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ABSTRACT: Pattern scaling can be used to linearly relate changes in extreme indices to changes in the annual or seasonal
mean temperature. This study demonstrates the skills and limitations of two often used pattern scaling approaches in filling-
in gaps in the time series of six temperature-related extreme indices. The extreme indices over Europe are derived from
daily temperature output of 12 regional climate models of the multi-model project ENSEMBLES. The response pattern is
estimated using one of the two future time periods (2021-2050 or 2070—-2099) and the reference period (1961-1990). The
simulated values from the remaining future time period are used for evaluating the skills. Both pattern scaling approaches
perform reasonably well particularly for percentile-based and over most of the regions also for fixed temperature indices.
Uncertainties due to internal variability can be large if the time period used for estimating the response pattern is close to
the reference period. Limitations of pattern scaling due to violations of the linearity assumption are related to the shape of
the temperature distribution. As a result, differences in the skills among the extreme indices can be related to the magnitude
and shift direction of the whole temperature distribution. Therefore, skills for estimated extreme indices derived from the
upper tail of the underlying temperature distribution are generally high. Over some areas, linear regression models used in
this study are not appropriate statistical models because of the bounded and discrete nature of the data. Alternative pattern
scaling methods such as, for instance, the logistic regression model leads to improvements over particular areas but not
over the whole integration area. Copyright © 2013 Royal Meteorological Society
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1. Introduction definitions used here and thus the short return periods
ensure a sufficiently large sample size for robust trend

Changes in the frequency or intensity of extreme events .
analysis.

as a result of a changing climate would have major

impacts on society and the environment. In this context,
not only climate scientists but also different impact
communities and end-users such as, for instance, the
reinsurance companies are highly interested in trends in
the frequency, intensity and duration of extreme events
and the understanding of the driving mechanisms. From
a statistical point of view, their long return periods are
a major challenge in the assessment of extreme events.
Consequently, there are in general not enough observed
or simulated extreme events to reliably estimate their
statistical properties. Additionally, climate models still
have difficulty simulating the typically high nonlinear
actions across scales and small-scale nature of extreme
events. To avoid some of these problems we here use a
set of extreme indices with return periods in the order
of weeks. Such moderate definitions of extremes include
events that do not correspond to the extremeness of events
that are generally perceived as weather extremes often
associated with high impacts. However, the moderate
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According to the extreme value theory, these events
are statistically not extreme because they do not follow
the extreme value distributions. Extreme indices are used
for assessing and monitoring changes in extremes on
global scale (Alexander et al., 2006) or in regional
trend studies (Moberg et al., 2006; Toreti and Desiato,
2008). We here use the definitions from the European
Climate Assessment and Dataset (ECA&D) initiative
(http://eca.knmi.nl/indicesextremes/index.php).

Simulations performed with regional climate model
(RCM) or global climate model (GCM) are an impor-
tant tool in climate science to assess and understand
changes in the climate system and their driving pro-
cesses. However, the associated costs limit the availabil-
ity of simulated data for some emission scenarios or time
periods. This is not only an issue for climate scientists
but also for the impact community using these simula-
tions as input for their impact models. A widely used
approach to fill in these gaps is pattern scaling, a method
that provides climate change scenarios for time peri-
ods or emission scenarios for which no simulations are
available.
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The underlying idea is that changes in a regional
variable are linearly related to large-scale or global mean
temperature changes. A forcing and time-independent
response pattern determines the variable of interest from
the selected set of predictors. A fast and easy way to
estimate the response pattern is the time-slice method
(Mitchell, 2003). The response pattern is then given by
the differences in the estimated means of the variable
of interest scaled by the mean temperature change
between two distinct time periods or emission scenarios.
However, any deviation from the underlying Gaussian
assumption or, more general, from symmetry concerning
the underlying probability density functions (PDF) leads
to biases in the response pattern. A more robust method
is to fit a linear regression using the least-squares method
because this approach takes all available data points into
account, minimizing the mean-squared error (Mitchell,
2003). Mitchell and Hulme (1999) and Huntingford
and Cox (2000) applied the least-squares method to a
sequence of decadal means. Ruosteenoja et al. (2007)
used the least-squares approach in order to fit several
simulations of four different emission scenarios for a
specific GCM on the global mean temperature change
simulated by a simple climate model. Kennett and
Buonomo (2006) scaled the time-varying mean and
standard deviation of the RCM with the smoothed global
mean surface air temperature from the driving GCM.
In the framework of the ENSEMBLES project, Kendon
et al. (2010) described how pattern scaling can be used
to increase the number of GCM—RCM chains.

