitivity estimates, and the re-

lationship between the (LO 3 LWYSFC
as ) index and the

Northern Hemisphere LO index for the atmospheric

water vapor. High sensitivity models tend to have a

(LO 3 LWYSFC
as ) index smaller than 1, implying that

more longwave radiation reaches the ocean surfaces

than the land surfaces in the northern high latitudes.

These models have also a higher amount of water vapor

above the oceans (as shown in the right panel of Fig. 4b).

A higher amount of water vapor leads to an enhanced

atmospheric absorption of longwave radiation; hence,

the correlation between the (LO 3 LWYSFC
as ) index and

climate sensitivity can be partly attributed to the long-

wave water vapor feedback. The comparison with the

reference datasets suggests that high sensitivity models

capture the (LO 3 LWYSFC
as ) index better and that the

climate sensitivity estimates are between 2.7 and 4.5 K.

The correlations of the indices in the midlatitudes

with climate sensitivity are depicted in Fig. 5a. In the

longwave regime, the cloud radiative forcing of the

incoming longwave radiation at the surface (LWYSFC
crf )

shows negative correlations with climate sensitivity in

the annual mean over land (r 5 20.66), the land–ocean

index (r 5 20.70), and in the annual cycle index (r 5

20.55). Strong negative correlations are found in the

atmospheric longwave variable a for the land–ocean

ratio. The relationship between the interhemispheric

difference in the midlatitudes for the outgoing longwave

at the TOA (NS 3 LW[TOA
as ) to climate sensitivity and

the same index for total cloud cover is shown in Fig. 5b.

High-sensitivity models show more longwave radiation

escaping the TOA in the northern midlatitudes, whereas

the low-sensitivity model features the opposite. The cor-

relation coefficient between the (NS 3 LW[TOA
as ) index

to its respective cloud cover index is r 5 20.84 and im-

plies that the more clouds the models compute for the

southern midlatitudes, the more longwave radiation

is trapped in the climate system and the higher the

(NS 3 LW[TOA
as ). Thus, the intermodel differences in

the longwave cloud feedback can be partly attributed

to the correlation of the (NS 3 LW[TOA
as ) index to cli-

mate sensitivity.

In the tropics, most correlations of the indices with

climate sensitivity are found for the AM index, as il-

lustrated in Fig. 6. The AC index shows almost no

correlations. The dominating radiation variables are

LWYSFC
as , LWYSFC

crf , LW[TOA
as , and SWYSFC

cs . The strong

correlations in these radiation variables also induce

strong correlations in the net and atmospheric radiation

budgets, which include the former variables. Figure 6

also highlights that it is the annual-mean radiation in

the ocean, and in general the radiation variables above

the ocean, that exhibits the most numerous correlations

to climate sensitivity.

The annual-mean all-sky outgoing longwave flux at

the TOA in the southern ocean is correlated to climate

sensitivity with a correlation coefficient of r 5 0.77, as

shown in Fig. 6b). The same flux is also negatively cor-

related to the total cloud cover in the southern tropical

oceans, implying that a high cloud cover increases the

amount of longwave radiation in this area. This rela-

tionship suggests that high-sensitivity models generally

have a low total cloud cover in the southern oceans and

thus emit more longwave radiation into space. In this

framework, the positive correlations of the clear-sky in-

coming surface shortwave radiation to climate sensitivity

could neither be related to the total cloud amount nor

the atmospheric water vapor.

e. Climate sensitivity estimates

In total, we found that 276 radiative indices correlated

with climate sensitivity at a 95% significance level

during the period 1990–99. The correlations among the

indices, as shown in Fig. 3, imply that the climate sen-

sitivity estimates are mutually dependent as well. To

account for uncertainty in the linear regression between

the index and climate sensitivity, we computed a sam-

ple of 1000 bootstrapping estimates of the errors of the
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coefficient vector in the linear regression. This results in

276 000 climate sensitivity estimates for each reference

dataset (the number is smaller where not all radiation

fields were available). The kernel density estimates for

the eight reference datasets are depicted in Fig. 7. The

distributions must not be regarded as probability dis-

tribution function of climate sensitivity because of the

dependencies of the indices.

