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ABSTRACT

The Arctic climate is governed by complex interactions and feedback mechanisms between the atmo-

sphere, ocean, and solar radiation. One of its characteristic features, the Arctic sea ice, is very vulnerable to

anthropogenically caused warming. Production and melting of sea ice is influenced by several physical pro-

cesses. The authors show that the northward ocean heat transport is an important factor in the simulation of

the sea ice extent in the current general circulation models. Those models that transport more energy to the

Arctic show a stronger future warming, in the Arctic as well as globally. Larger heat transport to the Arctic, in

particular in the Barents Sea, reduces the sea ice cover in this area. More radiation is then absorbed during

summer months and is radiated back to the atmosphere in winter months. This process leads to an increase in

the surface temperature and therefore to a stronger polar amplification. The models that show a larger global

warming agree better with the observed sea ice extent in the Arctic. In general, these models also have

a higher spatial resolution.

These results suggest that higher resolution and greater complexity are beneficial in simulating the pro-

cesses relevant in the Arctic and that future warming in the high northern latitudes is likely to be near the

upper range of model projections, consistent with recent evidence that many climate models underestimate

Arctic sea ice decline.

1. Introduction

Anthropogenic greenhouse gases lead to a global

warming of the climate system. The warming, however,

is asymmetric: the high northern latitudes and landmasses

show greater warming than the Southern Hemisphere and

oceans due to ocean heat uptake (e.g., Flato and Boer

2001). It is the Arctic where the greatest warming is ex-

pected by the end of this century (e.g., Holland and Bitz

2003). Owing to differences in parameterizations and

structural differences of the atmosphere–ocean global cir-

culation models (AOGCMs), projections of future warm-

ing show large uncertainties.

The Arctic region is characterized by a very large var-

iability and complex physical processes that govern its

climate. Climate change caused by anthropogenic green-

house gases impacts this region severely by changes in sea

ice cover that have strong implications for the energy

budget. Additionally, positive feedback mechanisms are

key factors driving the Arctic warming (e.g., Manabe and

Stouffer 1980). Numerous physical processes account for

the strength of the ice albedo feedback, which is mainly

responsible for the polar amplification (Deser et al. 2010).

Polar warming is also strongly related to global warming,

as depicted in Fig. 1, with a correlation of 0.87; that is,

a higher global temperature increase implies a higher

warming in the Arctic. Understanding the complex Arctic

climate system with all its feedbacks is therefore in-

dispensable to reduce some of the uncertainties in global

climate change projections. This process is hampered by

the fact that observations in the Arctic are sparse and thus

large uncertainties exist in observational datasets. Hence,

temperature projections in the Arctic comprise a larger

spread [2.5–7.5 K for the Special Report on Emissions

Scenarios (SRES) A1B for 2070–99 relative to 1970–99]

of the AOGCMs than the global mean projections (1.8–

4 K), at least in absolute terms.

As mentioned above, various physical processes in-

fluence future temperature projections but they are also

important in simulating current climate and variability.

Yet, it has proven difficult to find metrics based on
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present-day mean climatology that strongly relate to

future projections (Murphy et al. 2004; Tebaldi and

Knutti 2007; Knutti et al. 2010; Knutti 2010), and the

scientific community has struggled in many cases to

define relevant metrics that would separate ‘‘good’’

from ‘‘bad’’ models, although there are some excep-

tions (Walsh et al. 2008; Wang and Overland 2009;

Zhang 2010). Knutti et al. (2006) find a relation be-

tween the seasonal cycle in regional temperature and

climate sensitivity. Hall (2004) shows that the strength

of snow albedo feedback in spring is coupled to the

strength of future temperature increase in each model.

Physical processes such as the longwave feedback pa-

rameter of the models (Boé et al. 2009a) and the deep

ocean heat uptake (Boé et al. 2009b) partly explain the

large spread of future model projections in tempera-

ture. Simulating such processes properly and improving

agreement with observations may be one possibility to

reduce uncertainty in future projections. In this study

we show that the main differences in the pattern of

surface temperature in the Arctic are localized over the

Barents Sea. This is a region where surface temperature

depends on ocean currents, namely, the North Atlantic

Drift Stream bringing warm surface water to high lati-

tudes. The strength of the northward ocean heat trans-

port impacts the sea ice cover in this region. Sea ice is

a key player, causing a large albedo feedback, and to-

gether with the sea ice thickness feedback leads to a

large Arctic warming. We show that process-based model

evaluation can provide interesting insight into climate

feedbacks and at the same time help to reduce model

uncertainties.