The main idea of regression is to estimate the con-
ditional mean of a variable of interest. This implies
that a trend-induced change in the location parameter of
the dependent variable has to be related to the trend-
induced change in the mean of the explanatory vari-
able (Simolo et al., 2010). But especially extremes and
extreme indices are further sensitive to changes in the
scale or shape parameter of the underlying PDF (Katz
and Brown, 1992). In this context, the objective of this
study is to evaluate the applicability of the time-slice
and least-squares method to a set of temperature-related
extreme indices using the [IPCC SRES A1B emission sce-
nario which runs from a subset of GCM—-RCM pairs in
the framework of the ENSEMBLES project (Van Der
Linden and Mitchell, 2009). The pattern scaling methods
are used in this study to fill in gaps in the time series
of extreme indices. As there is mainly one emission sce-
nario available in the ENSEMBLES project, the skills of
the scaling methods are therefore tested using different
time periods rather than different emission scenarios. The
examination of the underlying assumptions such as, for
instance, the linearity assumption is crucial.

The structure of this study is as follows: Section 2
introduces the RCMs and the set of temperature-related
extreme indices. In Section 3, the least-squares and
time-slice method and their associated assumptions are
discussed. The results are presented in Section 4 and
discussed in Section 5. The resulting conclusions are the
topic of Section 6.
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2. Data
2.1.

In this study, six temperature-related extreme indices are
used, each of them derived from daily 2-m temperature
data. The extreme indices are defined as follows:

Extreme indices

e Number of frost days (FD): If TN is the daily minimum
temperature, FD is the number of days per year when
TN <0 °C.

e Number of summer days (SU): SU counts the number
of days per year when the daily maximum temperature
TX > 25 °C.

e Percentage of warm days (TX90P) and cold days
(TX10P) per year: For each calendar day of the
reference period 1961-1990 the 90th and 10th
percentile of the daily maximum temperature is
computed using a five day time window centred at the
calendar day.

e Percentage of warm nights (TN90P) and cold nights
(TN10P) per year: Same as above but for daily
minimum temperature.

e Cold-spell days index (CWFI): If TG is the daily
mean temperature and TG10P the calendar day 10th
percentile of a five day window centred at the calendar
day, CWFI counts the number of days per year when
TG < TGI10P for at least six consecutive days.

e Warm-spell days index (HWFI): If TG is the daily
mean temperature and TG90P the calendar 90th per-
centile of a five day window centred at the cal-
endar day, HWFI counts the number of days per
year when TG > TG90P for at least six consecutive
days.

All six extreme indices are computed with the
Climate Data Operators (CDO). CDO 1is an open
source tool developed by the Max-Planck-Institute
(https://code.zmaw.de/projects/cdo/) and provides a set
of operators for analysing climate model outputs. The
extreme indices implemented in CDO are European
Climate Assessment & Dataset (ECA&D) indices.
However, six of the extreme indices (FD, SU, TX10P,
TX90P, TN10P and TN90OP) used in this study follow
the recommended definitions by the Expert Team on
Climate Change Detection and Indices (ETCCDI). HWFI
and CWFI have definitions which are very similar to
the warm-spell duration index (WSDI) and cold-spell
duration index (CSDI) suggested by ETCCDI. The
main difference is that the daily mean temperature is
used to compute CWFI and HWFI. In contrast to this,
WSDI and CSDI employ daily maximum and minimum
temperature, respectively. The suggested extreme indices
are day-count indices based on fixed (FD, SU) or
percentile (TX90P, TX10P, TN90OP, TN10P, HWFI and
CWEFI) thresholds. The fixed extreme indices make a
spatial comparison difficult because they do not sample
the same part of the underlying probability distribution
of temperature at different sites. The motivation of using
extreme indices based on fixed thresholds is that they
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Table I. The ENSEMBLES regional climate models (RCM) with the same rotated pole grid and available simulations for the time
period from 1951 to 2099.

