The Effects of Subgrid-Scale Parameterizations in a Zonally Averaged Ocean Model

RETO KNUTTI AND THOMAS F. STOCKER

Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland

DANIEL G. WRIGHT

Ocean Science Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

(Manuscript received 10 May 1999, in final form 23 December 1999)

ABSTRACT

Isopycnal diffusion and an additional transport velocity parameterizing the effect of mesoscale eddies are implemented in the ocean component of a 2.5-dimensional zonally averaged coupled ocean–atmosphere model. The equilibrium states of the coupled ocean–atmosphere model, resulting from the different mixing parameterizations, are compared, and extensive parameter sensitivity studies are presented. For the equilibrium base states, the new mixing schemes result in changes in the distributions of temperature and salinity that are significant in the Southern Ocean, where the isopycnal surfaces are steep and the eddy-induced transport velocity approximately cancels the Deacon cell. The temperature and salinity changes are relatively small in the rest of the ocean. Furthermore, the implementation of the new mixing schemes results in significant changes in the strength and the pattern of the thermohaline circulation. Transient responses of the coupled ocean–atmosphere system in global warming scenarios are compared for the different mixing parameterizations. It is demonstrated that large changes in the stability of the thermohaline circulation occur and that the observed changes in stability are highly parameter dependent.

1. Introduction

There is general agreement among physical oceanographers that the mixing processes in the ocean occur predominantly along neutral surfaces (i.e., surfaces of constant potential density with a local reference point; e.g., Iselin 1939; Montgomery 1940; Redi 1982; McDougall 1987; Gent and McWilliams 1990). These neutral surfaces are not horizontal in large parts of the ocean. The rapid mixing along neutral surfaces is generally referred to as isopycnal mixing, while the slower mixing across these surfaces is called diapycnal mixing (e.g., McDougall and Church 1986). For simplicity, ocean mixing has traditionally been parameterized as horizontal and vertical Fickian diffusion, with the vertical diffusivity taken to be smaller than the horizontal by several orders of magnitude. This approach has provided useful insights, but results in unrealistically large diapycnal diffusive fluxes in regions of steeply sloping neutral surfaces. To overcome this deficiency and improve the representation of mixing by unresolved eddies, new mixing parameterizations have been proposed in recent years (Redi 1982; Gent and McWilliams 1990).

To eliminate the unrealistically large diapycnal diffusive fluxes resulting from the horizontal/vertical diffusion parameterization, Redi (1982) presented a conceptual framework with the basic idea of aligning the diffusion tensor with the neutral surface by a coordinate rotation. Several implementations of this surrogate isopycnal diffusion have been published in recent years (e.g., Cox 1987; Hirst and Cai 1994), but for a long time attention has been detracted from these approaches because of computational inefficiency and the necessity of an additional horizontal background diffusivity to maintain numerical stability. A different idea is to formulate an ocean model in isopycnal coordinates instead of the traditional horizontal/vertical grid, but this does not completely solve the problem since neutral surfaces and surfaces of constant potential density may differ significantly, depending on the choice of the reference point (McDougall 1987).

Another major problem in most numerical ocean circulation models is their inability to adequately simulate the mixing effect of unresolved mesoscale eddies (i.e., typically, eddies with horizontal scales of tens of kilometers). Simple downgradient Fickian diffusion has been shown to be an inadequate representation of these
TABLE 1. Parameter values for the horizontal (K_h), vertical (K_v), isopycnal (K_i) and diapycnal (K_d) diffusivity (all in units $m^2 s^{-1}$), the Gent–McWilliams parameter κ ($m^2 s^{-1}$), the maximum isopycnal slope s_{max} (1), and the parameter for Southern Ocean deep water formation q_{SO} (Sv) used for the reference states of the different experiments. HOR, ISO, and GM indicate horizontal mixing, isopycnal mixing, and the Gent–McWilliams parameterization, respectively.

<table>
<thead>
<tr>
<th>Version</th>
<th>K_h</th>
<th>K_v</th>
<th>K_i</th>
<th>K_d</th>
<th>κ</th>
<th>s_{max}</th>
<th>q_{SO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOR</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>ISO</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>—</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>GM</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>500</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>Sensitivity studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>1000</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>Critical forcing for variable forcing increase rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOR</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>ISO</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>—</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>GM</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>500</td>
<td>2 x 10^{-3}</td>
<td>0.3</td>
</tr>
<tr>
<td>Critical forcing for variable K_{iv}, K_{id}, κ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOR</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>ISO</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>—</td>
<td>2 x 10^{-3}</td>
<td>0.5</td>
</tr>
<tr>
<td>GM</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>500</td>
<td>2 x 10^{-3}</td>
<td>0.5</td>
</tr>
<tr>
<td>GM2</td>
<td>—</td>
<td>—</td>
<td>1000</td>
<td>5 x 10^{-5}</td>
<td>500</td>
<td>2 x 10^{-3}</td>
<td>0.05</td>
</tr>
</tbody>
</table>

