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Universitätstrasse 16, Zurich, Switzerland

The term ‘feedback’ is used ubiquitously in climate
research, but implies varied meanings in different
contexts. From a specific process that locally affects
a quantity, to a formal framework that attempts to
determine a global response to a forcing, researchers
use this term to separate, simplify and quantify
parts of the complex Earth system. We combine new
model results with a historical and educational
perspective to organize existing ideas around
feedbacks and linear models. Our results suggest
that the state- and forcing-dependency of feedbacks
are probably not appreciated enough, and not
considered appropriately in many studies. A non-
constant feedback parameter likely explains some of
the differences in estimates of equilibrium climate
sensitivity from different methods and types of
data. Clarifying the value and applicability of the
linear forcing feedback framework and a better
quantification of feedbacks on various timescales and
spatial scales remains a high priority in order to better
understand past and predict future changes in the
climate system.

1. Introduction
Partly originating from control theory, the analysis
of feedbacks is a powerful tool to study dynamical
systems, in which one quantity affects another, thereby
attenuating or amplifying the original signal (see [1] for
a review). For example, warmer temperatures lead to
melting of snow and ice, which exposes a darker surface
that absorbs rather than reflects incoming solar radiation,
which leads to more warming and melting than would
have occurred if the snow cover area had been fixed. In
simple systems with few components and interactions,
such feedback frameworks can separate cause and effect,
and allow for a mathematical description of a dynamical
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system. However, there are difficulties in applying it to the global climate system, which is not
closed, and where the interplay of different feedbacks and forcings complicate the description.
Some feedbacks may only become relevant in the future, or may no longer be relevant (e.g. if
there is no snow and ice left), whereas some changes may be nonlinear, abrupt or irreversible.
For instance, systems like the El Niño Southern Oscillation could potentially show regime shifts,
invalidating simple linear feedback formulations and potentially making feedback analysis less
relevant for both understanding the past and predicting the future. Yet, despite all these potential
complexities, the construction of linear feedback frameworks has been helpful in the past, if
applied carefully to parts of the whole climate system, and within certain bounds on timescales
and climate states that we discuss below.

The perspective provided here, focusing on the global forcing feedback framework, emerged
from an overview talk presented at the Royal Society Discussion Meeting on ‘Feedbacks on
climate in the Earth system’. We attempt to provide an extended context and perspective to the
more detailed papers in this theme issue. As a consequence, some conceptual material presented
here is not novel, though we hope to stimulate potential avenues of future research.

2. The case for forcing feedback frameworks
A specific forcing might affect the climate system response on a large range of timescales. In the
usual forward thinking and modelling chain, shown in figure 1a, the use of fossil fuels leads
to greenhouse gas emissions and an increase in their atmospheric concentrations, a change in
radiative forcing, which causes a climate response. In the more detailed view in figure 1b, the
change in the CO2 concentration causes an instantaneous forcing, which—after being adjusted
for very fast responses—becomes an effective radiative forcing, defined as the change in the top
of atmosphere radiative balance before the surface temperature responds (see [3] for an overview).
By warming, the surface restores the radiative balance by increasing the radiation to space, but
this warming causes water vapour, lapse rate, albedo, clouds, vegetation, ice sheets, permafrost
and/or atmospheric chemistry to change. Those changes—directly or indirectly—affect the
Earth’s radiation budget, and amplify or damp the temperature response.

Equilibrium climate sensitivity (ECS) is an attempt to combine many of these changes in a
tractable manner, and is one of several key numbers that are used to characterize the temperature
response of the Earth to a change in forcing or the CO2 concentration. ECS is usually defined
as the equilibrium global average surface warming in response to the radiative forcing from
an atmospheric CO2 doubling, and includes the changes in water vapour, lapse rate, surface
albedo and clouds (see magenta box in figure 1). By definition, in equilibrium, the ocean heat
uptake is zero, but in a transient climate, it damps the warming. The transient climate response
(TCR) characterizes the warming at the time of CO2 doubling after a 1% per year increase in
the CO2 concentration (see violet box). The transient climate response to cumulative carbon
emissions (TCRE, light blue box) characterizes the warming as a function of the total emitted CO2,
and is relevant to estimate the carbon budgets, and emission reductions required for stabilizing
global temperature (see [4] for an overview). In some sense, the definition of ECS is arbitrary
and has survived only because of historical development, convenience in modelling and the
lack of better alternatives. The early generations of climate models included only the water
vapour, lapse rate, albedo and cloud feedbacks, and had no appropriate representation of land
ice, vegetation, chemistry or biogeochemical cycles, nor did they include a dynamical ocean
component. Doubling the atmospheric CO2 concentration for a few decades in such a model was
therefore a benchmark to characterize the overall temperature response to a well-defined forcing,
and a measure of the total feedback on timescales of decades to centuries.

