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[1] Climate change projections are often given as equally
weighted averages across ensembles of climate models,
despite the fact that the sampling of the underlying ensembles
is unclear. We show that a hierarchical clustering of a metric
of spatial and temporal variations of either surface temperature
or precipitation in control simulations can capture many model
relationships across different ensembles. Strong similarities are
seen between models developed at the same institution, between
models sharing versions of the same atmospheric component,
and between successive versions of the same model. A per-
turbed parameter ensemble of a model appears separate from
other structurally different models. The results provide insight
into intermodel relationships, into how models evolve through
successive generations, and suggest that assuming model
independence in such ensembles of opportunity is not justified.
Citation: Masson, D., and R. Knutti (2011), Climate model geneal-
ogy, Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

1. Introduction

[2] Uncertainty in climate model projections is often
characterized by some measure of spread across an ensemble
of simulations [Furrer et al., 2007; Tebaldi et al., 2005;
Tebaldi and Knutti, 2007]. The results thus depend on the
range of responses covered by the models, and the distribu-
tion of the models within that range. The most recent coor-
dinated ensemble used here is from the World Climate
Research Project (WCRP) Coupled Model Intercomparison
Project Phase 3 (CMIP3) [Meehl et al., 2007]. A common
assumption in such ensembles is that the set of models
reflects the uncertainty in how to best describe the climate
system in a model, arising partly from the difficulty in
defining a unique model quality metric [Parker, 2006;
Tebaldi and Knutti, 2007; Knutti, 2008; Knutti et al., 2010b,
2010a]. Whether models span the full uncertainty range is
hard to verify or falsify. The other assumption is that the
models can be considered as independent in the sense that
every model contributes additional information. All models
of course contain common elements (e.g., the equations of
motion) because they describe the same system, and they
produce similar results. But if they make the same simplifi-
cations in parameterizing unresolved processes, use numeri-
cal schemes with similar problems, or even share components
or parts thereof (e.g., a land surface model), then their
deviations from the true system or other models will be
similar. In the extreme case, a model run at two resolutions, or
the same model run twice with two initial states provide very
little additional information about climatology or a decadally
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averaged projection. We qualitatively define an additional
model as dependent if it provides little insight into why and how
models differ from each other in the existing ensemble, and
from observations. While statistically convenient, the assump-
tion of independence is unlikely to be fully justified. Successful
concepts in models are often copied or inherited, some institu-
tions have used whole components from other models. Models
are evaluated against the same observations, often using similar
metrics. In CMIP3 several modeling groups have submitted two
or three models. Most intercomparisons are thus ensembles of
opportunity in which the sampling and dependence in the model
space is unknown.

2. Method

[3] The metric used to quantify the distance between
unforced control simulations of two models is based on the
Kullback-Leibler divergence that takes into account the full
spatial field of monthly values in a control simulation. It thus
considers the mean state, the seasonal cycle, the interannual
variations, as well as the spatial correlation. A hierarchical
clustering applied to the distance matrix of pairwise model
dissimilarities produces a ‘family tree’ of the models. The
position at which the tree connects two models (relative to
zero) characterizes the disagreement between the simulated
control climate of two models, the vertical ordering of the
branches is arbitrary. In addition, three reanalysis datasets
(ERA, NCEP and MERRA) and two precipitation datasets
(GPCP, CMAP) are treated like additional models. The details
of the statistical method as well as the CMIP3 and the
reanalysis and observation datasets are described in the
auxiliary material. Note that in contrast to earlier work [Jun
et al., 2008a; Knutti et al., 2010b; Pennell and Reichler,
2011] this method does not analyze pairwise correlation of
model errors to observations, but simply the similarity of two
models as expressed by the similarity of their temperature and
precipitation fields. Observations are included here as ‘addi-
tional models’ just for illustration. The method and all con-
clusions are independent of whether the ensemble is
interpreted as models being centered around truth or models
and truth being indistinguishable, because the method only
uses pairwise distances between models [Knutti et al., 2010a;
Annan and Hargreaves, 2010].