2. Data and method

Different observational datasets are used for the

evaluation of the models. The bias of the surface tem-

perature (TAS) is compared to the 40-yr European Cen-

tre for Medium-Range Weather Forecasts Re-Analysis

(ERA-40) dataset (Uppala et al. 2005). Though the newer

product ERA-Interim exists, it is not used for the bias

analysis because the dataset does not start before 1989

and, therefore, the time series is too short for a climato-

logical analysis. Station data is very sparse in the Arctic

and therefore ERA-40 is considered to be the most reli-

able to calculate the bias (Bromwich et al. 2007). The

investigated period for TAS starts with 1970 and ends

with 1999. For sea ice the Met Office Hadley Centre

Sea Ice and Sea Surface Temperature (HadISST) da-

taset (Rayner et al. 2003) is used for comparison with

model data. In this study only the period from 1980 to

2008 is considered.

The model dataset consists of up to 23 of the global

coupled AOGCMs used for the Intergovernmental

Panel on Climate Change (IPCC) Fourth Assessment

Report (AR4) (Solomon et al. 2007), which are avail-

able from the World Climate Research Programme

(WCRP) Coupled Model Intercomparison Project phase

3 (CMIP3) (Meehl et al. 2007). More information about

the participating models is available on the Program

for Climate Model Diagnosis and Intercomparison

(PCMDI, available online at http://www-pcmdi.llnl.

gov/about/index.php). All models providing the rele-

vant data are included in the analysis except for the

Flexible Global Ocean–Atmosphere–Land System Model

gridpoint version 1.0 (FGOALS-g1.0). This model shows

sea ice extent much larger than observed (Arzel et al.

2006). Since this study is focusing on the Arctic region,

this model is excluded. The models used in this study are

listed in Table 1. For all models and all variables, one

ensemble member (run1) of the A1B scenario is used for

the analysis. Not all modeling groups provide the ocean

heat transport in the data archive. Therefore, for seven

models the ocean heat transport is approximated by an

energy balance as in Fig. 8.6 of Solomon et al. (2007).

All model data is regridded to a common T42 grid using

a bilinear interpolation to be able to compare model re-

sults. Only for the northward ocean heat transport is the

data used on the original grid to minimize issues with

conservation of energy.

The projected warming is the difference between the

mean TAS of the periods 2070–99 and 1970–99. For the

evaluation of the models using observations, the period

1970–99 is used. For sea ice only the time period 1980–

2008 is used when observations are included because

the observational data is more reliable owing to use of

FIG. 1. Correlation (R 5 0.87) across the CMIP3 models between

the Arctic warming and the global warming (2070–99 relative to

1970–99). Numbers correspond to the models introduced in Table

1. Red (blue) labels mark the models that belong to the warm

(cold) composite used in subsequent figures.
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satellite techniques after 1980. The Arctic region in this

study is defined as the area north of 608N. Time aver-

ages are for the aforementioned periods, and spatial

averages cover the region 608–908N throughout the

paper.

3. Results and discussion

a. Surface temperature

To find a physical explanation for the large spread in

global and the even larger spread in the Arctic warming,

two different composites are constructed: one consisting

of the five models with the largest warming in the Arctic

(marked in red in Fig. 1) and the other consisting of the

five models with the smallest Arctic warming (marked in

blue in Fig. 1), excluding model 8 (see Table 2 for details

of the two groups). This model is excluded from the

composite because of the special behavior of its ocean

heat transport and its warming (see section 3c).

Though selecting the members for the composites has

a subjective component, sensitivity tests with more

‘‘cold’’ or ‘‘warm’’ models in the respective composites

show that the results do not depend on the details of

selecting the composites.