The main purpose of this paper is to present new results on the impact of different mixing parameterizations on the ocean’s thermohaline (i.e., temperature and salinity driven) circulation, the convection activity, and the distributions of temperature and salinity. Furthermore, extensive parameter studies and investigations on dynamical aspects and the stability of the thermohaline circulation for the different mixing parameterizations are presented. The main goal is not to identify absolute threshold values for the stability of the real ocean–atmosphere system, but to indicate how choices of mixing schemes and parameter values may affect the stability of the thermohaline circulation in three-dimensional models when global warming experiments are performed. We use the 2.5-dimensional zonally averaged coupled ocean–atmosphere model of Stocker et al. (1992b). This model captures the main features of the thermohaline circulation and has proven to be a useful simplification of more complex three-dimensional models, which are much more computationally expensive so that the number and duration of model integrations are limited.

This paper is organized as follows. In section 2 we briefly describe the model and the implementation of the new mixing parameterizations. The equilibrium states of the coupled ocean–atmosphere system are compared in section 3, and sensitivity studies are presented in section 4. In section 5 we focus on the stability of the thermohaline circulation in global warming experiments for the different mixing parameterizations. Finally, the results are discussed and summarized in section 6.

2. Model description

We use the 2.5-dimensional, zonally averaged 3-basin ocean model of Wright and Stocker (1991), with the
The ocean model is coupled to a one-dimensional, zonally and vertically averaged energy-balance model of the atmosphere (Stocker et al. 1992b) including an active hydrological cycle (Schmittner and Stocker 1999). The ocean model consists of three rectangular basins representing the Atlantic, Pacific, and Indian oceans, connected by an Antarctic circumpolar basin, the Southern Ocean. The model closure requires only the zonally averaged water mass properties across an ocean basin. Within the Southern Ocean, only one barrier to zonal flow is included, so the zonal average is taken around the full longitudinal extent of the basin. The geometry is identical to that used by Stocker and Wright (1996). The model includes a simple thermodynamic sea ice component (Wright and Stocker 1993), but the seasonal cycle is neglected.

Three different parameterizations of mixing in the ocean are investigated: (i) the traditional horizontal/vertical diffusion scheme [see Wright and Stocker (1991) for details], referred to as HOR, which has been used in all previous experiments with this model; (ii) the isopycnal mixing scheme (ISO), where we use the straightforward approach of Redi (1982) and replace the horizontal and vertical diffusion terms in the equations for temperature, salinity, and biogeochemical tracers by isopycnal and diapycnal diffusion terms; and (iii) the Gent–McWilliams parameterization (GM), which is identical to ISO but with the large-scale advection velocity \(\mathbf{u} \) replaced by the effective transport velocity \(\mathbf{u}_{\text{eff}} \), defined as the sum of the large-scale advection velocity and the eddy-induced transport velocity \(\mathbf{u}^* \):

\[
\mathbf{u}_{\text{eff}} = \mathbf{u} + \mathbf{u}^*.
\]
The eddy-induced transport velocity $\mathbf{u}^* = (v^*, w^*)$ for the 2D model is given by

\[v^* = -\kappa s, \quad w^* = \kappa s, \quad (2) \]

where $s = -\rho / \rho_0$ is the local isopycnal slope, ρ is the potential density and subscripts denote partial derivatives [y and z are the meridional and vertical coordinate, respectively (Gent et al. 1995)]; v^* and w^* are the meridional and vertical velocity components and κ is the Gent–McWilliams parameter (GM parameter: sometimes called isopycnal thickness diffusivity). Heat, salt, and biogeochemical tracers are advected by the effective transport velocity. A maximum value s_{max} is chosen for the slope s. If the slope exceeds the specified maximum value, it is simply set to the maximum value. This restriction has been commonly used to avoid very large vertical diffusive fluxes. For the model versions, ISO and GM, the changes due to vertical diffusion are calculated implicitly; no additional horizontal background diffusivity for numerical stability is necessary. Parameter settings are discussed in section 4; the parameter values for all experiments are listed in Table 1.