3. Results and Discussion

[4] The tree in Figure 1 shows that models from the same
institution in almost all cases are very similar (e.g., GISS,
MIROC, CCCMA, GFDL, UKMO, CSIRO). The degree of
similarity varies and is more pronounced for example for
GFDL than for GISS. Some of these pairs are not surprising,
e.g., the two CCCMA models only differ in resolution.
Others like the two UKMO for temperature are more sur-
prising. Some characteristics seem to be preserved that keep
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Figure 1. Hierarchical clustering of the CMIP3 models for (left) surface temperature and (right) precipitation in the model
control state. Models from the same institution and models sharing versions of the same atmospheric model are shown in the
same color. Observations also are marked by the same color. Models without obvious relationships are shown in black.

these two models close, despite significant changes that
were made to most components of the model. But relation-
ships go beyond the “same modeling center” attribute. MIUB
and ECHO-G (both based on an ECHAM4 atmosphere)
cluster for temperature, and INGV-ECHAM4 and MPI-
ECHAMS (both ECHAM based but with different versions)
cluster for precipitation. A less evident pair, BCCR-BCM2-0
and CNRM-CM3, is identified for both temperature and
precipitation. These models share the same atmosphere and
land components.

[5] Pennell and Reichler [2011] performed a similar
analysis using hierarchical clustering but with a different
distance metric based on model biases and 35 climate vari-
ables. While their results for CMIP3 are similar to those
presented here, we show that a single variable (thus avoiding
normalization) is sufficient to reveal most of the dependency
structure, and that the key elements of dependence are sim-
ilar for both surface temperature and precipitation. Obser-
vation and reanalysis datasets are not needed for the analysis,
but when included like additional models they also cluster
together, with some distance to the models, but well within
the bulk of the simulations.

[6] The picture gets even more interesting when the QUMP
perturbed physics ensemble [Collins et al., 2010] and the
previous generation of models in CMIP2 is included, shown
in Figure 2. The CMIP2 and CMIP3 models from the same
institution also tend to cluster. For precipitation for example,
the old NCAR CSM, PCM1 and the NCAR-WM models are
close. The newest NCAR CCSM3 in CMIP3 however was
developed almost independently from earlier NCAR models
and appears separated. Qualitatively, the history can be traced
back further for most models [ Edwards, 2010]. But given the
rapid development, the increase in resolution in the models,
the inclusion of new processes and the availability of more
observations, we believe the connections between successive

model versions are unlikely to persist over more than one or
two generations.

[7] Inmostofthe trees, there is no clear separation into two
or three clusters that are far apart, i.e., there is no evidence for
multiple classes of models, different mutually exclusive
theories or philosophies in how to build a model, or a clear
separation between CMIP2 and CMIP3. The climate model
landscape rather resembles an evolutionary process. Indi-
vidual models take small steps compared to the size of the
model space, successful pieces of a model are kept, inherited
and copied and less successful parts go extinct. Existing
models adapt to new environments (computer architecture
and capacity, new observations, improved understanding of
the climate system), although by deliberate rather than ran-
dom modifications. New models rarely are written from
scratch but evolve from combining, modifying and improv-
ing existing parts and ideas.

[8] The perturbed versions of the HadCM3 [Collins et al.,
2010] model separate themselves from the rest of the CMIP
models. For some aspects, a large PPE can span a “model
space” similar or larger than CMIP3, e.g., for the range of
feedbacks and climate sensitivity [Sanderson et al., 2010;
Collins et al., 2010; Stainforth et al., 2005]. However, if the
full spatiotemporal fields are considered, the underlying
model structure (grid, numerical scheme, parameterizations,
resolved processes) appears to be important. Note that
parameter perturbations in the QUMP ensemble are chosen to
maximize the spread in feedbacks but ensure good agreement
with climatology for each member (see auxiliary material).
Very different unconstrained model versions are likely to
exist, and those may well fall outside the QUMP cluster.