For these two composites, the mean surface temper-

ature (TAS) over the period 1970–99 in April and Sep-

tember in the Arctic is calculated and the bias against

the ERA-40 observational dataset is determined for

each composite. Figure 2 shows that, in general, the

warm composite reveals too warm temperatures com-

pared to ERA-40, whereas the cold composite has a bias

toward too low temperatures; that is, models with

a warm (cold) current state show more (less) warming. It

must be noted, however, that the ERA-40 shows a cold

bias over the Arctic Ocean (Bromwich et al. 2007). This

implies that the warm composite features a reduced

warm bias; conversely, the bias of the cold composite

may be even larger. The main differences are over the

ocean and are most apparent over the Barents Sea, as is

also stated by Chapman and Walsh (2007). Especially in

September the differences between the two composites

are particularly pronounced. The sea ice extent reaches

its minimum at this time of the year and the ocean is

capable of absorbing most energy at this time, while

energy is radiated back to the atmosphere during winter,

which enhances the large Arctic warming. Thus, differ-

ences in TAS in this region may strongly affect future

warming in the polar region. Reasons for the large bias

of both composites may be a complex feedback mech-

anism including sea ice cover and the associated ice al-

bedo feedback, as well as the ocean heat transport. The

details of this assumption will be discussed in the fol-

lowing sections.

b. Sea ice

Because large parts of the Arctic Ocean are covered

with ice throughout the entire year, or part of it, and

because the main differences are found over the ocean,

the mean sea ice concentration is shown in Fig. 3 for

the same two composites to investigate whether the

differences arise from the sea ice cover. The Goddard

Institute for Space Studies Model E-H (GISS-EH) is

missing in the cold composite in the case of sea ice be-

cause data is not available. Note that, since the HadISST

observational dataset is used, the period from 1980 to

2008 is examined. Figure 3 shows two interesting fea-

tures. First, the composite using the warm models sim-

ulates the sea ice cover in April and September more

accurately than the four cold models. Note that the

conclusions are not dependent on the specific month

in the year looked at. Second, the cold composite, not

TABLE 1. CMIP3 models and data availability (X).

Number Model

Sea

ice

Ocean

heat

transport

Calculated

ocean heat

transport

1 BCCR-BCM2.0 X X

2 CCCma CGCM3.1 X X

3 CCCma CGCM3.1 X X
T63

4 CNRM-CM3 X X

5 CSIRO Mk3.0 X X

6 GFDL CM2.0 X X
7 GFDL CM2.1 X

8 GISS-AOM X X

9 GISS-EH

10 GISS-ER X X
11 INMCM3.0 X X

12 IPSL CM4 X X

13 MIROC3.2 (hires) X X
14 MIROC3.2(medres) X X

15 MIUB-ECHO-G X X

16 ECHAM5 X X

17 MRI CGCM2.3.2a X X
18 CCSM3.0 X X

19 PCM1

20 UKMO HadCM3 X X

21 UKMO HadGEM1 X X
22 CSIRO Mk3.5 X X

TABLE 2. CMIP3 models of the two composites.

Warm models Cold models

MIROC3.2(hires) CCCma CGCM3.1

MIROC3.2 (medres) GISS-EH

ECHAM5 GISS-ER

CCSM3.0 CSIRO Mk3.0

UKMO HadGEM1 MRI CGCM2.3.2a
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surprisingly, has a greater sea ice extent than the warm

composite. Similar to Fig. 2, the main differences be-

tween the two composites are over the Barents Sea.

This suggests that the models simulating a smaller sea

ice extent for today’s climate conditions show a larger

decrease of sea ice and therefore less remains in a future

climate. The findings in Boé et al. (2009c) support this

hypothesis. The five coldest models belong to the group

of models showing the largest remaining area of Sep-

tember sea ice at the end of this century (Boé et al.

2009c). On the other hand, three models of the warm

composite belong to the four models with the smallest

area of September sea ice at the end of this century. One

model of our warm composite is not used in the study by

Boé et al. (2009c), and one model is in the lower half

with less September sea ice left of the sample used by

Boé et al. A reason for this difference could be that this

model has a larger sea ice extent in the preindustrial

conditions. When correlating the mean temperature bias

for September in the Arctic region with the mean sea

ice extent in September both for 1980–2008, it becomes

evident that models with a larger bias toward warm tem-

perature have smaller sea ice extent and vice versa, with a

correlation of 20.84 as shown in Fig. 4. The reason why the

models in the warm composite feature a relatively large

warm bias but still simulate the sea ice extent very accu-

rately may be due to the cold bias in the ERA-40 product

over the Arctic Ocean.