The ocean model is spun up from rest for 5000 years by relaxing the surface values of temperature and salinity to the zonal and annual mean climatological data of Levitus et al. (1994) and Levitus and Boyer (1994) with a restoring timescale of 50 days. Wind stress based on observations (Han and Lee 1983) is applied at the ocean surface. After reaching a quasi-steady state under these restoring boundary conditions, the model is coupled to the atmosphere and integrated for a further 5000 years. The determination of the various atmospheric model parameters is discussed in detail in Stocker et al. (1992b).
3. Equilibrium states for the different mixing parameterizations

The equilibrium states of the coupled ocean–atmosphere system are now compared for the different mixing parameterizations. Parameter settings are listed in Table 1. A constant value of 500 m2 s$^{-1}$ for the GM parameter κ is assumed, but our main results do not depend on this choice. The important characteristics of the large-scale global circulation are reproduced with all three model versions. In Fig. 1, the total Atlantic streamfunction (including the eddy-induced streamfunction) is shown. The Atlantic deep overturning (maximum Atlantic streamfunction below 1000 m) is about 24 Sv ($\text{Sv} = 10^6 \text{m}^3 \text{s}^{-1}$) for the model version HOR (Fig. 1a). For the ISO parameterization, the Atlantic cell is significantly stronger (28 Sv) and reaches deeper (Fig. 1b), whereas the GM parameterization leads to a weakening of the circulation cell (22 Sv) as well as a slight shoaling of the lower extremity of the North Atlantic Deep Water (NADW) flow (Fig. 1c). Previous results also indicated a decrease of the Atlantic overturning when introducing the GM parameterization (Danabasoglu and McWilliams 1995; Duffy et al. 1997). Duffy et al. (1997) conclude that the reduced diapycnal mixing in regions of steeply sloping isopycnal surfaces leads to the reduction of the Atlantic overturning. However, our results for the ISO mixing case indicate that the reduction of diapycnal mixing in regions of steeply sloping isopycnals actually strengthens the circulation. The reason for this is that density gradients in the region of deep-water formation are stronger due to reduced diapycnal mixing. The reduction of the Atlantic deep overturning evident in Fig. 1c is caused by the additional eddy-induced velocity in GM, which tends to flatten the isopycnals and hence to reduce meridional density gradients.

In the North Atlantic (see Fig. 1d) and North Pacific, the direct eddy-induced streamfunction shows small clockwise overturning cells in the uppermost 500 m, reaching maxima of 4 Sv and 2 Sv, respectively. These direct effects reinforce the basic overturning circulation in the North Atlantic. However, by design, the eddy-induced transport tends to flatten isopycnal surfaces and hence reduce horizontal density gradients. Thus, the eddy-induced transports always have a tendency to reduce the strength of the overturning circulation through their influence on the density field. The consequences of this overturning reduction are discussed below.

Major changes in the circulation pattern are observed in the Southern Ocean. The GM parameterization leads to the eddy-induced contribution to the streamfunction shown in Fig. 1d. Note that the streamfunction in the Southern Ocean shows the sum over all grid boxes in the zonal direction. The anticyclonic overturning cell with a strength of about 20 Sv, located between 50$^\circ$S and 65$^\circ$S and reaching from the ocean surface to a depth of about 5000 m, approximately cancels the so-called Deacon cell (Döös and Webb 1994) in the Southern Ocean, consistent with previous model experiments (e.g., Danabasoglu et al. 1994; Danabasoglu and McWilliams 1995; Hirst and McDougall 1998; Duffy et al. 1997). The Deacon cell is a model artefact that does not appear in eddy-resolving 3D models when the integration is performed along surfaces of constant density (Döös and Webb 1994). The elimination of this cell has a significant impact on biogeochemical tracer distributions in the Southern Ocean (e.g., Robitaille and Weaver 1995; Duffy et al. 1997; England and Holloway 1998).

The temperature distributions in the Atlantic and Southern Ocean obtained with the different mixing parameterizations are compared with the zonally averaged data of Levitus and Boyer (1994) (Fig. 2). The agreement with the data is similar for all model versions. Again, the main difference is observed in the Southern Ocean, where the parameterizations ISO and GM show strong horizontal, but very weak vertical temperature gradients. The latter characteristic can be explained by the strength of the vertical component of the isopycnal diffusive flux, which exceeds the explicit vertical diffusive flux in the HOR version by several orders of magnitude. All Geophysical Fluid Dynamics Laboratory-based results obtained under restoring boundary conditions indicate cooling in the range of 0.3$^\circ$ to 3$^\circ$C in the Southern and deep ocean (Danabasoglu et al. 1994; Hirst and Cai 1994; Robitaille and Weaver 1995; Hirst and McDougall 1996; Duffy et al. 1997) when the new mixing scheme is introduced. Duffy et al. (1997) attributed this cooling to changes in advection and convection as well as to changes in diffusive fluxes. They find that increased vertical diffusive mixing in the regions of steeply sloping isopycnal surfaces in the Southern Ocean increases the heat loss of the Southern Ocean to the cold high-latitude atmosphere. In contrast to this, Danabasoglu and McWilliams (1995) observed a sharp decrease in the heat loss of the Southern Ocean for the improved mixing, and they attribute the cooling of the Southern and deep ocean to a reduction in poleward oceanic heat transport and a reduction in deep convection. While Duffy et al. (1997) concluded that the cooling of the Southern and deep oceans may be generic to isopycnal mixing parameterizations, we do not observe such a cooling in the results of our 2.5D model. In our experiments the heat loss to the atmosphere in the region of the Southern Ocean is higher for ISO and GM by a factor of 2, but we observe only a slight cooling of the Southern Ocean. The deep ocean remains essentially unchanged, except for the ISO version where a slight warming due to stronger North Atlantic Deep Water formation occurs (Fig. 2b). In agreement with our results, Harvey (1995) finds only minor differences in the temperature and salinity distributions with a simplified coupled ocean–atmosphere model. The increased heat loss from the Southern Ocean affects the local temperature distribution, but the temperature of the deep ocean in the rest of the basin is essentially controlled by the
ratio of colder Antarctic Bottom Water (AABW) formation to warmer NADW formation.