From figure 1, it becomes clear that ECS and TCR are rather limited characterizations of a
much larger and interactive system. Other feedbacks such as vegetation, chemistry or land ice are
now included in some climate models as their relevance is better understood. Some feedbacks
operate on very long timescales that are determined by the internal dynamics of the system, and
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Figure 1. (a) Simplistic and generalized modelling chain (adapted from [2], figure 10.1) and (b) more refined distinction
between feedbacks acting in and on the climate system. Greenhouse gas emissions perturb the radiative balance, which force
the temperature to respond. Temperature change is causing various feedbacks (yellow box, interactions between the feedbacks
are not marked) to act back onto the radiative balance, which again causes the temperature to adjust. The equilibrium climate
sensitivity (ECS,magenta box) covers only someof the feedbacks. In a transient reference framework (transient climate response
TCR, violet box), the rate of ocean heat uptake affects the radiative balance and temperature change in return. The transient
climate response to cumulative carbon emissions (TCRE, light blue box) characterizes the temperature response to emissions
and includes carbon emissions, uptake and release of the land biosphere and the ocean. The Earth system sensitivity (ESS, blue
box) includesmore feedbacks, generally but not exclusively acting on longer than century timescales. The separation of forcings
(grey box) and feedbacks (yellow box) is in some sense arbitrary and has to be defined for each problem. Climate change—
through temperature andother variables’ changewill impact socio-economic systems,whichfinallywill feedback onemissions.
See text for further discussion. The feedback loops sketched act on different timescales. (Online version in colour.)
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their response is not proportional to temperature. Thus, a more recent concept is an equilibrium
Earth system sensitivity (ESS, dark blue box) which encompasses all climate (but not human)
feedbacks. The separation of ECS and ESS is often made along timescales, with the argument
that those feedbacks included in ECS essentially scale with surface temperature, whereas the
others in ESS partly have their intrinsic (and often slower) timescales. However, this does not
apply to atmospheric chemistry which responds quickly. Here, the reason is a historic one, as the
early climate models simply did not simulate interactive chemistry. This supports the argument
that the separation of ECS and ESS is somewhat arbitrary in the real world where a lot of
processes interact.

How would we go about estimate ECS in the real world? The Earth today is not in equilibrium,
and other, non-greenhouse gas forcings (aerosols, dust, land use, solar and volcanic), which
are smaller than greenhouse gas forcings, are still important locally. Attempting to capture
the importance of these other forcings, scenarios of future climate now prescribe emissions of
many gases [5]. Climate change is also expressed in other variables—from ranges of species’
habitats to hail grain size—including their variance and extremes. The state of the changed
climate system causes impacts, leading to adaptation and mitigation, which, in turn, influence
the economy and fossil fuel exploitation and use (grey in figure 1b, sketched only roughly to
indicate the incompleteness of process understanding), which further influence greenhouse gas
emissions. It is tempting to broaden the definition of ECS to include more feedbacks to simplify
the comparison with the real world. Even impacts and the human response in terms of adaptation
and mitigation could be included in a broader concept of sensitivity [6], encompassing most or
all relations shown in figure 1. However, the decision to incorporate an additional process into
‘sensitivity’ must consider the need to reduce complexity, in order to have a tractable system that
is useful for understanding. The human component is a hypercomplex interaction of nature and
societies. Humans, as biological systems, may, in theory, be described by the laws of physics and
chemistry, and could be parametrized similar to other ecosystems, but human decisions, ideas
and inventions can (and have done in history) literally change the course of the world, and
thus introduce a problem of predictability of the first kind (sensitivity of the outcome to initial
conditions). If climate sensitivity is defined in such broad terms to include human behaviour, it is
apt to be unpredictable and fails to provide insights into the climate system.

The idea of the feedback framework in climate science is to break down complex processes and
quantify their sensitivities. For long-term warming, ECS or TCR may be useful numbers and they
explain the largest fraction of uncertainty [7], but for adaptation purposes, global temperature is
of very limited value. For regional change and changes other than temperature, the feedbacks and
processes that matter most may be different (e.g. soil moisture, vegetation or air pollution) from
the ones that are most important for TCR or ECS.

Why would we stick to an arguably narrow framework of climate sensitivity, which describes
only a limited number of the feedbacks in the real world? A number of reasons partly explain
why we have done so for a long time. First, many changes in climatic variables approximately
scale with temperature [8,9]. As a result, global temperature is probably the best proxy for
aggregated impacts, even though the relation is likely nonlinear. Global temperature is relatively
easy to measure, records extend further back than measurements of most other climate variables,
and temperature is more straightforward to reconstruct from palaeodata than other quantities.
Together, this provides a way of comparing current and future climate with the climate that
would have been without anthropogenic emissions. If we had to reduce climate change to a
single aggregate number, for example to agree on a single climate target, global temperature is
an obvious choice. Second, in the global forcing feedback framework, the radiative forcings and
their responses are assumed to be additive, as discussed further in §3. This is key for the relevance
of the radiative forcing definition, as it means that 1 W m−2 of a forcing can be ‘traded’ against
1 W m−2 from a different forcing when designing policies towards a climate target, and the total
warming is proportional to the total forcing. This additivity is also a key assumption for detection
and attribution studies, to break down the observed changes into parts caused by different
forcings. Third, many earlier studies (partly based on slab ocean rather than on dynamical ocean
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Figure 2. Timescales of climate relevant processes. Light grey bars indicate processes that act on timescales that a GCM
can resolve, but are usually assumed to be (partly) inactive or non-existent. Dashed lines indicate timescales where specific
feedbacks are weaker or only operate under certain circumstances. The arrow for clouds, lapse rate, water vapour and albedo
indicates that those feedbacks operate on short timescales, but, because the surface warming takes centuries or more to
equilibrate, these feedbacks continue to change and affect the overall response of the systems up to millennia. This can apply
similarly to other feedbacks that respond quickly but continue to change over long timescales in response to other feedbacks.
The coloured ellipses each cover different methods used to estimate climate sensitivity. The vertical ordering of the feedbacks
is arbitrary. Models of intermediate complexity (EMICs) can bridge the gap between GCMs and palaeo proxies, for example by
including carbon cycles, weathering and ice sheets. Usually, there are trade-offs between simulating very long timescales and
the level of detail of short timescale processes. (Online version in colour.)