The sea ice thickness in April and September clearly

shows that the cold composite has thicker sea ice than

the warm composite, as depicted in Fig. 5. The warm

composite probably captures the sea ice thickness more

realistically than the cold composite (M. Holland 2009,

personal communication). Interestingly, according to

the study by Holland et al. (2010), the largest scatter of

sea ice thickness across the CMIP3 models is found in

FIG. 2. Bias of the surface temperature (K) (1970–99) for the (left) warm and (right) cold composite. Shown are the

biases in (top) April and (bottom) September.
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the Barents Sea. The ice thickness is an important factor

for the melt in spring and summer since thinner ice is

more vulnerable to melting during warm periods (Holland

and Bitz 2003). Generally speaking, both characteristics

of Arctic sea ice—extent and thickness—are important

for the processes governing the Arctic warming. In

spring and summer the ice cover decreases owing to sea

ice albedo feedback and the ocean absorbs shortwave

radiation, which is stored as thermal energy. In fall and

winter, thinning and decreasing sea ice reduces the iso-

lation of the ocean. Therefore, more energy is transferred

from the ocean to the atmosphere and hence leads to

an increase in surface temperature (Robock 1985; Hall

2004). Holland et al. (2010) support this thesis by stating

that models with thicker sea ice in the annual mean

simulate less net longwave heat loss at the surface during

winter months.

c. The role of the northward ocean heat transport

The ocean is an important factor in the climate sys-

tem. In the Arctic, and especially over the Barents Sea

where the surface temperature is influenced by the

North Atlantic Drift Stream, which brings warm ocean

water to the Arctic region, the northward ocean heat

transport influences the Arctic TAS. Koenigk et al.

(2009) state that differences in sea ice concentration

strongly affect the ocean heat release to the atmosphere.

Consequently, local and potentially large-scale climate

conditions are influenced by different sea ice conditions

in the Barents Sea. Jungclaus et al. (2006) conducted

a modeling study showing that an enhanced northward

ocean heat transport can cause a reduction in sea ice.

This relation is observed across the CMIP3 models. The

models simulating a stronger mean northward ocean

FIG. 3. Sea ice concentration (%) in (top) April and (bottom) September for 1980–2008: the (left) warm and

(right) cold composite. Only sea ice concentrations greater than 15% are shown; the red line shows the 15%

line of the observations (HadISST). Also, for the observations only sea ice concentrations greater than 15%

are used.
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heat transport, defined as the poleward flux at 608N,

show a smaller sea ice extent in September and vice

versa, shown in Fig. 6. The correlation between the two

quantities across the CMIP3 models is 20.72. When

only the sea ice extent in the Barents Sea is used, the

correlation is 20.76. Since sea ice extent is also corre-

lated with the TAS bias (Fig. 4), the ocean heat transport

is also related to the TAS bias. Hence, those models that

are already too warm for today’s climate will probably

warm more than average in a future climate. Figure 7

shows this dependency by correlating the future warm-

ing of each model with its current northward ocean heat

transport. Including all the models results in a correla-

tion of 0.48. But excluding the outlier (model 8, the same

model excluded from Fig. 1) increases the correlation to

0.68. Furthermore, the correlation between the ocean

heat transport of each model with its temperature bias is

0.44. Since the TAS bias is strongly related to the sea ice

extent, the northward ocean heat transport influences

sea ice extent in each model. It might be surprising that

the northward ocean heat transport is responsible for

the large spread of the models in their future warming

projections since the northward ocean heat transport

contributes only a small amount to the total energy

budget of the Arctic (Serreze et al. 2007). But, it has

a strong influence on the sea ice extent by influencing the

sea ice cover in the Barents Sea where the main differ-

ences in sea ice cover are found (Fig. 2), which in turn

affects the energy budget at the surface. Our results are

supported by Holland and Bitz (2003), who find a sig-

nificant correlation between polar amplification and

control climate ocean heat transport. The correlation of

the sea ice extent of each model with its northward

ocean heat transport in their study is 20.67. It is likely

that increased ocean heat transport results in a thinner

sea ice cover (Holland and Bitz 2003). The correlation

between the northward ocean heat transport and the sea

ice thickness in the Barents Sea in this study is 20.61. By

influencing the sea ice extent and thickness, the north-

ward ocean heat transport has a crucial influence on how

much energy can be absorbed and stored in the ocean

and, more importantly, how much of this energy is ra-

diated back during winter. Boé et al. (2009a) find the

capacity of the models to emit the stored energy in the

oceans as one of the main reasons for the intermodel

spread in the projections.