Figure 3 shows the salinity distribution in the Atlantic and Southern Oceans for the different model versions and the zonally averaged data of Levitus et al. (1994). The increased high-latitude downward diffusion in ISO and GM obviously leads to significant changes in the salinity distribution in the Southern Ocean as well as changes in the deep Pacific and Indian Oceans. A general freshening tendency is observed in these basins, consistent with previous model results (Hirst and Cai 1994). The isopycnal surfaces act as pathways along which the fresh surface water may mix into the ocean interior, and we therefore observe a stronger salinity minimum at 50°S reaching to a depth of about 1000 m for the ISO and GM versions (Figs. 3b and 3c). The results of the stronger isopycnal diffusion and reduced horizontal diffusion in the ISO version compared to HOR are also observed in the density distribution (Fig. 4). Compared to the ISO version, the additional eddy mixing in the GM version slightly depletes the slope of the isopycnal surfaces (Fig. 4c).

The distributions of water masses formed at different locations reveal further characteristics of the mixing parameterizations. In the uppermost 1000 m at intermediate and low latitudes only small differences can be identified, but differences are larger in the deep ocean. In the ISO model version there is a very distinct separation of NADW and AABW. For example, in some locations where the Atlantic meets the Southern Ocean, the relative contribution of NADW to the total water mass decreases from 80% to 20% within 5° of latitude. Also, the outflow of NADW to the Pacific and Indian Ocean for ISO and GM is reduced by at least a factor of 2 compared to HOR. These changes in the water mass boundaries can be explained by the reduced diapycnal mixing in the region of steep isopycnal surfaces in the Southern Ocean. In this respect, the ISO version produces unrealistic results. The introduction of the eddy-induced velocity as an additional mixing mechanism in GM significantly improves the situation by reducing the horizontal gradients in water mass properties.

An even more important aspect of the GM parameterization is the reduction of the convection activity (see also section 4) in the North Atlantic and Southern Ocean compared to HOR and ISO. Similar results have been reported in detail by previous investigators (e.g., Danabasoglu et al. 1994; Danabasoglu and McWilliams...
The tendency of the GM parameterization to flatten isopycnals reduces the development of static instabilities in large parts of the ocean, while vertical heat and salt fluxes continue to be maintained by isopycnal mixing. Instantaneous convective mixing is therefore reduced and replaced by a physically more appropriate mechanism.

4. Parameter sensitivity studies

Extensive sensitivity tests were performed under restoring boundary conditions for the GM parameterization to determine the influence of the various parameters used in this mixing formulation. As a reference state, we take the solution under restoring boundary conditions obtained with the parameters given in Table 1. The differences of the reference state from the coupled GM equilibrium state, as described in detail in section 3, are small. Starting with the reference state, the values for the isopycnal diffusivity \(K_I \), diapycnal diffusivity \(K_D \), GM parameter \(\kappa \), maximum isopycnal slope \(s_{\text{max}} \), and several other parameters were systematically changed and a 5000-yr spinup from rest was performed for each parameter set. The qualitative dependencies discussed in this section are not affected by the choice of \(\kappa \).

a. Isopycnal diffusivity

In large parts of the ocean, the isopycnal surfaces are approximately horizontal and the isopycnal/diapycnal diffusivities in ISO have essentially the same effect as the horizontal/vertical diffusivities in HOR. A value of 1000 m² s⁻¹ for the horizontal diffusivity \(K_H \) is consistently used in almost all ocean models for depth-independent \(K_H \), and the same value may therefore also be appropriate for the isopycnal diffusivity \(K_I \) (e.g., Lin 1988; Gerdes et al. 1991; Hirst and Cai 1994; Dabanbasoglu and McWilliams 1995; Hirst and McDougall 1996; Duffy et al. 1997; Weaver and Eby 1997). We varied \(K_I \) in the range of 100 to 5000 m² s⁻¹ (13 values) and observed changes in the temperature and salinity distribution due to the changes in the diffusive fluxes. However, the overall solution of the model changes little, and no clear trends can be observed. For example, the maximum Atlantic deep overturning varies by less than 1 Sv for the different values of \(K_I \). Values in the
range of about 500 to 2000 m2 s$^{-1}$ seem to be suitable for model purposes.