Institution RCM model Driving GCM

Irish National Meteorological Service (C41) RCA3 HadCM3Ql16

Danish Meteorological Institute (DMI) DMI-HIRHAM ECHAMS

Danish Meteorological Institute (DMI) DMI-HIRHAM ARPEGE

Swiss Federal Institute of Technology (ETH) CCLM HadCM3Q0

Royal Netherlands Meteorological Institute (KNMI) RACMO ECHAMS

Met Office Hadley Centre (HC) HadRM3QO0 HadCM3QO0

Met Office Hadley Centre (HC) HadRM3Q3 HadCM3Q3 (low sensitivity)
Met Office Hadley Centre (HC) HadRM3QI16 HadCM3Q16 (high sensitivity)
Swedish Meteorological and Hydrological Institute (SMHI) RCA ECHAMS

Swedish Meteorological and Hydrological Institute (SMHI) RCA BCM

Swedish Meteorological and Hydrological Institute (SMHI) RCA HadCM3Q3
Max-Planck-Institute for Meteorology (MPI) REMO ECHAMS

are often associated with observed impacts. For spatial
comparison the percentile-based extreme indices are
more suitable because they have a constant rarity in
context of the local climate. SU and FD do not take the
annual cycle into account in their definitions. This means
that in regions with a pronounced annual cycle one can
expect that the seasons affect the internal variability of
these two indices.

2.2. ENSEMBLES regional climate models

The daily maximum, minimum and mean 2-m tem-
peratures are simulated by different one-way nested
GCM-RCM chains. The GCM—-RCM pairs are defined
in the framework of the ENSEMBLES project (Van Der
Linden and Mitchell, 2009). Due to limited computational
resources, the ENSEMBLES community decided to use
mainly the SRES A1B emission scenario. In this study, a
set of 12 GCM—-RCM chains is used with a common grid
and transient runs covering the time period from 1951 to
2099. The horizontal resolution of the RCMs is about
25km. Only grid points exhibiting a land area fraction
of more than 50% are considered in this study. Table I
gives an overview on the 12 GCM—-RCM pairs, i.e. the
institutions, the name of the RCM and the name of the
driving GCM.

3. Methods
3.1.

There are two ways to estimate the response pattern, the
time-slice approach (Mitchell, 2003) and the least-squares
approach (Mitchell, 2003; Huntingford and Cox, 2000).
The annual mean of the daily mean, daily maximum and
daily minimum 2-m temperatures are used as explanatory
variables. Additionally, in case of the FD and SU index,
the seasonal mean summer (JJA) and mean winter (DJF)
temperatures are used. In cases where the seasonal
mean temperature is employed, the extreme indices are
computed per season. The anomalies for each variable
are computed by subtracting the mean of the reference
period (1961-1990) from the mid-century (2021-2050)

Estimation of the response pattern

Copyright © 2013 Royal Meteorological Society

and late-century (2070-2099) period mean. For the
least-squares approach, a linear regression model is used
with an unknown regression coefficient S, and the
intercept B which is assumed to be zero. The errors &
have to satisfy the Gauss—Markov conditions (Plackett,
1950). The basic idea of the least-squares method is to
minimize the residual sum of squares with respect to the
regression coefficient 8. Therefore, 8| can be estimated
in the following way:

D@ =X i -
> i=1

B = ;

Y —x)?

i=l

6]

The subscript i denotes all years of the reference and
the scenario period. For each grid point the significance
of the assumed linear trend is tested with a simple 7-test
of the coefficient 8 with the significance level @ = 5%. If
the Gauss—Markov conditions are not violated then 7 is
distributed like Student’s r with n—2 degrees of freedom.
The advantage of the least-squares approach relative to
the time-slice approach is that all available data are used.
Additionally, due to minimizing a quantity measuring
the errors we can be sure that, if all assumptions are
fulfilled, this approach fits the data better than the
time-slice method.