models) indicated that the global feedback parameter (the inverse of the equilibrium warming
per unit forcing) is roughly constant for various forcings and climate states. This is equivalent to
a description of a Taylor expansion neglecting higher-order terms, as shown in §3. To the degree
that this is justified, the global feedback can be used in simple energy balance models to estimate
the future warming from future emissions or forcings, or in integrated assessments models. Such
models, where the forcing is seen as the cause, and warming as the effect, are known to be a
simplification of the real world, but have been crucial for understanding how models of various
degrees of complexity respond to perturbations, and to which degree past and future climate
change can, to first order, be described as an energy balance problem [10].

Figure 1 does not indicate typical process timescales, but it is obvious that cloud droplet
formation acts on different temporal and spatial scales than weathering of rocks or land-use
changes. Climate sensitivity was defined with a century timescale in mind and, as such, can
characterize only certain processes. Figure 2 compares the most common process timescales.
The direction—warming or cooling, positive or negative feedback—is not taken into account in
this representation, and some processes have different sensitivities for warming than for cooling
(see discussion in §3). The coloured ellipses indicate different methods to define sensitivity in
broad terms.
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Climate sensitivity is not a quantity that can be measured, and it characterizes only a part of
the relevant processes and feedbacks, but it is an emerging property of the system. From past
climate, it can be approximated by relating equilibrium warming to radiative forcing. In global
climate models (GCMs), climate sensitivity is normally not tuned, but it results from aggregating
or parametrizing small-scale processes and ignoring long-term ones (red ellipse in figure 2).
GCM-based estimated of TCR and ECS ignore certain processes even within the time frames they
consider (grey bars within the red ellipse).

On short timescales (green ellipse), the observed surface warming, ocean heat uptake, and
an estimate of radiative forcing, provide an estimate of the anthropogenic contribution to the
observed warming and the global feedbacks [10], and therefore, ECS and TCR [11–24]. Those
again can be used for probabilistic projections that are conditional on, i.e. constrained by, past
warming [11,25–32]. Observations and simulations of the response to natural external forcings
(volcanic or solar) [33–36] or unforced climate variations on short or very long timescales (green
and yellow ellipse in figure 2), or the climatology and seasonal cycle may provide information
on feedbacks [37–39], but the inferred numbers (in W m−2 K−1) may differ from those on the
century timescale. Both the short-term and proxy methods are often called ‘observational’, but it
is important to note that they rely on models and assumptions as much as GCMs. Their radiative
forcing is derived from a GCM, the magnitude and timescales of internal climate variability
often come from climate model control runs or statistical models, and in many cases, strong
assumptions about linearity and spatial aggregation are made, as discussed in the next sections.
Information from palaeoclimate combined with models [40–49] provides further support for an
ECS value in the consensus range of 1.5–4.5◦C, but also highlights that feedbacks for warmer or
colder states and on longer timescales may differ from those today.

Two pressing questions become clear from figure 2. The first is why different lines of evidence
point to different ECS values. Specifically, some but not all recent studies on the twentieth-century
warming find rather low ECS values (median at or less than 2◦C) [17–19,21]. Climate models show
a large spread in ECS, with the spread half as big as the actual value. The highest uncertainty can
be attributed to the cloud feedbacks (traceable to certain cloud types and regions), and the lapse
rate feedback [50–53]. But all comprehensive climate models indicate sensitivities above 2◦C, and
those that simulate the present-day climate best [54–57] even point to a best estimate of ECS in the
range of 3–4.5◦C. The second question is how to infer present-day ECS from the climate sensitivity
in warmer or colder states, from shorter or longer timescales, or for a non-CO2 perturbation
(‘mapping’). Both questions are partly rooted in the use of simple linear forcing feedback models
with a constant feedback parameter, discussed in depth in the following sections.