FIG. 4. (middle) Illustrative examples of the correlations between (left) a radiative index and the equilibrium climate sensitivity

computed by the CMIP3 models for the high latitudes and (right) the correlation of the same index for the particular radiation variable of

the left panel and the water vapor variable. (top) The particular index is indicated on the ordinate and the radiation variables are shown on

the abscissa. (bottom) The kernel density estimates for climate sensitivity derived by bootstrapping and comparison of the linear relation

between a radiative index and climate sensitivity with the observational reference datasets.
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The climate sensitivity was estimated from the mean

of the indices during the years 1990–99 for the CMIP3

models and the 5-yr climatology of the CERES and

CERES EBAF data. For the best-guess estimate of cli-

mate sensitivity, we take the median of the kernel density

distribution, resulting in a best guess of 3.3 (CERES), 3.3

(ERBE), 3.5 (MERRA), 3.4 (ERA-Interim), 3.6 (JRA-25),

3.5 (ERA-40), 3.6 (NCEP), and 3.3 K (ISCCP-FD). The

corresponding likely ranges are taken as the 66% ranges

of the kernel density distributions and are 2.7–4.0

(CERES), 1.7–3.8 (ERBE), 2.8–4.1 (MERRA), 2.7–3.9

(ERA-Interim), 3.0–4.2 (JRA-25), 3.0–4.0 (ERA-40),

3.1–4.7 (NCEP), and 2.9–3.7 K for the ISCCP-FD data-

set. Aggregating the climate sensitivity estimates of the

FIG. 5. As in Fig. 4, but for the midlatitudes.
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individual observational reference datasets into one

sample, the best estimate of climate sensitivity is 3.4 K

with a likely range of 2.9–4.0 K.

The bottom panel of Fig. 7 compares the likely ranges

with the corresponding range of 2–4.5 K estimates by

the IPCC. All estimates lie within the IPCC range ex-

cept for the NCEP reanalysis, with an upper range

slightly exceeding 4.5 K and the ERBE dataset with a

slightly lower range. The distribution of the ERBE-

derived estimates contains only TOA fluxes and has

FIG. 6. As in Fig. 4, but for the tropics.
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because of its lower amount of correlations, a broader

range than estimates derived from both surface and

TOA data. For individual reference datasets, Fig. 7 in-

dicates that values for the sensitivity below 1.7 K are not

likely to be consistent with current observed radiation

patterns within the framework of our method. This

lower bound increases to 2.9 K if we aggregate the ref-

erence datasets, whereas values exceeding 4.5 K cannot

be excluded from our analysis, but they are rather un-

likely and appear less likely than those found, for ex-

ample, in the Climateprediction.net (Stainforth et al.

2005). While these ranges cannot be interpreted properly

in terms of probability, they are consistent with other

estimates of climate sensitivity (Knutti and Hegerl 2008).

4. Discussion

A variety of uncertainties arises in every step of our

procedure. Parametric and systematic uncertainties in

the CMIP3 multimodel ensemble cause errors in the ra-

diative fluxes and thus in the radiative indices computed

in this study. Moreover, the models share similar defi-

ciencies and may not cover the full model space (Tebaldi

and Knutti 2007). Additionally, the eight observational

datasets feature similar deficiencies and should not be

regarded as mutually independent reference datasets.

The method of deriving an estimate of climate sensitivity

using a correlation of climate model patterns highly de-

pends on the value inferred from the observational

FIG. 7. (a) Kernel density estimates for climate sensitivity for various observational reference

datasets. Distributions were computed using a bootstrapping sample of a linear regression

between a radiative index and climate sensitivity where the correlation is significant at a 95%

level. Because of different data availability among the reference datasets, the size of boot-

strapping samples varies among the kernel density estimates. (b) Depiction of the median and

66% likely ranges.
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datasets, which in turn crucially depends on the uncer-

tainty of the linear regression. Hence, the estimates of

climate sensitivity are sensitive to structural biases in the

observational datasets, either derived from reanalyses or

satellite products, and to the correlation coefficient. Some

of the issues are discussed in more detail below.