Another possibility to estimate the slope coefficient 8
is the time-slice method. This approach estimates 8 in
the following way:

,B\l — ZScenario B yReference (2)

X Scenario — X Reference

B1 is only estimated when there is a significant trend-
induced change of the mean at the 5% significance level.
In this context, a simple ¢-test is applied with the null
hypothesis H that the means are equal.

The scaling factor f; is estimated for each grid
point and for each of the 12 GCM-RCM pairs using
both pattern scaling approaches. In addition, §; is only
estimated for a particular grid point when the associated
significance test rejects the null hypothesis.
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3.2. Evaluation of the estimation skills

The response pattern is derived using one of the two
future time periods and the reference period. The esti-
mated response pattern is (1) used to interpolate the
extreme indices for the mid-century period 2021-2050
based on information from the control period and the
late-century 2070-2099, or to (2) extrapolate them for
the late-century 2070—-2099 based on information from
the control period and the mid-century, respectively. The
simulated values from the remaining time period are used
for evaluating the skill of the extreme index estimates.
The motivation of this study is to stay on the level of
the RCMs, i.e. we assume that we have only information
from the 12 GCM—RCM chains presented in Section 2.2.
An alternative procedure would be to use the global mean
temperature change as predictor or regional information
derived from statistical downscaling. However, because
the information of the RCM are more closely related to
regional climate simulated by the GCM—RCM chains, the
choice of RCM-based information delivers better insight
into the limitation of pattern scaling applied to extreme
indices.

As a measure of skill, two different statistical quan-
tities are used here. First, the root mean squared error
(RMSE). It is important to keep in mind that the RMSE
is sensitive to outliers. Another statistical quantity is the
Pearson’s correlation coefficient p. The correlation coef-
ficient measures the degree of correspondence between
the estimated and simulated values. The squared value
p? expresses the fraction of the variance in the simulated
values explained by the estimated linear regression. How-
ever, p> does not take into account any bias. Therefore,
a high value of p? can still have a large systematic error.
For this purpose, the RMSE will be used additionally in
order to quantify potential biases. Similar as the RMSE,
p? is sensitive to outliers.

4. Results

4.1.

Figure 1 shows in the top panel the mean TX90P val-
ues simulated with the HadCM3Q16-HadRM3Q16 model
and in the bottom panel the values fitted with the least-
squares approach for the time slice 2070-2099 using
the yearly mean daily maximum temperature as explana-
tory variable. Over central and northern Europe, there
is an underestimation of the fitted mean TX90P val-
ues. In contrast to this, the TX90P values over south-
ern Europe are in relatively good agreement with the
simulated ones. The figure representing the fitted val-
ues implies some spatial dependency of the skills which
will be discussed later. Figure 2 shows the p?> and
RMSE values for the estimated TX90P ((a), (b)) and
TXI0P ((c), (d)) indices over the integration area of
each GCM-RCM pair. Changes in the yearly mean
daily maximum temperature are used as explanatory vari-
able. The range in p> and RMSE across grid points is
depicted with the empirical 25 th and 75th percentile.

Skill of the scaled extreme indices

Copyright © 2013 Royal Meteorological Society
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Figure 1. Mean TX90P for the time slice 2070-2099 (a) simulated with

the HadCM3Q16-HadRM3Q16 model and (b) fitted with the least-

squares approach using the annual mean daily maximum temperature
as predictor.

Figure 2(a) and (c) shows the skill values for the time
period 2021-2050 (interpolation) whereas Figure 2(b)
and (d) those for 2070-2099 (extrapolation). For both
extreme indices, the least-squares approach performs bet-
ter than the time-slice approach. The multi-model median
RMSE values in case of the least-squares approach are
for both time periods of interest about 23—-57% lower
than for the time-slice approach. In addition, the inter-
polation for the time period 2021-2050 yields substan-
tially better results than the extrapolation for 2070—2099.
The multi-model interquartile range, as a measure for
the inter-model differences, is up to 50% lower for the
least-squares approach and the time period 2021-2050
relative to the time-slice approach. When estimating the
extreme indices for the time period 2070—2099, the inter-
model differences in the RMSE values become larger.
Especially for the TX10P index, the RCMs driven with
the high climate sensitivity GCM can be characterized as
outliers in terms of the RMSE values.