3. Climate sensitivity, timescales and commitment

(a) General concepts
In equilibrium, the global radiation budget, the sum of net incoming solar shortwave and
outgoing terrestrial longwave radiation, is closed (R = 0). The degree of imbalance (R �= 0) at some
time following a perturbation can be ascribed to the temperature response itself (�T), and changes
induced by the temperature response, called feedbacks (α�T), thus R = R(�T, α(T)) [1,58]. To
study how a small change in the radiation budget �R is related to the temperature response, one
can use the Taylor expansion of R, in T and α(T)

�R = ∂R
∂T

�T + ∂R
∂α

∂α

∂T
�T + O((�T)2). (3.1)

The perturbation of the radiation budget is the effective radiative forcing F minus the heat flux or
top of the atmosphere (TOA) radiative imbalance N, which is non-zero as long as the system is not
in equilibrium. The reference height of the heat flux is usually the tropopause. Over time scales
longer than a year, this is the same as the heat flux into the ocean, ice and land. The first term on the
right-hand side describes the strongest negative feedback, sometimes called the Planck feedback.
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Increased temperatures lead to increased TOA outgoing longwave radiation. Other feedbacks
would have to be stronger than the Planck feedback to lead to a runaway climate. The second
term on the right-hand side describes the sum of the feedbacks, which scale with the temperature
response:

∂R
∂α

∂α

∂T
=

∑ ∂R
∂αi

∂αi

∂T
,

with i = water vapour, lapse rate, albedo and cloud feedback. These are the common physical
feedbacks analysed in CMIP5-type climate models (see the violet TCR box in figure 1). The
feedbacks can be positive (e.g. water vapour) or negative (e.g. lapse rate) and sometimes
difficult to determine (e.g. for the cloud feedbacks). Processes that involve several of the
feedbacks can lead to correlations between them. For example, the sum of the water vapour
and lapse rate feedback is better constrained than the individual parts [59]. Finally, the last
term on the right-hand side of equation (3.1) is the sum of all higher-order terms of the Taylor
expansion, representing the nonlinearities of individual process and the interaction between the
different feedbacks.

The linear approximation generally neglects the last term, because the temperature response
from interactions between the feedbacks is usually small. Focusing on the linear term helps to
distinguish and quantify the single feedbacks’ influence on the final response [60]. However, it is
not clear what a ‘small perturbation’ comprises and when higher-order terms should be taken into
account, such as for high emission scenarios or palaeoclimate studies with large perturbations
or additional active feedbacks (figure 2). Another limitation arises, because the climate system
may include thresholds and tipping points, where the linear assumptions are not justified [58].
As discussed in §1, part of why the linear approximation is so widely used is its simplicity,
convenience and lack of alternatives; its validity is not in all cases examined. Studies investigating
limitations of the linearization would help to strengthen trust in the findings obtained within the
linear framework.

All terms in equation (3.1) are globally defined and hold for large temporal integrated scales.
To analyse feedbacks on a local scale a heat-flux divergence term has to be added [61,62]. The
meridional structure of feedbacks tends to compensate for local nonlinearites [63].

As shown, the climate feedbacks are treated as relative contributions to the response compared
with the strongly negative Planck feedback. One can define a reference temperature (increase T0)
caused by the Planck feedback (about 1.1◦C for a doubling of the atmospheric CO2 concentration).
The additional temperature response caused by the feedbacks can then be described by �T =
�T0/(1 − f ) with f = ∂T/∂R(∂R/∂α ∂α/∂T) the feedback factor. For an ECS value of approximately
3◦C, this implies that more than half of the warming is caused by feedbacks in the climate system,
and less than half is a direct Planck response to forcing.

Accepting the linear assumption and adopting the naming conventions mentioned above, one
can rewrite equation (3.1) as

F − N = λ�T. (3.2)

The linearization leads to the assumption that the feedback parameter λ is constant, meaning the
net feedback strength is independent of the climate state �T and the forcing F [64]. It is assumed
that the real-world climate system has an a priori unknown λ and climate models can help finding
the value of that λ and then project �T into the future. When the system settles into the new
equilibrium, the net heat flux, N, at the TOA is zero, and the temperature change necessary to
reach the new equilibrium �T = F/λ, is—by convention and as defined in §1—the ECS, if the
forcing is a doubling of the preindustrial CO2 concentration. The less efficient the Earth is at
emitting energy to space (smaller λ), the higher temperature increase �T is necessary to restore
the balance. By incorporating the heat uptake as a measure of the TCR, the global feedback (and
thus ECS) can be inferred from �T = (F − N)/λ. The transient response can be approximated from
the ratio between temperature change and forcing, and is smaller than ECS. As a consequence,
keeping F fixed at a certain time during a warming simulation would result in further surface
warming for several centuries. This is the commitment warming or ‘warming in the pipeline’
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Figure 3. Response timescales, expressed as fraction of the realized equilibrium response, for the global surface temperature
(a), the global oceanheat content (b) and fractionof thefinal equilibriumvalue of themaximumatlanticmeridional overturning
circulation at 30◦ N (c) for different models (CESM and ECBilt-CLIO) and forcing levels of 1.4 to 8 × CO2 and cooling to 100 ppm.
For CESM, only the 12 longest runs are used here. The number of ensemble members is noted in the label (ens). (Online version
in colour.)

[65,66]. The magnitude of the commitment warming depends on ECS, because the response
timescale is longer, and, therefore, the fraction of realized equilibrium warming (discussed later
in figure 3) is smaller, for higher ECS. In other words, if ECS is high, the current temperature
(expressed as a fraction) is further away from the equilibrium temperature for that forcing. As a
consequence, TCR becomes less sensitive to ECS for high ECS (i.e. a high and very high ECS are
difficult to separate in their short-term response as, indeed, in many other observables), which
often results in probability density functions with fat tails to high values [67,68].
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The description of equilibration in equation (3.2)—as N approaches 0—is a choice of a reference
framework and might be more helpful for certain questions than for others. While the global
energy balance has to be closed of course, the ability of equation (3.2) to physically explain
different timescales is limited. There is no physical necessity that the response scales with the
global mean surface temperature change, although many variables do (see discussion in §1).