Meehl et al. (2000) compare two coupled climate mod-

els with different future warming and concentrate on re-

gional processes—one of which is the sea ice mechanism.

They state that ocean dynamics and heat transport sig-

nificantly contribute to the model’s response to sea ice

developments. Additionally, they studied the changes in

the ocean heat transport in a future climate and conclude

that the changes in the ocean heat transport more than

offset the influence on the decrease of sea ice area caused

by changes in absorbed solar energy. Hence, a stronger

ocean heat transport leads to a greater decrease in sea ice

and therefore to a greater warming than changes in the

solar radiation budget. According to Meehl et al. (2000),

changes in cloud characteristics are probably not the

main reason for the large spread of the models in case of

Arctic warming.

Comparing the amount of heat transported by the ocean

in the models and the estimates by Trenberth and Caron

(2001) (Fig. 7) reveal that all but one model overestimate

the northward ocean heat transport. The same findings

are reported in Fig. 8.6 of Solomon et al. (2007), which

shows the annual mean and zonally averaged ocean heat

transport. However, observations of this parameter are

difficult to obtain and large uncertainties exist. Bacon

(1997) estimates the Atlantic Ocean heat transport to be

0.35 PW (cf. Fig. 7), much larger than that by Trenberth

and Caron (2001), which is an estimate of the global

transport. It must be noted though that almost all of the

northward ocean heat at 608N is transported to the pole

by the Atlantic. Ganachaud and Wunsch (2000) estimate

the transport across 508N to be 0.6 PW. Note that the

decrease of the transport between 608 and 508N is only

around a tenth of a petawatt (Trenberth and Caron 2001).

Monitoring ocean heat transport remains a challenging

task, but more accurate estimates might help to constrain

AOGCMs in the future.

4. Conclusions

The large Arctic warming due to anthropogenic green-

house gases and positive feedback mechanisms, which

FIG. 4. Correlation (R 5 20.84) across the CMIP3 models be-

tween the mean September surface temperature (TAS) bias (using

ERA-40 as a reference) in the Arctic for 1980–2008 and the mean

September sea ice extent for the same period.
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cause a decrease in sea ice, have been discussed pre-

viously (Serreze and Francis 2006; Winton 2006; Wang

and Overland 2009; Holland et al. 2006; Stroeve et al.

2007; Zhang and Walsh 2006); however, the key factors

for the spread of the CMIP3’s future projections, espe-

cially of sea ice and temperature, are still only partly

known. In this study we show that large differences be-

tween the models in their simulated spatial patterns of

current temperature (TAS) exist. Constructing two com-

posites using five models showing the highest and five

models showing the lowest future temperature rise in the

Arctic reveals new insights into model processes. Com-

pared to observations, the main differences can be geo-

graphically localized over the Barents Sea. This region,

influenced by ocean currents and their associated north-

ward heat transport, shows the largest differences in sea

ice cover, as well as for TAS. The area covered by sea ice,

however, is a major driver of the feedback mechanism in

the Arctic. Furthermore, it has previously been shown

that the capability of the models to radiate energy from

the oceans back to the atmosphere contributes largely

to the model spread of their future projections (Boé et al.

2009a). If the ocean is less covered with sea ice, it can

absorb more solar radiation and energy is radiated back

more effectively since sea ice functions as an insulator.

Thus, the ocean heat transport plays a key role in the

Arctic climate system even if its energy flux to the Arctic

is relatively small. The significant role that this physical

process plays in the whole climate system suggests that

improving the simulation of ocean heat transport across

the CMIP3 models would lead to more accurate future

projections and fewer uncertainties across the models.