Concerning the p? values, Figure 2 shows that for both
pattern scaling approaches the correlation between the
simulated and fitted TX90P values are between 1.5-3
times higher than for the TX10P index. Additionally,
the multi-model interquartile range is in almost all cases
smaller for the TX90P index. This behaviour implies that,
given increasing mean temperatures, estimating extreme
indices associated with the upper tail of the underlying
temperature distribution (e.g. TX90P) seems to work
generally better than for those in the lower tail. This

Int. J. Climatol. (2013)
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Figure 2. Skill of the pattern scaling approach for all 12 GCM-RCM
chains expressed as squared correlation p> and RMSE values. Skills
are shown for TX90P in (a) 2021-2050, and (b) 2070-2090, and
for TX10P in (¢) 2021-2050, and (d) 2070-2099. The indices are
estimated with the time-slice (dashed line) and least-squares approach
(solid line). The annual mean daily maximum temperature is used as
explanatory variable. The range of values over the integration area is
represented with the empirical 25th and 75th percentile.

behaviour is due to the fact that the TXI10P index
approaches 0% per year as a result of the warming.
Therefore, the relationship between the extreme index
and mean temperature tends to flatten and thus violate
the assumption of linearity. The same behaviour is
observed for the TN10P and TN9OP index (not shown)
derived from the daily minimum temperature distribution.
However, there are very small differences in the skill
values between the TN10P and TXI10P extreme index

Copyright © 2013 Royal Meteorological Society

and the TNO9OP and TX90P index, respectively. In
case of the fixed threshold based extreme indices (FD
and SU; not shown), the multi-model median RMSE
values are still lower for the least-squares approach than
for the time-slice approach for the interpolation and
extrapolation. Seasonal mean temperature as predictor for
FD and SU leads to multi-model median RMSE values
up to 50% smaller than for the corresponding annual
based values. For both pattern scaling approaches, this
decrease is for the interpolated estimations larger than
for extrapolated values. For the multi-model p2 values,
an improvement up to 28% is evident mainly for the
least-squares approach applied on FD. In general, better
skills are found over northern Europe for FD and over
the Mediterranean in case of SU. This is due to the
fact that over northern Europe trends in annual mean
temperatures are dominated by trends in the seasonal DJF
mean temperature while over southern Europe trends in
the JJA mean temperature have a larger influence.

For yearly FD, the p? values (multi-model median and
interquartile range) are comparable with the values of
the TX10P and TN10P values. In case of SU, the multi-
model median values of this particular skill measurement
are lower and the multi-model interquartile range is in
almost all cases higher than for the values of the TX90P
and TN9OP index. In addition, the higher interquartile
range values for each GCM—RCM pair in case of FD and
SU imply a higher spatial dependency of the p? values
relative to the quantile-based extreme indices.

The lowest correlation values (not shown) are found
between CWFI and the annual mean temperature.
The median value over the integration area of each
GCM-RCM chain is between —0.5 and —0.56 with
a maximum interquartile range of 0.11. The small
inter-model differences give a hint that for this particular
extreme index the linearity assumption is violated. In
contrast to the CWFI, the skill values for the HWFI
indicate larger systematic errors in the estimations but
better correspondence with multi-model median p?
values in the order of 0.35-0.75 (not shown).