To study the validity of the assumptions discussed above, and to analyse different processes
and timescales, step forcing experiments are useful. The forcing, F, does not vary in time (as it
does in reality), but is prescribed as an instantaneous increase or decrease and then held constant,
to let the system approach a new equilibrium. A fully equilibrated state is never reached in the
real world, because boundary conditions (e.g. orbital forcing, tectonics) always change, and some
feedbacks have very long response timescales. Nevertheless, these experiments are the cleanest
method of studying the timescales of different processes involved in the radiative restoration or
equilibration. Climate model intercomparisons reveal a large spread in timescales for a certain
responses [51,69]. This indicates a large uncertainty when analysing climate change impacts and
risks. Step experiments can be further used to predict the response to a more realistic time varying
CO2 forcings [70–73].

(b) Coupled model results
We use two models to illustrate some of above concepts, and to highlight the limitations of
the linear forcing feedback framework. First, the Community Earth System Model (CESM v.
1.0.4), a comprehensive ocean–atmosphere–land–sea ice model, is used with fixed vegetation
[74–76]. A set of 120 ensemble members branched off from different control run years—thus,
different in their initial oceanic, atmospheric, and sea ice state—are forced with an instantaneous
quadrupling of the CO2 concentration from the preindustrial value. All members are run for 2
years, 12 for 100 years, six for 250 years and one member for 1300 years. Its final state is regarded
as being equilibrated to calculate the fraction of equilibration shown in figure 3a, although the
deep Southern Ocean is still adjusting. The novel result here is that the forced response (shown
here as the anomaly to the control run) and, therefore, the changes in the global feedback can be
estimated on all timescales owing to the many ensemble members. Most GCM studies using the
energy balance equation (equation (3.2)) are done with a 150 year time series and one or a few
simulations for each model [51,62,77].

The second model is ECBilt-CLIO, a model of intermediate complexity, with a three level
quasi-geostrophic atmosphere with simple parametrizations for the diabatic processes and a free-
surface ocean general circulation model coupled to a thermodynamic-dynamic sea–ice model
[78,79]. We conducted five step forcing experiments composed of instantaneously increasing the
CO2 concentration 1.4, two, four, eight and 16 times above the preindustrial concentration, and
one step experiment with reduced forcing. In this cooling scenario, the CO2 concentration is
instantaneously set to 100 ppm, thus 0.35 times the preindustrial value of 280 ppm. For each of
the six ECBilt-CLIO experiments we simulate—depending on the signal to noise ratio—10 to 90
realizations of the same forcing from different initial conditions, all of which are run for 1000
years. One member per experiment is run for 10 000 years until equilibrium. These simulations
provide insights into how the global feedback changes with different forcing levels, and from
transient to equilibrium.

Figure 3a shows the realized temperature response at a certain time (relative to equilibrium) for
the ensemble average of four different experiments: the 4 × CO2 CESM (black), 1.4 × CO2 ECBilt-
CLIO (orange), 8 × CO2 ECBilt-CLIO (green) and the cooling ECBilt-CLIO (grey) all in thick lines.
The assumption that λ is independent of forcing level, and climate state or temperature implies
that at all times the fraction of equilibration is the same in all experiments, which is not the case.
There are roughly three timescales that all experiments have in common: a short timescale lasting
up to a few years, a decadal timescale and a century timescale, consistent with processes operating
on different timescales as shown in figure 2. Despite the instantaneous forcing, the realized
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warming is only 30–50% after a decade, and 60–80% after a century, confirming the commitment
warming idea discussed above and in §3c.

A minimized-least-squares fit of a sum of three exponentials to the dimensionless temperature
response function θ (t) of the form

θ (t) = 1 −
(
θ0e−t/τ0 + θ1e−t/τ1 + θ2e−t/τ2

)
,

is shown as thin lines in figure 3a. The choice of the exponential function is arbitrary—a sum of
two exponentials, a fit to a heat diffusion equation or a transfer function might also be valuable for
certain purposes [69,80]. The timescales (τ ) reveal the differences: τ0 ranges from 0.4 to 4.7 years,
τ1 from 2.6 to 50 years and τ2 from 194 to 310 years. The models differ most on decadal timescales,
with the weakest forcing case (orange) having a small warming initially (relative to equilibrium)
and an increased rate of warming after 100 years, whereas the stronger forcings (green and black)
lead to initially stronger warming and a slower increase on the century timescale. The amount
of realized warming at a given time differs up to 15% between the experiments. The rate of
temperature change involved when approaching a cooler state is initially smaller, but after some
decades, it is larger than in the warming situation.