b. Diapycnal diffusivity

Values in the range of 10^{-5} to 10^{-4} m2 s$^{-1}$ are generally used in ocean models for vertical and diapycnal diffusivities. Tracer experiments indicate the same range, but large spatial variations are known to occur (Ledwell et al. 1993; Toole et al. 1994). Some authors have tried to take spatial variations into account by choosing depth-dependent values (e.g., Hirst and Cai 1994; Hirst and McDougall 1996); others used a medium range constant value of 5×10^{-5} m2 s$^{-1}$ (e.g., Danabasoglu et al. 1994; Danabasoglu and McWilliams 1995; Duffy et al. 1997). Here we consider a spatially uniform diapycnal diffusivity K_D and examine the model sensitivity to variations in this parameter over the range 10^{-5} to 10^{-4} m2 s$^{-1}$ (10 values). The model results show a distinct and strong dependence on K_D, very similar to the dependence on the vertical diffusivity K_V found in previous studies with HOR (Wright and Stocker 1992). In low latitudes, enhanced diapycnal diffusion increases the vertical diffusive heat flux into the deep ocean, which results in a larger meridional density gradient. This strengthens the circulation and increases the large-scale meridional transports. In the range mentioned above, the Atlantic deep overturning increases from 8 to 23 Sv, the maximum Atlantic meridional heat flux increases from 0.8 to 1.3 PW, and the maximum Atlantic meridional freshwater flux increases from 0.15 to 0.23 Sv with increasing K_D. The Atlantic deep overturning,
shown in Fig. 5, is approximately proportional to \((K_D)^{0.5}\), consistent with scaling arguments and with the results of Wright and Stocker (1992) who found very similar dependencies for the Atlantic overturning on the vertical diffusivity \(K_V\) [Atlantic deep overturning proportional to \((K_V)^{0.46}\)]. We therefore conclude that, at least in our model, the diapycnal diffusivity in the GM model version has essentially the same influence and importance as the vertical diffusivity in the HOR model version.

c. GM parameter

The Gent–McWilliams parameter \(\kappa\) is not a physically measurable quantity; its value must be determined by comparing model results with observations. A constant value of 1000 m\(^2\) s\(^{-1}\) has been used in most previous experiments (Gent et al. 1995; Danabasoglu and McWilliams 1995; Danabasoglu et al. 1994; Hirst and McDougall 1996; Weaver and Eby 1997), but the uncertainty is large, and spatial variations are indicated when \(\kappa\) is estimated from numerical model results and theoretical ideas (Hirst and McDougall 1996; Visbeck et al. 1997). The choice of a basinwide constant value is assumed for simplicity; further knowledge and estimates from data and models are necessary to overcome this deficiency. We investigated the range of \(\kappa\) from 100 to 5000 m\(^2\) s\(^{-1}\) (13 values). The results are plotted in Fig. 6. The minimum Atlantic and Southern Ocean eddy-induced streamfunction, which indicates the strength of the counterclockwise eddy-driven circulation cell in the Southern Ocean (see Fig. 1d), decreases linearly from \(-4\) to about \(-45\) Sv when \(\kappa\) is increased from 100 to 1000 m\(^2\) s\(^{-1}\). The linear dependence is as expected from Eq. (2) if no feedback mechanisms are present. When \(\kappa\) is increased further, the minimum eddy-induced streamfunction continues to decrease, but more slowly than a linear extrapolation would suggest (Fig. 6a). This is due to the negative feedback of the eddy-induced transport reducing the isopycnal slopes, which...
acts to reduce the magnitude of the eddy-induced transport.

The eddy-induced streamfunction has a strong impact on the model’s behavior. The maximum Atlantic overturning shows a strong dependence on κ and decreases from 26 to 8 Sv when κ is increased from 100 to 5000 m2 s$^{-1}$ (Fig. 6b). The reduction of the Atlantic overturning leads to a severe decrease of the maximum Atlantic meridional heat flux from about 1.4 PW to 0.9 PW. For the reference run ($\kappa = 1000$ m2 s$^{-1}$), a value of about 1.1 PW is obtained, in good agreement with observations (Hall and Bryden 1982; Trenberth and Solomon 1994). The fraction of convecting cells is reduced by almost an order of magnitude (Fig. 6c), and the convection depth in the northernmost Atlantic cell (measured downward from the ocean surface) is reduced by about a factor of 3 (Fig. 6d). These results reflect the fact that the eddy-induced velocity represents a stirring mechanism that tends to flatten the isopycnals and reduce horizontal density gradients, hence reducing the overturning circulation. The tendency to flatten isopycnals also tends to prevent the development of static instabilities, especially in regions of deep-water formation. Consequently, convective mixing is drastically reduced. Further details will be discussed in section 5 where we will demonstrate that an increasing value of κ also reduces the stability of the thermohaline circulation.