To investigate the uncertainty induced by internal
variability on the estimations of the slope parameter
B1, a 30-year moving window is used together with
the fixed reference period 1961-1990. The moving time
window is shifted by 1year at each step and moves
through the time period from 1991 to 2099. Figure 3
shows the estimated B; values for the TX90P index
based on the time-slice method (blue line) and the least-
squares method (red line) for a single grid point over
northern Scandinavia from the ECHAMS5-RCA model.
The TX90P index is chosen because this extreme index
does not exhibit any significant violation of the linearity
assumption over the whole integration area. The green
lines represent the range of estimated f; values for
that particular grid point for all 12 GCM—RCM chains.
The blue and red curves indicate that the uncertainty
in the slope parameter estimates is largest when the
moving window is close to the reference period. This
implies that the warming signal is partly masked by
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Figure 3. Grid point from the ECHAMS-RCA model with B, slopes

(TX90P per Kelvin warming of annual mean daily maximum tem-

perature) estimated with the least-squares (red) and time-slice (blue)

approach using the reference period (1961-1990) and a 30-year mov-

ing time window. The horizontal axis shows the time period covered

by the moving 30-year time window. The green lines represent the
range of estimated values for all 12 RCMs.

the internal variability (noise) for the coming decades.
However, the signal-to-noise ratio increases with time
and, therefore, the estimated slope parameter converges
to approximately 9%/K. In addition, the uncertainty in the
estimates decreases when the moving window is shifted
towards the end of the 21st century, i.e. both curves tend
to flatten. For the least-squares approach, for instance,
the uncertainty decreases by approximately 75% when
the moving time window reaches the end of the 21st
century. However, the uncertainty induced by internal
variability and the differences in the estimated slope
parameters between both pattern scaling approaches are
at any time much smaller than the inter-model differences
depicted as green lines. Even the largest uncertainty of the
estimated f; due to internal variability, found when the
time window is close to the reference period, is smaller
than 10% of the model range. However, the magnitude of
decrease in the uncertainty of the estimated f; exhibits
some spatial dependency. The largest decrease in the
uncertainty occurs over Scandinavia for three quarters
of the GCM—RCM chains in case of the least-squares
method and for all RCMs for the time-slice method.
For both pattern scaling methods and all GCM-RCM
chains, significant decreases in the uncertainty induced
by internal variability take place over the Mediterranean.

The aforementioned results are mainly observed for
warm extreme indices associated with temperature thresh-
olds in the upper tail of the underlying temperature
distribution. For extreme indices with temperature thresh-
olds in the lower tail of the temperature distribution (cold
extreme indices) other issues, such as nonlinearities and
the convergence of the extreme index values towards
zero, have a greater influence on the estimations.

5. Discussion

In the last section there is evidence for a violation
of the underlying linearity assumption for some of the
investigated extreme indices and especially in case of the

Copyright © 2013 Royal Meteorological Society

CWFEFL The degree of linearity and the trend magnitude of
the extreme index are related to trends in the explanatory
variable and the probability of exceeding a particular
temperature threshold. Figure 4 illustrates this link in case
of the TX10P and TX90P index over the Mediterranean
simulated from 1951 to 2099 with the HadCM3Q3-
HadRM3Q3. The trend in the yearly mean maximum
temperature for the time period from 1951 to 2099,
shown in Figure 4(a), can be characterized by a second
order polynomial regression model (blue solid line).
The fitted curve shows that under the assumption of
constant central moments higher than first-order the trend
implies a nonuniform shift of the whole temperature
distribution towards higher temperatures. The shift itself
induces changes in the probabilities of exceeding a
particular temperature threshold and therefore in the
extreme index. The magnitude and direction of this
induced trend depends on the shift direction and the
shape of the temperature distribution. Figure 4(c) shows
how the probability of exceeding the 90th percentile
changes as a function of changing location parameter
A in case of a standard normal distribution with three
different values for the scale parameter o. Figure 4(c)
implies that a shift towards higher temperatures induces
first a nonlinear increase in the percentage of days
per year exceeding the 90th percentile of the reference
period but then the trend becomes nearly linear after
some point in time. This is exactly what is seen in
Figure 4(b) showing the time series of the TX90P and
TX10P index. In addition, because the induced nonlinear
trend in the time series of the TX90P index resembles
the nonlinear trend in the time series of the yearly
mean temperature and both time series are in phase,
the resulting trend between the extreme index and the
explanatory variable is nearly linear. But Figure 4(c)
illustrates that the linear trend magnitude can be very
different for temperature distributions with the same
constant shape but different scale parameter. Further, the
figure implies that if changes in the scale parameter occur
during the shift of the whole temperature distribution the
resulting trend becomes nonlinear.