Figure 3b shows the oceanic timescales, which are of course much longer, leading to a smaller
fraction of realized warming. Models with initially large atmospheric warming have a delayed
oceanic response. The spread of realized warming or cooling is up to 30% around year 400.
One reason for the differences is that stronger warming leads to a higher ocean stratification,
which reduces diffusive heat uptake [81,82]. Finally, figure 3c shows one of several reasons
why the oceanic heat uptake efficiency changes over time. The Atlantic Meridional Overturning
Circulation (AMOC) decreases owing to the freshwater and heat-flux forcing, but reaches its
control run strength after around 1000 years. It responds within decades and a decreased AMOC
on decadal timescales leads to an increased heat uptake (figure 3b) [83] and reduced surface
warming. The magnitude of the AMOC reduction depends on the magnitude of warming. In
the cooling case, after strengthening for a decade, the AMOC reduces by a few Sverdrups and
stays at its new state without restrengthening as it does in the warming case.

(c) The limits of linear models
So far, we have shown that not only different models show different timescales of equilibration,
but also that within one model the response timescales depend on the forcing magnitude and
sign. To analyse the constancy of λ, figure 4a shows TOA radiative imbalance (N in equation (3.2))
versus the surface temperature anomaly (�T) for all experiments. The slope of the regression line
through the points of one experiment corresponds to λ, and it should be a straight line [64]. The
annual averages of each ensemble member are depicted by small dots, whereas the large dots
are initial condition ensemble averages. Annual averages are shown until year 150, after which
decadal averages reduce the large internal variability, which dominates over the small forced
signal close to the equilibrium. The standard way to estimate the climate feedback parameter
λ, effective climate sensitivity (the intersect of the regression line with the horizontal axis), is
to linearly regress annual averages of year 1–150 of one realization of a 2 × CO2 step forcing
simulation per model [50,51].

There are several known issues with this regression method and the linear assumptions
described in §3a. It is unclear how much of the signal in the first year is impacted by the initial
conditions and by the tropospheric adjustment to the application of the forcing [84–87]. Figure 4a
shows a very large spread of responses for the first years. For example, the 120 ensemble members
CESM (black) differ by more than 2 W m−2 and by 1 K for the same forcing in the first year.
A deviation from a constant λ has been found in earlier studies not only for the annual timescale,
but also the first two decades [62,88,89] and is treated so far inconsistently, by cutting off a
few years before regressing N against �T, leading to an ambiguous definition of the effective
radiative forcing and effective climate sensitivity. Efficacy factors are used for different forcing
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Figure 4. (a) Surface temperature equilibration (imbalance N versus temperature change �T) for different forcing levels
(colours) and models (CESM and ECBilt-CLIO) where each ensemble member annual averages is a small dot and the ensemble
mean a large dot (annual until year 150, decadal averages until equilibration). The number of ensemble members is noted in
the label (ens). For the first 2 years, 120 CESM ensemblemembers are used, afterwards only 12. (b) Time evolution of the climate
feedback parameter λ, according to the ‘moving bin regression’, thus �N/�T . For the cooling case (grey), absolute values
are shown. (Online version in colour.)

agents (to account for the different spatial forcing distribution, shortwave versus longwave and
top of atmosphere versus surface forcings) and the ability of the ocean to cool the atmosphere
by taking up heat [90,91]. A dependency of λ on century timescales has been studied in just
a few models [92,93] and can be ascribed to the cloud, albedo and water vapour feedback
depending nonlinearly on temperature. Closely related is the dependency on the forcing level,
i.e. the temperature dependency not only over equilibration time—thus, temperature—but also
as climate base state (e.g. that surface albedo feedbacks will be weaker in a much warmer world
without snow and ice) [77,94–96]. State dependency also applies to palaeo studies [47,97,98].
Finally, fully coupled GCMs, with a deep ocean, can amplify feedback magnitudes of lapse rate
and short wave cloud feedbacks compared with their slab ocean version [95,99,100]. Recently, it
has been suggested that the non-constancy in the global λ is caused by the evolving spatial surface
temperature pattern, which (through �T) enhances certain local feedbacks at different times [62].
Further, it has been shown that the evolving sea surface temperature pattern alone could explain
the time or state dependency of λ [50,101].

To quantify the dependency of λ on the forcing level and the temperature or integration time,
we calculate the local derivative (�N/�T) in each point. The radiative imbalance is regressed
against temperature for all ensemble members of each model in a certain temperature bin—a few
Kelvins wide—which is moved in small steps throughout the temperature range. Different bin
widths are used for each simulation, according to the level of forcing and density of points in the
N − �T-space. This ‘moving bin regression’ circumvents the common problem of either putting
more weight to later years when using annual averages, or not addressing the first years when
averaging over decades before regressing N against �T. The evolution of λ over the temperature
range obtained by this moving bin regression is then transferred back to the time domain, shown
in figure 4b. The apparent time dependence is a temperature dependence. Time, in our case, is
characterized by how close a state is to the equilibrium state. After year 600, all model simulations
show a near-constant λ (cut off in figure 4b). The feedback parameter decreases especially strongly
within the first hundred years. For CESM, λ reduces from 1.5 to 0.7 W m−2 K−1. The CMIP5 model
mean value obtained with the standard regression method is 1 ± 0.5 Wm−2 K−1. Accordingly, the
effective climate sensitivity increases in CESM from 4.2 to 6.8 K for 4 × CO2. In the runs with a
strong CO2 forcing, the time it takes to reach a roughly constant λ level is several hundred years
shorter, and the absolute value is higher, than for the lower CO2 forcing levels. Even after several
hundred years, λ has a small trend. Using 5 year instead of annual averages lead to the same
result on timescales longer than 10 years.
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4. Are the current concepts of feedbacks and climate sensitivity still useful?