The uncertainty in the linear regression was quanti-

tatively assessed by computing a bootstrapping sample

with 1000 estimates for each correlation. The indices

chosen in this study are not mutually independent, as

the correlation matrix for the globally defined indices

in Fig. 3 shows. Moreover, Huybers (2010) noted phys-

ically unexpected correlations among different feedbacks

in the CMIP3 climate models that may arise from tun-

ing and compensating errors in models. Hence, it is not

possible in the framework of this study to quantitatively

relate a particular index and its correlation to climate

sensitivity to a particular feedback process in a climate

model. By computing the indices defined here for the

total cloud cover, the atmospheric water vapor, and the

sea ice concentration in the model, we could show that

intermodel differences in one of these quantities are

related to the radiative indices and highlight the physical

properties, such as the radiative absorption and re-

flectivity of clouds. Thus, we conclude that the radiative

indices employed in this study are related to physical

feedbacks, which in turn influence climate sensitivity.

The indices used in this study were in initially place

temperature-based and employed by Braganza et al.

(2003, 2004) in a detection and attribution framework

in the context of climate change. The usage of the in-

dices as a predictor for climate sensitivity reflects the

assumption that the radiative indices and their spatial

distribution give insight into the radiative feedbacks and

physical processes underlying the radiation patterns. The

link between radiation fields and climate feedbacks has

been previously assessed by the computation of radia-

tive kernels both in multimodel and perturbed physics

ensembles (Soden et al. 2008; Sanderson et al. 2009).

Spatial indices of cloud amount were also shown to

correlate with climate sensitivity. Volodin (2008) ex-

amined the cloud amount of the CMIP3 models and

found a correlation of r 5 20.82 between the equilib-

rium climate sensitivity and the residual of cloud amount

of the tropics (288S–288N) and southern temperate lat-

itudes (568–368S). Hence, it is natural to assume that

there are also spatial indices in the radiation variables

itself, which are directly affected by the cloud amount

and being related to the equilibrium climate sensitivity.

Previous studies examined physical processes, such as

the land–ocean contrast (Sutton et al. 2007; Joshi et al.

2008) and the polar amplification (Holland and Bitz

2003), primarily for the temperature variable. Recently,

Fasullo (2010) found that land–ocean contrasts in radia-

tive fluxes and cloud amount in CMIP3 climate model

ensemble are crucial in the way the energy budget

equilibrates in response to forcing. This study attempts

to give some insights into these processes for the various

radiation fluxes in the climate system in a qualitative way.

The zonal partitioning of the indices is designed to

highlight different regions in which particular indices

are related to climate sensitivity. Figure 6 shows that

the indices both in the annual-mean longwave and short-

wave radiation in the southern ocean are correlated to

climate sensitivity. Bony and Dufresne (2005) found that

differences in the marine boundary layer clouds are to

a great extent responsible for cloud feedback uncer-

tainties in the tropics. Studying the energy budget of

the southern ocean, Trenberth and Fasullo (2010) found

that errors in the energy budget of the Southern Hemi-

sphere are negatively correlated to the equilibrium cli-

mate sensitivity. The correlation of r 5 20.73 of the

model sensitivity to the net downward flux at the TOA

might be linked to the negative biases in cloud amount,

which are together with cloud type, cloud-top height,

and radiative properties one of the main reasons for the

differences of TOA radiation between climate models

and satellite measurements (Trenberth and Fasullo

2010).

A variety of studies investigated the radiative effects

of clouds and their impact on climate (e.g., Arking 1991;

Vavrus 2004; Stephens 2005; Soden and Held 2006). The

fact that correlations between the radiative indices and

climate sensitivities are found both in full-sky and clear-

sky fluxes, as shown in Fig. 1, highlight the influence

of clouds on the radiation budget and on climate sensi-

tivity. To account for the effect of different cloud types

and other climate variables on the indices and thereby

on our estimates of climate sensitivity, an extended

analysis including diagnostics, for example, from the

vertical pressure velocity (Bony and Dufresne 2005) and

the distinction between low- and high-cloud fraction

(Karlsson et al. 2008) would have to be included in our

analysis.