In contrast to this, changes in the exceedance proba-
bilities at the lower tail of the temperature distribution,
illustrated with the TX10P index, exhibit a decrease in
the exceedance probability. However, the magnitude of
the decreasing trend is much smaller than for the increas-
ing trend in the TX90P index. This explains why the skill
values for warm extreme indices (temperature threshold
in the upper tail of the temperature distribution) are often
much better than for cold extreme indices (thresholds in
the lower tail). Furthermore, this explains why the esti-
mated response patterns for the warm indices (i.e. TX90P,
TNOOP, HWFI and SU) are less affected by the internal
variability. As a consequence of this trend, magnitude
and linearity dependence on the shift direction of the
whole temperature distribution, interpolated estimates for
extreme indices (i.e. 2021-2050 based on 1961-1990
and 2070-2099) have higher skill than the extrapolated
values. This implies that under the assumption of linearity

Int. J. Climatol. (2013)
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Figure 4. (a) Time series of the annual mean daily maximum tempera-
ture (red circles) simulated over the Mediterranean from 1951 to 2099
with the HadCM3Q3-HadRM3Q3 under the SRES A1B emission sce-
nario. The blue solid line represents the second-order polynomial fit.
(b) Time series of the TX90P index (red dots) and TX10P (green dots)
and the second-order polynomial fits (blue line). (c) Probabilities of
exceeding the 90th percentile of a standard normal distribution as a
function of changes in the location parameter for three different values
of the scale parameter.

there is a dependency of the estimated response pattern
on the chosen time periods. The moving time window
applied on the TX90P index shows that if the second
time slice is placed in the second half of the 21st century
the uncertainty of the estimated 8 decreases and the esti-
mation converges to a nearly constant value. This effect
is especially pronounced over northern Europe, northeast
Europe and over the Mediterranean for the TX90P and
TNO9OP index. This corresponds to the regions where the
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largest warming in the annual mean surface air temper-
ature is expected at the end of the 21st century (Van
Der Linden and Mitchell, 2009). For the TN10P index,
TX10P index and CWFI, the violation of the linearity
assumption is the more dominant issue.

A further issue is that the extreme indices used in
this study are so called count data, i.e. they count the
number of days or events per time period. Therefore, the
range of possible values for the predictands is bounded.
In addition, the data is discrete, i.e. for a specific range
of yearly mean temperature it is possible to get the
same number of days or events per time period. In such
cases, simple linear regression models are not appropriate
statistical models for dealing with this kind of data.
The bounded nature of the data results from the typical
property of a cumulative distribution function being
bounded between zero and one, as evident in Figure 4(c).
The question is whether it is possible to modify the
pattern scaling method taking the aforementioned issues
into account. There are two potential solutions. First,
there is an ad hoc approach setting the estimated values
to the boundary value when they reach the limit of
reasonable values (i.e. no days or all days exceed the
temperature threshold). Another possibility is to use a
logistic regression model instead of the simple linear
regression model (not shown). In general, there is no
best alternative regression model or modification of the
established simple linear regression model leading to an
overall improvement over the whole integration area. The
improvement depends on the most dominant issue in each
of the simulated trends, i.e. if the nonlinearity or the
bounded and/or discrete nature of the data is the main
issue. How pronounced these issues are depends on the
extreme index and the simulated trends. The magnitude
of the trends determines how fast an extreme index
reaches a particular boundary value. This is especially
pronounced in case of CWFI and HWFI because they
have a higher sensitivity on trends in the underlying
temperature distribution. As a result, the trend magnitude
for both is much higher than for the other extreme indices.
All these dependencies explain why the improvements
vary between different regions.