5. Stability of the thermohaline circulation

The stability of the thermohaline circulation is a central problem in climate dynamics, but a systematic investigation of stability properties as a function of mixing parameters used in ocean models has not been done. As a step in this direction, we consider the stability of the modern steady-state circulation corresponding to the different model versions in response to projected global warming. The mechanisms and the general behavior of the different model versions have been confirmed by various freshwater experiments (Knutti 1999), which we do not reproduce here.

Stocker and Schmittner (1997) showed that the model exhibits threshold values in global warming scenarios, above which the NADW formation stops and never recovers, and that these threshold values depend on the rate of increase of the warming. Following Schmittner and Stocker (1999), such scenarios are simulated here by assuming an exponential increase of the atmospheric CO_2 concentration with time:

$$pCO_2(t) = (280 \text{ ppmv})e^{\gamma t},$$

where γ is the rate of CO_2 increase. Once a prescribed level is reached, the CO_2 concentration is held constant and the integration is continued. The relation between the CO_2 concentration and the additional radiative forcing ΔF at the top of the atmosphere is parameterized according to Shine et al. (1995):

$$\Delta F(t) = \Delta F_{2\times} \ln \left(\frac{pCO_2(t)}{280 \text{ ppmv}} \right) / \ln(2)$$

$$= \Delta F_{2\times} \frac{\gamma t}{\ln(2)}$$

The parameter $\Delta F_{2\times}$ denotes the additional radiative forcing for a doubling of CO_2, its value is fixed at 7.3 W m$^{-2}$, which corresponds to a global equilibrium temperature increase of about 3.7°C in our model. The albedo is kept constant, advection velocities in the atmosphere are diagnosed when negative diffusivities occur in the atmosphere, and the zonal distribution of precipitation is held constant in time [see Schmittner and Stocker (1999) and Schmittner et al. (2000b) for details]. For a given end level of ΔF or pCO_2, a global warming
scenario is integrated until a new equilibrium state is established (usually 1000 years). We then examine the change in NADW formation to determine the critical forcing or critical CO$_2$ value beyond which the NADW formation stops and does not recover. This value is determined over a broad range of γ, the rate of increase of radiative forcing.

It may be tempting to interpret the results in this section as absolute threshold values in terms of CO$_2$ concentrations applicable for climate predictions, but this would be inappropriate. The model used for this study is too simple to decide whether a threshold for a collapse of the Atlantic thermohaline circulation exists for the real ocean–atmosphere system or to determine the value of such a threshold. Most ocean–atmosphere models show a reduction of North Atlantic deep-water formation in global warming experiments, and there is evidence from models that there may be a threshold value for global warming beyond which the North Atlantic thermohaline circulation completely stops and does not recover (e.g., Manabe and Stouffer 1994). In contrast to this, Latif et al. (2000) recently found that global warming has almost no net influence on the Atlantic thermohaline circulation. This is due to compensating stabilizing effects caused by more frequent El Niño regimes, which influence the surface freshwater balance of the tropical Atlantic (Schmittner et al. 2000a). Improved models may answer this discrepancy in the future. Our intention here is to investigate mechanisms and dynamical aspects of abrupt reorganizations as well as to identify whether changes in parameter settings or the choice of a different mixing parameterization might stabilize or destabilize the thermohaline circulation. Climate predictions and absolute threshold values must, if they exist for the real climate system, be investigated with more comprehensive (and computationally more expensive) coupled 3D ocean–atmosphere models.

The critical forcing for an Atlantic circulation collapse was calculated for different rates of increase of the radiative forcing, starting from the coupled equilibrium states described in section 3. Figure 8 shows the results for HOR, ISO, GM, and the results of the corresponding model version published in Schmittner and Stocker (1999). The differences between the latter and HOR are due to slightly different parameter settings, updated surface restoring conditions, and an improved calculation for seawater density (Wright 1996). The critical forcing in the new model versions ISO and GM shows the same qualitative dependence on the forcing increase rate as found with the HOR mixing scheme. It is almost constant for higher increase rates (>0.1 W m$^{-2}$ yr$^{-1}$) and becomes larger for smaller increase rates (<0.1 W m$^{-2}$ yr$^{-1}$) because the ocean is given more time to absorb the additional heat and freshwater. For each version, a threshold for the increase rate exists below which the NADW formation always recovers (values for ΔP up to 50 W m$^{-2}$ have been tested). Figure 8 shows that values of the critical forcing depend on the mixing parameterization. The ISO parameterization shows much higher critical forcing values than HOR and GM, indicating that the ISO version is less sensitive to perturbations in the heat budget. However, we will show later in this section that the absolute position of the GM curve is highly dependent on the GM parameter κ.