Although interannual variability of sea ice volume in the

Barents Sea depends on local winds, the oceanic heat

transport is important on longer time scales (Koenigk

et al. 2009). Improving model simulations of ocean heat

FIG. 5. Sea ice thickness (m) in (top) April and (bottom) September for 1980–2008: the (left) warm and (right) cold

composite. Note that also sea ice with a concentration smaller than 15% is shown here.
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transport implies studying the North Atlantic meridional

overturning circulation (MOC), which affects sea ice in

the Barents Sea through enhanced ocean heat transport

in periods with above normal MOC (Jungclaus et al.

2006). Sea ice extent and temperatures in the Barents Sea

are also related to the North Atlantic Oscillation (NAO)

since positive NAO phases cause enhanced atmospheric

and oceanic heat transport. Because the ocean heat

transport is a result of many complex physical processes

and given that measuring ocean heat transport is difficult,

expensive, and requires long-term monitoring to reduce

the effect of decadal variability in the ocean, it may be

very challenging to improve its simulation in a climate

model owing to several limitations such as model reso-

lution, process understanding, and data limitations.

Model evaluation is not a trivial task and different

approaches exist. Gleckler et al. (2008) and Reichler and

Kim (2008) define an overall metric of skill by evaluating

a number of variables globally. However, a ranking

based only upon a single overall metric including many

different variables may not be useful, as a single best

model for all climate variables and regions is unlikely

to exist. It is also unclear how rankings based on the

present-day mean climate relate to future projections

(Knutti et al. 2010; Tebaldi and Knutti 2007). This is

reflected in the current IPCC Report in which all models

are given equal weight and no performance metric is

applied. However, a model ranking can be useful in case

of an evaluation based on specific physical processes if

they are shown to be relevant for a specific prediction.

Some models do not meet basic performance criteria

for a specific physical process (Eyring et al. 2007; van

Oldenborgh et al. 2005) and, therefore, it is reasonable

to exclude these models from the analysis (Knutti 2010).

In this study a successful approach of model evaluation

is presented based on a few key processes that can be

demonstrated to control the climate of a region.

In summary we show that the northward ocean heat

transport contributes largely to the uncertainty in future

Arctic climate projections based on correlations across

the CMIP3 models. There is always a possibility that

correlations occur by chance or that they reflect that

all models make similar simple assumptions. We have

demonstrated that the correlations across multiple var-

iables provide a consistent picture and can be under-

stood in terms of physical processes. Furthermore, the

climate of the Arctic is determined by multiple compo-

nents and processes that are represented quite differ-

ently in the various models. We are therefore confident

that the correlations are indicating real differences in

the physics of the models.

Comparing the CMIP3 Arctic temperature simula-

tions with observations suggests that the expected Arctic

warming is rather at the upper end of the simulated

range because mean simulated temperatures for 1981–

2000 are generally 1–2 K too low compared to corre-

sponding observations (Chapman and Walsh 2007). The

Barents Sea is an exception, with a cold bias of 6–8 K

(Chapman and Walsh). Increasing model resolution on

average indeed leads to more accurate results in case of

Arctic climate simulations. The median of the cold

composite of the amount of grid cells covering the area

608–908N is 768 compared to 4608 of the warm com-

posite. We showed that the warm composite models

simulate the current Arctic climate more accurately

than the cold composite. Note that the resolution of

a model may only be part of the story, as resolution is

FIG. 6. Correlation (R 5 20.72) across the CMIP3 models be-

tween the northward ocean heat transport and the sea ice extent

averaged over the period 1970–99.

FIG. 7. Correlation (R 5 0.68, excluding model 8) across the

CMIP3 models between future Arctic warming and the mean

northward ocean heat transport (1970–99). The dashed line is an

estimate of the observed northward ocean heat transport by

Trenberth and Caron (2001), and the dotted line is an estimate of

Bacon (1997) at 608N. The best fit excludes model 8.
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often also correlated with the overall complexity of a

model, which will depend on the number of people working

on it, experience in constructing a model, the amount of

computational power, and the amount of money spent

on the model development are also important factors: all

are expected to be correlated with resolution. Excluding

the low-resolution models in this specific case reduces

the spread in future projections. This implies that true

future polar warming is likely to be at the upper end of

the simulated range by the CMIP3 models. The lower end

of the polar warming projections is then moved up from

;2.5 to ;4 K. This means that a temperature increase of

;4–8 K is expected by the end of this century in a SRES

A1B scenario.
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