4. Conclusions

[9] Our analysis of spatial and temporal variations in
surface temperature and precipitation shows strong similar-
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Figure 2. Hierarchical clustering of the CMIP3, CMIP2 and QUMP perturbed physics ensemble for (left) surface temper-
ature and (right) precipitation in the model control state. Models developed by the UK Metoffice Hadley Centre are shown

in red, models developed by NCAR are marked in blue.

ities in groups of two or three models, supporting earlier
claims that the effective number of independent models is
smaller than the actual number of models in the multi model
ensemble [Pirtle et al., 2010; Pennell and Reichler,2011; Jun
et al., 2008b; Tebaldi and Knutti, 2007; Knutti, 2008; Knutti
et al., 2010b; Knutti, 2010]. Models developed at the same
institution show the most striking similarities, but depen-
dencies are even visible between two models that use dif-
ferent versions of the same atmosphere. Ensembles of
different generations as well as observations largely overlap,
suggesting a gradual evolutionary development and refine-
ment of models. For the metric and variables chosen here,
structural model differences seem to be important. We
interpret this as an indication that sampling different model
structures is important to capture the full range of model
behavior.

[10] Correlations between the control state and the pro-
jected change across models are generally weak [Knutti et al.,
2010b], implying that a mapping of the dependence structure
into projections is difficult (see auxiliary material for a dis-
cussion of clustering projections), i.e., two models that have
similar biases in the present may not have similar projection
errors in the future. It is therefore unclear whether the

dependence in the control state implies that uncertainty in
projections is underestimated, or that the number of effective
models in the future is the same as in the present.

[11] Using equal weights for all models to create a most
likely projection fails to take into account model depen-
dencies. If a group of similar models is part of the ensemble,
either from small changes in parameters or resolution, this
poses a risk of double counting and giving undue weight to
the structure underlying the group. Given the large cost of
model development, the availability of open community models
and the broader availability of supercomputers, model var-
iations of existing models and perturbed physics ensembles
[Sanderson et al., 2010; Collins et al., 2010] may become
more common in the future, making this dependence a much
bigger issue.

[12] The goal for an ensemble should be to maximize
diversity in models yet ensure good performance for all
members, and minimize dependency. In principle, this could
be achieved with a sufficiently large and broad ensemble to
start with, and an appropriate weighting that takes into
account two distinct factors: performance metrics measuring
model skill, and the dependence to other models to account
for sampling problems demonstrated above. In practice, this
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proves to be very difficult. For the former, the obvious
problem is the lack of repeated verification to define skill for
the forecast quantity of interest [Knutti et al., 2010b; Tebaldi
and Knutti, 2007; Knutti et al., 2010a]. Skill therefore has to
be indirectly determined by relating the forecast to metrics
based on past trends and climatology. With few exceptions
[e.g., Stott et al. 2006] such relationships are weak [Knutti
et al, 2010b], making the definition of model weights
ambiguous. If weights are incorrectly specified, the forecast is
likely to be worse than if no weighting was used, in particular
for small ensembles [Weigel et al., 2010]. Accounting for
model performance may be possible in some cases, ¢.g., in the
Arctic where several metrics of present day climate and past
trends are clearly related to future warming and sea ice
decline, and where the underlying processes are well under-
stood [Boé et al., 2009b, 2009a]. If the identified model biases
lead to biased predictions [Stroeve et al., 2007], it would
seems stupid not to consider the observed evidence to
improve projections and estimate uncertainties.

[13] Even if the general formulation of an unambiguous
weighting scheme for various regions, variables and time-
scales that takes into account model performance and
dependence appears to be a long way off, a few conclusions
are obvious. First, there is a lively debate in the community on
the point of model weighting [Knutti, 2010], but the issue of
sampling in ensembles has received very little attention.
Second, diversity is critical. The number of structurally dif-
ferent models is small, and maintaining a sufficiently large set
of reasonably independent models that span a wide range of
plausible assumptions and scientific viewpoints is important
both to quantify uncertainty and to understand model differ-
ences [Knutti,2010]. Eliminating a model from an analysis is
easy, extrapolation beyond the range covered by the ensem-
ble is nearly impossible. Third, models are rarely built with
lasting value as a primary goal [Held, 2005] and are super-
seded by newer models. Yet to understand why models and
their projections differ, archiving results from older model
versions and common scenarios would help. Fourth, con-
clusions drawn from ensembles should at least test the sen-
sitivity to how models are selected in the ensemble. Current
coordinated model experiments are like asking the same
question to a small number of people, without thinking about
how to select those people, how many to ask, and how to
account for the fact that they may have similarly biased
opinions. This undoubtedly makes the interpretation of the
answers challenging.
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