In section 4 we showed that the Atlantic overturning is stronger for higher values of the diapycnal diffusivity. This statement is true for all mixing parameterizations. A stronger overturning is usually less sensitive to perturbations, and one would therefore expect higher values for the critical forcing. To test this hypothesis, the critical forcing was calculated iteratively as described above for values of K_D and K_P in the range of 3×10^{-5} to 10^{-4} m$^{-2}$ s$^{-1}$. For simplicity, the forcing increase rate was fixed at a value of 0.1 W m$^{-2}$ yr$^{-1}$. The results are shown in Fig. 9. Note that the parameter q_{SO} controlling the Southern Ocean deep-water formation is 0.5 Sv instead of 0.3 Sv in the following experiments, but the qualitative results do not depend on this choice. Briefly, to account for the effect of brine rejection around Antarctica, a fraction of the salt ejected during sea ice formation is mixed with a specified volume of surface water and slotted into the water column at its stability level before applying the usual convection scheme based on instantaneous mixing. Here q_{SO} denotes the flux of water...
creases. Additionally, for the GM version, the horizontal component of the isopycnal diffusivity therefore in- our model). Changes in the diapycnal diffusion play a minor role (in the Atlantic is largely controlled by advection and that, therefore, that the horizontal mixing in the surface North Atlantic, on the other hand, are small and compete to a generally higher level of the critical forcing. The locally high vertical diffusivities that contribute strongly to the dilution of heat and salt anomalies and thus lead to a generally higher level of the critical forcing. The horizontal diffusivities in the uppermost 500 m of the North Atlantic, on the other hand, are small and compete with the strong horizontal advection. We suggest, therefore, that the horizontal mixing in the surface North Atlantic is largely controlled by advection and that changes in the diapycnal diffusion play a minor role (in our model).

Using the GM scheme, the isopycnal slopes are reduced by the eddy-induced advection, and the horizontal component of the isopycnal diffusivity therefore increases. Additionally, for the GM version, the horizontal advection in this region is smaller than in the ISO version (difference: 5 to 8 Sv, depending on K_D) decreasing further the relative importance of advection versus K_D. Because of the reduced isopycnal slope, primarily changes in K_a largely affect the vertical diffusive fluxes. The qualitative behavior of the GM version therefore resembles the behavior of the HOR version.

When focusing on the meridional overturning strength of all model runs in Fig. 9, a second argument arises to explain the differences in the transient response of the different model versions. For small diapycnal/vertical diffusivities, the Atlantic overturning strength is generally small but varies for the different model versions (range: 14–23 Sv for $K_D = 3 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$). Large differences in the stability of the thermohaline circulation are therefore not surprising. On the other hand, the relative variations in the overturning strength are much smaller for large diapycnal/vertical diffusivities (range: 27–31 Sv for $K_D = 10^{-4} \text{ m}^2 \text{ s}^{-1}$). Consistent with this, the variations in the critical forcing are much smaller for large diapycnal/vertical diffusivities. Additional experiments with a higher maximum isopycnal slope $s_{max} = 0.01$ show an increase of the critical forcing in the ISO version by about 30%, but still no dependence on the diapycnal diffusivity is observed.

Note also that the interpretation of the stability as a function of mixing parameters (Fig. 9) is generally more difficult than if the dependence on the forcing parameters is investigated (Fig. 8). While for the latter all transient experiments start from an identical steady state of the coupled ocean–atmosphere system, experiments with varying diffusivities require their individual equilibrium state for each point plotted in Fig. 9. Numerical aspects in the spinup phase or variations in atmospheric parameters (diagnosed at the time of coupling ocean and atmosphere) are therefore likely to affect the transient behavior in the global warming scenarios.

In a final set of experiments, the sensitivity of the critical forcing to changes in the GM parameter κ was investigated. In Fig. 10, the critical forcing is plotted versus κ for the standard GM model version and a parameterization with reduced deep-water formation in the Southern Ocean (GM2; see Table 1 for details). In either case, a strong decrease of the stability is observed for increasing values of κ. Indeed, for sufficiently large values of κ, the system is close to a bifurcation point where NADW formation tends to stop even without introducing any perturbation. This sensitivity is qualitatively consistent with the results of Stocker et al. (1992a) who demonstrate the sensitivity of the overturning circulation to the buoyancy contrast between the Southern Ocean and the North Atlantic. As κ is increased, there is increased tendency for AABW to penetrate into the Atlantic basin as a result of the “anticlockwise” overturning circulation in the Southern Ocean associated with the GM eddy-mixing scheme. It seems likely that this increased Antarctic influence is the primary reason for the reduced stability of the NA overturning circu-
The uncertainty in the model estimates of the critical forcing threshold reducing deepwater formation in the Southern Ocean (GM2: triangles). The uncertainty in the model estimates of the critical forcing threshold values is ±0.05 W m⁻².