(a) What have we learned from simple models?
Describing a complex system like the climate with a very simple model inevitably means that
many factors are ignored, or assumed to be constant. The results above show that the global
temperature response to different forcing magnitudes and timescales cannot be fully described
with the assumption of a constant feedback parameter λ even in models that ignore long-term
Earth system feedbacks (ice sheets, dynamic vegetation, permafrost), non-CO2 forcings, chemistry
and land-use change. In our models, the feedback parameter varies by about 50% or more
between different forcing magnitudes and over time as the system approaches equilibrium. The
concept of a universal constant climate sensitivity as a fundamental climate system property
is very likely wrong, even when ignoring many feedbacks and forcings. This could be an
explanation—next to model biases in feedback strength—for the questions outlined in §1
(figure 2). The inconsistency of ECS estimates based on the observed warming and those based
on GCMs with freely evolving SST evolution could be partly caused by the assumption of a
constant λ. The estimates based on the observed warming, which use an effective radiative forcing
estimated from GCMs together with the assumption of a constant λ, would be biased low, if λ

would, in fact, not be constant but time or temperature dependent, as shown in figure 4b. In the
same way, a state and temperature dependency of λ makes the mapping of GCM, palaeo-proxy
and short-term observational estimated sensitivities a lot more difficult.

Does this imply the zero-order linear energy balance model is useless? A model is always
wrong with regard to reality in a strict sense, but the constant feedback parameter model may
still be an adequate approximation for some purposes. As an example, in our case, running the
CESM model for 200 years and ignoring the first 150 years for the regression of N against �T,
would allow us to predict the further evolution of the model. We argue that the quote ‘modelling
for insight, not numbers’ makes an essential point here [102]. We have to conclude that the global
linear forcing feedback model may be of limited value to estimate quantities like the ECS of the
real world, or at least we have to be more careful in understanding and quantifying in which range
of forcings, timescales and climate states a simple model with a constant feedback parameter can
be adequately used. But irrespective of whether the numbers tell us much about the real world,
such simple models are, and have been, valuable tools to understand fundamental properties of
the system [103].

For example, the fact that the transient response simulated in models (or observed, e.g. as the
twentieth-century warming), particularly on short timescales, becomes less sensitive to ECS at
high sensitivities, and that it is, therefore, harder to constrain the upper bound on ECS [67,68,104]
has, in fact, been noted decades ago with simple energy balance models. Wigley & Raper [105]
pointed out ‘that the response of the climate system to high-frequency forcings such as volcanic
eruptions and the seasonal insolation cycle must be virtually independent of the sensitivity. High-
frequency information is therefore of little value in trying to estimate, empirically, the climate
sensitivity. This is an obvious, but little appreciated result’. Wigley & Schlesinger [106] wrote that
‘the observed global warming over the past 100 years can be shown to be compatible with a
wide range of CO2-doubling temperature changes (ECS)’, and as a consequence, ‘it may be very
difficult to determine �T2x (ECS) from observational data’.

Recent evidence from observations and models that the climate system will continue to warm
for a constant forcing, the commitment warming [65,66], can be traced back to Siegenthaler &
Oeschger [107], and Wigley & Schlesinger [106], who noted that ‘at any given time, the climate
system may be quite far removed from its equilibrium with the prevailing CO2 level’, and
Schlesinger [108], who wrote that ‘sequestering of heat into the ocean’s interior is responsible for
the concomitant warming being only about half that which would have occurred in the absence
of the ocean. These studies also indicate that the climate system will continue to warm towards
its yet unrealized equilibrium temperature change, even if there is no further increase in the CO2
concentration’. These same authors also demonstrated the causes, shown in figure 3, namely that
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the characteristic timescales to reach equilibrium range from decades to centuries. These response
timescales, and as a consequence the commitment warming, depend on the feedback strength and
sensitivity of the model. Hansen et al. [109] noted that ‘the response times are particularly sensitive
to (i) the amount that the climate response is amplified by feedbacks and (ii) the representation
of ocean mixing. If ECS is 3◦C or greater for a doubling of the carbon dioxide concentration,
then most of the expected warming attributable to trace gases added to the atmosphere by man
probably has not yet occurred’.

The basic ideas of additive feedbacks enhancing the Planck response also go back to work
by Hansen et al. [110], and earlier pioneering work, both conceptual and based on climate
models [111–114]. All of those old insights are qualitatively still correct, and helpful as thought
experiments. More recent work has helped to clarify some of the concepts and point to their
limitations (see discussion in §§2 and 3). As GCMs become more complex and include more
feedback processes, simple models are necessary to aggregate, approximate and understand the
complex models [101,103,115].