The climate sensitivity estimates derived here cru-

cially depend on the accuracy of the reference data-

sets. To assess this sort of uncertainty, we employed

various satellite-derived datasets and reanalysis-based

data. At the TOA, satellite data generally performs bet-

ter than other types of data, such as reanalyses (Trenberth

et al. 2009). A comprehensive illustration and compu-

tation of the current best estimates of global energy

flows in the climate system by comparing different sat-

ellite and reanalysis data is given by Trenberth et al.

(2009). Their results are mainly based on new measure-

ment of CERES instruments. Other satellite-derived
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datasets, such as the ISCCP-FD project, exhibit uncer-

tainties of 10–15 W m22 at the surface and 5–10 W m22 at

the TOA as well as spurious trends and discontinuities

(Zhang et al. 2004; Dai et al. 2006). Trenberth et al.

(2009) compared the ERA-40, the NCEP reanalysis, and

the ISCCP-FD dataset and noted significant deficiencies

and biases. The imbalance at the TOA between the

energy absorbed and emitted by the climate system is

measured by satellite data to be between 23 and 7 W m22

(Loeb et al. 2009), while the current best estimate by

Hansen et al. (2005) is 0.85 6 0.15 W m22. Loeb et al.

(2009) note that that this discrepancy is due to uncer-

tainties in absolute calibration and algorithms. Thus, we

used a modified CERES data that matches the TOA

imbalance computed by Hansen et al. (2005). Fasullo

and Trenberth (2008) used this adjustment to compute

the annual cycle of the energy budget of the climate

system.

In a comparison of the ERA-40 and NCEP–NCAR

near-surface datasets, Betts et al. (2006) found differ-

ences in the climatologies of the two different datasets

along with consistent and coherent patterns of the ma-

jor seasonal anomaly fields. They exhibit warm and dry

seasonal biases associated with reduced precipitation

and cloudiness. Prior studies noticed some deficiencies

in the all-sky radiation at the TOA because of the in-

accurate representation of cloud radiative properties

(Allan et al. 2004). Based on their observations from

multiple satellite instruments, Allan et al. (2004) conclude

that the all-sky radiation budget simulated by ERA-40

displays large systematic biases. Despite deficiencies

in the all-sky radiation budget, the clear-sky radiation

budget simulated by ERA-40 compares well with in-

dependent satellite data (Allan et al. 2004; Uppala et al.

2005).

When comparing the climate models to observa-

tions, one has to consider the fact that the model de-

velopment involved some tuning toward the current

climate. Hence, it is likely that the observations often

fall within the range of the model indices. For example,

Trenberth and Fasullo (2010) note that energy and

moisture are conserved to order 1 W m22 by the models.

In an experiment where the Community Atmosphere

Model, version 3 (CAM3) is tuned to fit the TOA energy

budget of the ERBE and CERES data, Bender (2008)

found that the climate sensitivity resulting from the two-

tuned version differed by 0.24 K, which is much smaller

than the differences in the CMIP3 multimodel set. Be-

cause of the particular definitions of the indices, both

in terms of space (e.g., the zonal slice ‘‘northern mid-

latitudes’’) and processes (e.g., the land–ocean contrast),

we argue that is not possible to tune exactly these indices

of the models toward observations, since most model

calibration efforts focus on global-mean values, for ex-

ample, on the global-mean energy budget by adjusting

the albedo- or cloud-related properties. Moreover, the

use of eight different reference datasets—some of them

have just recently become public (e.g., MERRA)—

enhances the confidence that the model-based indices

can be at least partly regarded as independent of the

observational datasets.

Despite the uncertainties mentioned above, the con-

sistency of the estimates across different indices and

eight reference datasets, as shown in Fig. 7, suggests that

the range of climate sensitivity derived with the method

of this study is robust. Because of the mutual correla-

tions among the indices, some climate sensitivity esti-

mates are accounted for several times, suggesting that

the ranges depicted in Fig. 7 are likely to be underes-

timated, although the best guess of 3.4 K for climate

sensitivity when the reference datasets are aggregated

appears to constitute a robust quantity.