For FD and SU, the results suggest that an improve-
ment of the results is possible using seasonal means
instead of annual means. This is not surprising because
these two indices depend on how pronounced the annual
cycle is. The trends in the annual mean temperature over
northern Europe are dominated by trends in the DIJF
mean temperature and over southern Europe by trends
in the JJA mean temperature. For this purpose, the
largest increase in the skills for FD when using seasonal
means are over northern Europe and for SU over the
Mediterranean.

6. Conclusion

This study demonstrates the potential and limitations of
pattern scaling approaches to fill-in gaps in projections of
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temperature-related extreme indices based on local mean
temperature changes. For all extreme indices consid-
ered the least-squares approach performs better in inter-
polating and extrapolating changes in extreme indices
from local mean temperature changes than the time-slice
approach. The skill for both methods is mainly limited
by the degree of linearity of the underlying relationship
between mean temperature and index. The linearity of
this relationship is determined by the shape of the under-
lying temperature distribution. In addition, changes in the
scale parameter during the shift of the temperature dis-
tribution can affect the linearity. However, the shape of
the temperature distribution is the main reason why in
case of increasing temperatures violations of the linearity
assumption occur mainly for cold extremes such as, for
instance, the TN10P index or CWFI. As a result, the inter-
polated and extrapolated estimations have lower skills
for cold extreme indices (i.e. TX10P, TN10P, CWFI and
FD) than for warm extreme indices (i.e. TX90P, TNOOP,
HWFI and SU). Given an underlying warming trend,
these higher skills are observed for both pattern scaling
approaches.

Trends in CWFI are highly sensitive to annual mean
temperatures due to the duration minimum of 6days.
Therefore, this extreme index converges faster towards
zero than, for instance, the TN10P index. The same prob-
lem will occur with ongoing warming for extreme indices
characterizing the upper tail of the temperature distri-
bution (e.g. TX90P and HWFI). For the HadCM3Q16-
RCA3 model which projects a strong warming, this
violation is already evident for the TX90P index over
parts of southern Europe at the end of the 21st
century.

The results of this study further illustrate that for both
pattern scaling methods the skills for the interpolation are
better than for the extrapolation. This is to a large extent
due to the internal variability that obscures the long-
term trend in the near-future period used to derive the
extrapolation. Testing the uncertainty induced by internal
variability on estimations of ) reveals that estimates of
the slope parameter ; are more robust for the second
half of the 21st century than for time periods close to the
reference period. Setting the second time slice at the end
of the 21st century, reductions in the uncertainty of j;
up to 75% are observed especially over Scandinavia and
the Mediterranean for both pattern scaling approaches.
Nevertheless, it is important to note that the model
uncertainty exceeds that from internal variability by far.

The results show that simulated trends in the time
series of extreme indices can be related to the direction
and magnitude of the change in mean temperatures. On
the basis of a particular GCM—-RCM pair we further
demonstrate that the skill of the methods is dependent on
regions and seasons considered. Over northern Europe,
for instance, the largest projected changes in seasonal
mean surface air temperature in case of the SRES A1B
scenario occur for the season December—February (Van
Der Linden and Mitchell, 2009). On the other hand, for
the season June—August the largest projected changes are
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expected over southern Europe. This implies that annual
trends over some regions are dominated by particular
seasonal trends. As a consequence of this, over such
regions it is possible to improve the skills for the
estimated FD and SU values when seasonal means are
used instead of annual means. Applying, for instance, the
least-squares approach on FD using seasonal DJF mean
temperature changes lead to RMSE values up to 50%
smaller than for annual values.

Another important limitation of the pattern scaling
approaches is that count data is bounded and/or discrete
leading to nonphysical or unreasonable estimations such
as, for instance, negative number of days per year. All
these issues lead to the conclusion that the traditional
pattern scaling approaches are only useful when the user
knows where over the area of interest the aforementioned
issues can occur and how pronounced they are. Alterna-
tive pattern scaling techniques such as, for instance, the
logistic regression model or ad hoc procedures discard-
ing unreasonable values can improve the estimations. But
there is no overall solution possible due to the spatial
dependency of the discussed issues and the dependency
on the GCM—-RCM pair.
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