(b) Have we made progress?
ECS was initially used as a model benchmark that was simple to calculate and well defined, an
overall measure of the response to increased atmospheric CO2. It is neither a characterization
of all aspects of climate change, nor the most relevant number for policy for all questions. The
anchoring on ECS as the holy grail of climate science, because the early report by Charney
[116] is not helpful. Some feedbacks like clouds were challenging back then [117] and still
are [54,55,118–120], and as a result, the uncertainty in climate projections has not decreased
much [121]. But observations and models have greatly improved, palaeoclimate has given us
a substantially improved view of what has and could happen, we know how to model many
processes more realistically, and we have a better understanding of the robust results and key
uncertainties. Charney based his conclusions on essentially two GCMs, citing five sources, of
which a single one was actually published [122], the other sources were in press, submitted or
labelled as personal communication. The published model by Manabe dates back to 1969 and has
a limited computational domain with equal areas of land and ocean, an idealized topography, no
heat transport by ocean currents and fixed cloudiness. Thus, the fact that the range for climate
sensitivity today is similar as was guessed by Charney over three decades ago based on sketchy
evidence should not be interpreted as a lack of progress, and using the range of ECS as a measure
of success for climate research fails to characterize the state of research.

(c) Possible ways forward
There are ‘top-down methods’, in which a global feedback is inferred from a global energy balance
equation, and ‘bottom-up methods’, in which the total feedback is an emerging property of the
myriad processes that we try to model quantitatively based on insight into each process and data
obtained to constrain or parametrize it. There are, of course, methods in between that combine
elements. All methods have in common that they are a fusion of models and observations, and
there is no pure observational constraint on ECS. Either we define a simple conceptual model
like an energy balance model, aggregate the inputs and constrain ECS, such as relating forcing
to cooling in the last glacial maximum. We then use complex models to argue that the simple
model is correct and consequently use simple models to predict future warming. Alternatively,
we use a complex model directly and relate whatever observations we have straight to model
quantities, and use a constrained set of models for prediction [43,45,123,124]. In this case, the
mapping of a palaeoclimate sensitivity to a modern ECS is not prescribed, but is implicit in the
GCM by the fact that feedback changes spatially and as a function of the climate state in the GCM.
In all of those questions, the treatment of uncertainties is key. In an energy balance approach, the
uncertainties for different time periods are dominated by either uncertainties in radiative forcing,
feedback, ocean heat uptake or natural variability. For palaeoclimate, the perturbations are large
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and the response is close to equilibrium, but forcing and response are uncertain. The strength of
the feedbacks may differ, and additional feedbacks may become relevant, as discussed with the
difficulties in defining ECS versus ESS in §2. For short timescales and forcings other than CO2,
the feedbacks are different, and variability is large. For climatological constraints, the problem
is that climate models have common biases pointing to common problems in representing key
feedbacks, because many relevant processes are not resolved but parametrized. Therefore, all
methods have uncertainties in the climate models, the observations, the forcings, in structural and
statistical assumptions (e.g. priors in Bayesian methods, or assumptions about constant feedback
parameters), and in how the estimated sensitivity relates to the present-day ECS in which we
are interested.

All methods, but in particular the ‘bottom-up’ which attempts to simulate each individual
process accurately, of course require a detailed process understanding to ensure that no
important feedbacks are overlooked. This again requires high-quality long-term and spatially
resolved observations, and larger computing capacity to improve (and at some point eliminate
where possible) parametrizations of key processes in climate models. New approaches in data
assimilation and bridging the gap between numerical weather prediction and climate modelling
could be important steps in that direction [125,126].

The understanding of single feedbacks has increased dramatically in the past few years. The
focus has moved to understanding the effect of the temperature pattern �T (lat, lon, time)
that acts on local feedback processes and their aggregation to the global λ�T term. Analysing
local scales complicates feedback analyses, because the skill of GCMs in simulating regional and
local processes is reduced, and model comparisons are more difficult. Trying to understand local
feedbacks also includes the evolution of the pattern of ocean heat uptake, heat convergence
and TOA imbalance, and research on this subject has barely begun. Understanding regional
changes though is more relevant for impact and risk assessments and might bridge the gap
between the understanding of global energy budget constraints and localized impact studies.
The structural problem of separating individual feedbacks in models—e.g. by keeping parts
of the model fixed, or by regression, radiative kernel, or partial radiative perturbation—and
comparing them to observations—in which partial derivatives are impossible—persists [52,60].
Next to the evaluation of the full-blown feedback processes in the models, a key challenge is to
study the limits of using the linear framework discussed in this paper. How far can one push a
GCM into being very sensitive or very insensitive to explore the range of plausible magnitudes
of feedbacks and their rate of change? Do cloud, convection and aerosol parametrizations bias
GCMs to be too sensitive, or not sensitive enough? For which purposes can we safely use the
effective radiative forcing estimates of the linear regression methods? Over which time frames is
the assumption of a constant λ justified? Can GCMs serve as a perfect model test bed for simple
frameworks, as shown in figure 4? For which climatic base states, feedbacks and their interaction
would it be wise to include nonlinear descriptions? For which temperatures, forcing scenarios,
and locations does the rate of change of the feedback term matter? When is using a certain
fit to estimate the global or regional temperature response justified? How does the coupling of
ocean, atmosphere and sea ice determine the evolution of surface temperature patterns enhancing
different feedback processes? How can we understand uncertainty propagation in nonlinear
systems, with correlated uncertainties, and using computationally expensive climate models? In
the light of all these questions, we argue to further explore various uses of feedback frameworks
rather than squeezing them into a one-fits-all-concept, and to carefully explore the applicability
and predictive capacity of each concept for a range of purposes.
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