5. Conclusions

Climate change manifests itself in the perturbation of

the earth’s radiation balance; hence, the accurate repre-

sentation of the radiative fluxes in the climate system is

a prerequisite of any climate model and observational

datasets. We use indices of spatial radiation patterns

to highlight both intermodel differences in modeling

radiation in the group of CMIP3 models and their re-

lation to the equilibrium climate sensitivity. Particular

regions of interest are highlighted where these inter-

model differences correlate to the climate sensitivity,

such as the southern tropical oceans or the high lati-

tudes. While the correlations represent a pure statistical

tool to constrain both radiation fields and climate sensi-

tivity, the behavior in different regions give insight into

the possible effects of feedback processes, which are

the source of uncertainty with respect to the climate

sensitivity, especially the cloud feedback. Correlations

between the climate sensitivity and the radiative indices

are found both in all-sky and clear-sky fluxes, particu-

larly in the tropical regions, emphasizing the impor-

tance of accurate clear-sky and cloud related feedback

parameterization. These findings go along with previous

studies that noted the link between the radiative prop-

erties of clouds and the climate (Arking 1991; Bony et al.

2004; Vavrus 2004; Stephens 2005; Soden and Held 2006;

Volodin 2008).

Despite biases and deficiencies in the observational

reference datasets, the analysis supports a value for cli-

mate sensitivity in the range of 2.5–5 K, and further-

more that climate sensitivities below 1.7 K are not likely

to be consistent with observed radiation patterns in the
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current climate model structure based on individual

observational reference datasets. Aggregating the eight

reference datasets, we derive a likely range of climate

sensitivity of 2.9–4.0 K with a median estimate of 3.4 K

in agreement with previous studies that estimated the

lower tail of climate sensitivity using the perturbed

physics approach by Climateprediction.net. Those stud-

ies found a 5%–95% probability range of 2.4–5.4 K

(Murphy et al. 2004), 2.2–6.8 K (Piani et al. 2005), and

a frequency distribution of the simulated climate sensi-

tivity that ranges from 1.9 to 11.5 K (Stainforth et al.

2005). They stress that few model versions have sensi-

tivities less than 2 K, whereas the long tail extends to

very high values. Overall, the studies highlight the low

probability of a climate sensitivity below 2 K. Various

methods have been derived to constrain climate sensi-

tivity, and an overview of their probability distribution

functions are depicted in Fig. 3 of Knutti and Hegerl

(2008). While the range and number of probability dis-

tribution functions are large, most studies are consis-

tent in their best estimate, with the average of 3.3 K

computed by the CMIP3 multimodel ensemble (Meehl

et al. 2007), along with 3.3 (Piani et al. 2005), 3.4 (Stainforth

et al. 2005), and between 3 and 3.5 K Knutti et al. (2006)

for the CPDN-perturbed physics ensemble. Our mean

estimate of 3.4 K for the climate sensitivity fits well

in this list.

The limitation here is that the number of models is

rather small. On the other hand, a correlation across

structurally different models is less likely to be an arti-

fact of an oversimplified parameterization, as it may

happen in a perturbed physics ensemble. The results

therefore provide strong support for the lower bound

of climate sensitivity seen in the CPDN ensemble; how-

ever, in contrast to those earlier studies, they are not

conditional on a Hadley Centre model structure. Be-

cause of the correlation of some variables, the estimates

of the climate sensitivity cannot be regarded as mutually

independent. Additionally, our indices do not cover the

entire space of possible correlations, for example, be-

cause of the motivated but still arbitrary zonal parti-

tioning of the indices. Noting the range of the bias field,

an improvement of the radiation fields in reanalysis

datasets would better constrain climate sensitivity.

The spread of the indices highlight the need for an

adequate representation of the radiation patterns in the

global climate system. Our method constitutes a first,

simple approach to constrain the climate sensitivity us-

ing a variety of radiation variables. While the concept

of the climate sensitivity is a global approach, the com-

putation of regional climate sensitivities could facilitate

the investigation of the influence of physical feedback

processes on climate sensitivity (Boer and Yu 2003). The

results of this study, particularly the derived sensitivity,

should be regarded with some caution, given the biases

and deficiencies in the CERES, ERBE, ISCCP-FD,

MERRA, JRA-25, ERA-Interim, ERA-40, and NCEP

datasets. Nevertheless, the results reaffirm that the

present-day climatology provides a strong constraint

on the lower bound of climate sensitivity in the current

structure of GCMs.
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