Fig. 10. Critical additional radiative forcing for the collapse of the Atlantic thermohaline circulation as a function of the Gent-McWilliams parameter κ for the standard deep water parameterization in the Southern Ocean (GM: circles) and for a parameterization with reduced deepwater formation in the Southern Ocean (GM2: triangles). The results presented here indicate that, while such a transition between the modern state and a “glacial” state is achieved through the cancellation of the Deacon cell, a more realistic circulation in the Southern Ocean is positioned unrealistically close to a mode transition are clearly unreliable. Determination of model parameter sensitivities for complex 3D models is a daunting task, but it will be an important step towards insuring model sensitivities consistent with those of the real world.

6. Conclusions

We investigated the impact of isopycnal mixing and the GM parameterization in a 2.5D zonally averaged, coupled ocean–atmosphere model. It has been found that each of the mixing parameterizations is able to reproduce the large-scale modern circulation pattern as well as the spatial distribution of temperature, salinity, meridional fluxes, evaporation, and precipitation.

The reduced diapycnal mixing in the ISO version of the model leads to very abrupt transitions between water masses, reflecting that the mixing mechanism that depletes density gradients has been reduced in strength, particularly in regions of strongly sloping isopycnals. The stability of the circulation for the ISO formulation is essentially independent of the diapycnal diffusivity and therefore also insensitive to the changes in overturning strength over this range of diffusivities in the ISO formulation. Changes in other parameters also hardly affect the stability of this model version. However, we note that the results obtained with the ISO version are significantly modified when the model is extended to the GM version, which includes a representation for the eddy-induced transport. This transport provides an additional mixing mechanism to limit isopycnal steepening. The consequences include a drastic decrease of the convective adjustment activity, a significant weakening of the large-scale circulation, and a much higher tendency for major changes or reorganizations of the circulation.

The GM version appears to give the most realistic results of the three formulations considered. In particular, a more realistic circulation in the Southern Ocean is achieved through the cancellation of the Deacon cell, which should improve the model’s capability to correctly simulate distributions of biogeochemical tracers and the carbon cycle in that region. The use of the GM parameterization in future experiments is recommended, although in our case numerical handling, especially when coupling the ocean to the atmosphere, is not as easy as in the traditional HOR version, at least in our model.

Parameter dependencies of all three model versions were investigated and several important results regarding the stability of the modern circulation were obtained. First, the stability of the thermohaline circulation is highly dependent on parameter settings and on which mixing parameterization is used. Similar behavior is likely to occur in other more comprehensive ocean–atmosphere models, although the computational expense of these models will make it prohibitively expensive to determine detailed dependencies.
Second, the strength of the thermohaline circulation does not necessarily determine its stability in response to perturbations in the heat and freshwater budgets. This conclusion is supported by Fig. 10, where (i) the critical forcing for the GM2 version lies below 2 W m\(^{-2}\) for high values of \(\kappa\), although a strong Atlantic overturning of more than 20 Sv is detected, and (ii) for small \(\kappa\) the GM2 version is less stable than the standard GM version, even though the Atlantic overturning of GM2 is 5 Sv stronger. Figure 9 also supports this conclusion as it shows that the critical forcing for the ISO version is approximately constant although the Atlantic overturning increases significantly when the diapycnal diffusivity is increased.

Third, the fact that the critical forcing is higher for smaller rates of CO\(_2\) increase is a robust result that is not affected by any parameter setting or by the mixing parameterization. However, as illustrated by Fig. 8, absolute threshold values for a circulation collapse in terms of CO\(_2\) concentrations or radiative forcing values are very difficult to estimate. We emphasize that the purpose of the experiments presented here is not to give realistic absolute threshold values, but to investigate mechanisms and dependencies that contribute to a better understanding of the ocean–atmosphere system. Further experiments with more comprehensive models are required to better understand the relevance of our results for the real world.

Acknowledgments. This work was supported by the Swiss National Science Foundation and the EC Project GOSAC. We enjoyed discussions with G.-K. Plattner and A. Schmittner. Constructive comments by Anthony Hirst and an anonymous reviewer are acknowledged.

REFERENCES

Knutti, R., 1999: Parameterisierungen von sub-skaligen Mischungsprozessen in einem zonal gemittelten Ocean-Modell. M.S. thesis, Dept. of Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland, 143 pp. [Available from Climate and Environmental Physics, Physics Institute, University of Bern, Sislerstrasse 5, CH-3012 Bern, Switzerland.]

